In a railway vehicle, although the weight of the vehicle acts on rails through respective wheels, a vertical load acting on each wheel is referred to as “the wheel load.” Moreover, the balance of the wheel loads between the respective wheels varies and, thus, a state where the wheel load on a certain wheel becomes extremely small is referred to as “the decrease in wheel load.”
Meanwhile, since the orbit changes from a plane state into a cant state with the distance at an entrance part into an orbital curve (transition curve part) as shown in
As the countermeasure, as disclosed, for example, in Patent Documents 1 and 2, devices installed between the carbody and the bogies and for controlling the heights of air springs for supporting the carbody (i.e., the pressures in the air springs) to reduce the occurrence of the decrease in wheel load, have been proposed.
In a freight train, so-called indirect-mounting bogies are normally used, and the carbody is supported by bolsters via side bearers and center pivots. The bolsters are supported by a bogie frame via bolster springs, and the bolster springs support a force in the roll directions. In the freight train, there is a special nature that loads acting on the bogies change a lot between an empty-vehicle state and a loaded state.
If there is initial torsion between supporting points of the front bogie and the rear bogie of the carbody, unbalance may occur mainly in the bolster spring supporting heights of each of the front and rear bogies and, thereby, unbalance may occur in static load on the left and right wheels respectively in the front and rear bogies. This unbalance in the static load on the left and right wheels may promote the decreases in wheel load when traveling through the curve.
As the countermeasure, for example, Patent Documents 3 and 4 have proposed a technique to achieve equalization of the bolster spring supporting heights of each of the front and rear bogies, against the initial torsion of the carbody, by inserting liners in bolster spring supporting parts of the front and rear bogies, respectively.
[Patent Document 1] JP2010-173354A
[Patent Document 2] JP2007-269076A
[Patent Document 3] JP2002-347619A
[Patent Document 4] JP2010-076608A
However, in the conventional arts, since the decrease in wheel load is suppressed by actively controlling the air spring internal pressures as described above, the suppressing operation of the decrease in wheel load cannot be performed any longer if a problem occurs in the control operation itself, such as a loss of control, for example, and, thus, the displacement in the orbital torsion with respect to the carbody cannot be absorbed. As described above, the conventional arts have only achieved a superficial measure to prevent the decrease in wheel load, and have not yet reached a radical settlement in which the displacement in the orbital torsion with respect to the carbody is absorbed.
Further, in the freight train, because of its special nature, the bolster springs have to be applicable to a wide range of load and have to satisfy restrictions of the vertical displacement, and, therefore, the bolster springs cannot be set too soft. As a result, especially in the empty-vehicle state, the rigidity in the torsional directions at the front and rear of the vehicle relatively increases, and the decrease in wheel load tends to increase between the front and rear bogies, for example, in an orbital torsion section of a sharp curve. Therefore, it is necessary to absorb the displacement in the orbital torsion with respect to the carbody also in the freight train.
Further, as described above, when there is the initial torsion between the supporting points of the front and rear bogies of the carbody, since it is necessary to adjust the liners in order to achieve the equalization of the bolster spring supporting heights of each of the front and rear bogies, there is a problem that the adjustment is burdensome.
The present invention is made in order to solve such problems, and one purpose of the present invention is to provide a carbody support device which can absorb a displacement in an orbital torsion with respect to a carbody without performing an active control operation, and provide a railway vehicle provided with the carbody support device.
Further, another purpose of the present invention is to provide a carbody support device which can easily reduce a static wheel load unbalance of each of the front and rear bogies which is occurred due to initial torsion of the carbody, and to provide a railway vehicle provided with the carbody support device.
In order to achieve the purposes described above, the present invention is configured as follows. That is, according to the first aspect of the present invention, a carbody support device of a railway vehicle including support mechanisms respectively installed between a front bogie and a carbody and between a rear bogie and the carbody in a traveling direction, and supporting the carbody against the respective bogies. The support mechanisms regulate both the front bogie and the rear bogie inclining in the same vehicle width direction with respect to the carbody when the railway vehicle travels through a curve, while the support mechanisms permit the front bogie and the rear bogie inclining in different vehicle width directions.
By being configured as described above, in a case that the railway vehicle travels-the curve, when the orbital cant differs at the front bogie and the rear bogie, the support mechanisms permit the inclinations of the front bogie and the rear bogie in the different vehicle width directions with respect to the carbody. Therefore, even when the vehicle travels through a curved cant gradually decreasing section, occurrence of a decrease in wheel load can be prevented. Further, since the support mechanisms are not for conventionally preventive measures of the decrease in wheel load including electric controls, the reliability is very high compared with the conventional measures.
Moreover, according to the second aspect of the present invention, a railway vehicle includes the carbody support device according to the first aspect.
According to the carbody support device according to the first aspect and the railway vehicle according to the second aspect, the carbody support device which can absorb a displacement in orbital torsion with respect to the carbody without performing an active control operation, and the railway vehicle provided with the carbody support device, can be provided.
According to the carbody support device and the railway vehicle, static wheel load unbalance of each of the front and rear bogies caused by initial torsion of the carbody can be easily reduced, without performing, for example, liner adjustments.
Hereinafter, a carbody support device and a railway vehicle provided with the carbody support device which are one embodiment will be described with reference to the accompanying drawings. Note that in each drawing, same or similar components are denoted by same reference numerals. Moreover, each drawing schematically illustrates the conceptual configuration, and the shape, size, and scale of each part do not correspond to an actual component. In addition, between the same or similar components, even if the illustrated shapes, sizes, and forms are different, the differences are not intentional. In order to avoid the following explanation becomes unnecessarily redundant and facilitate understanding of the following explanation by a person skilled in the art, detailed explanation of the matters already well known and repeating explanation of substantially the same configurations may be omitted. Further, the following explanation and the contents of the accompanying drawings are not intended to limit the subject matters described in the claims.
The carbody support device of this embodiment is not a device for preventing a decrease in wheel load of a single wheel within a bogie of a railway vehicle, but it is a device for preventing the decreases in wheel load between the front and rear bogies of a single vehicle, and includes a support mechanism. The support mechanism is comprised of mechanisms, each installed between the front bogie and the carbody, and between the rear bogie and the carbody, respectively, and supports the carbody against each bogie. The carbody support device of this embodiment has features especially in regulating that the front bogie and the rear bogie together incline in the same vehicle width direction with respect to the carbody when traveling through a curve, while permitting the inclinations in different directions. More specifically, when a cant of the orbit at the front bogie and a cant at the rear bogie are inclinations in the same direction and at the same angle, the support mechanism acts so as to regulate the inclinations of the front bogie and the rear bogie together in the same vehicle width direction with respect to the carbody. On the other hand, when both cants differ in the inclination, the support mechanism acts so as to permit the inclinations in different directions.
For example, in a state shown in
On the other hand, in a state shown in
Thus, the carbody support device which is this embodiment can prevent the decreases in wheel load of both the front and rear bogies of the single vehicle, by providing the support mechanisms. Such carbody support devices can prevent the decreases in wheel load at both the front and rear bogies, for example, especially within the cant gradually decreasing section of a sharp curve, such as in a subway line. Even if the vehicle is limited in characteristics of secondary suspension (e.g., bolster spring) due to a large load change before and after loading, such as a freight train, the decreases in wheel load between the front and rear bogies can be suppressed, for example, in an orbital torsion section of the sharp curve. Below, particular examples of the configuration of such support mechanisms are described one by one.
One of the examples of the particular configuration of the support mechanisms conceptually described with reference to
The first anti rolling bar 111 is comprised of, for example, a torsion bar made of metal, such as steel, and extends in vehicle longitudinal directions 22 from the front bogie 11 side. The first anti rolling bar 111 is pivotable about an axis thereof, and both ends thereof are supported by bearings under the carbody. The second anti rolling bar 112 is comprised of, for example, a torsion bar similar to the first anti rolling bar 111, and extends in the vehicle longitudinal directions 22 from the rear bogie 12 side. The second anti rolling bar 112 is pivotable about an axis thereof, and both ends thereof are supported by bearings under the carbody. Note that, in this embodiment, although the first anti rolling bar 111 and the second anti rolling bar 112 are bar members, such as torsion bars, they may be, but not limited to, any members having similar functions.
The reversing mechanism 113 is a mechanism coupling an end 111b of the first anti rolling bar 111 away from the front bogie 11 to an end 112b of the second anti rolling bar 112 away from the rear bogie 12, and for reversing the rotating direction about the axis of the first anti rolling bar 111 and the rotating direction about the axis of the second anti rolling bar 112. For example, when the first anti rolling bar 111 is twisted in a “c” direction, the reversing mechanism 113 rotates the second anti rolling bar 112 in a “d” direction, but regulates the rotation to the same “c” direction.
As one example of the reversing mechanism 113 which performs such operation, gears may be used. That is, the reversing mechanism 113 has a configuration in which the reversing mechanism 113 includes a first gear provided to the end 111b of the first anti rolling bar 111 away from the front bogie 11 and a second gear provided to the end 112b of the second anti rolling bar 112 away from the rear bogie 12, and the gears are engaged with each other.
According to the carbody support device 101 thus configured, the operation described with reference to
In the following Embodiments 2-4, a configuration example of the carbody support device provided with the support mechanism 110 having the first anti rolling bar 111, the second anti rolling bar 112, and the reversing mechanism 113 described above will be further described.
A carbody support device 102 of Embodiment 2 will be described with reference to
In the carbody support device 102 of Embodiment 2, the support mechanism 110 described above further includes a diagonal beam 120 and a coupling support mechanism 130, and the support mechanism including these components is referred to as a support mechanism 110-2 in the illustration. The diagonal beam 120 is made of metal, such as steel, and is comprised of a front diagonal beam 121 provided corresponding to the front bogie 11 and a rear diagonal beam 122 provided corresponding to the rear bogie 12, and the beams are provided under the carbody. Each diagonal beam 120 extends up to the substantially vehicle width in the vehicle width directions 21, and is rollably supported by the carbody 20 at bearings 40 at the center in the vehicle width directions. Further, each diagonal beam 120 is provided between the respective air springs 17 on both sides in the vehicle width directions 21 and the carbody 20 in each of the bogies 11 and 12, and is supported from below by the respective air springs 17.
Although illustration is omitted in
The diagonal beams 120 are rollable with respect to the carbody 20 as much as the amount of the orbital torsion within the cant gradually decreasing section. Therefore, in order to prevent the diagonal beam 120 from an excessive rolling displacement, a stopper 129 may be provided via a clearance δ between the bottom surface of the carbody and the diagonal beam 120, as shown in
The coupling support mechanism 130 includes a mechanism (front side coupling support mechanism) coupling and supporting the front diagonal beam 121 and the first anti rolling bar 111 corresponding to the front bogie 11, and a mechanism (rear side coupling support mechanism) coupling and supporting the rear diagonal beam 122 and the second anti rolling bar 112 corresponding to the rear bogie 12. The front side and rear side coupling support mechanisms 130 on the front bogie 11 side and the rear bogie 12 side are comprised of the same mechanism, and each includes a coupling member 131 and a support member 132 coupled to the coupling member 131 via a joint. The coupling member 131 is, for example, a member made of metal, such as bar steel, and a member coupling the diagonal beam 120 to the support member 132. The support member 132 is, for example, a member made of metal, such as bar steel, and a member for twisting the first anti rolling bar 111 and the second anti rolling bar 112. For example, on the front bogie 11 side, one end of the front side coupling member 131 is rotatably connected with a right or left end of the front diagonal beam 121 in the vehicle width directions 21, one end of the front side support member 132 is coupled to the front side coupling member 131 via a joint, and the other end of the front side support member 132 is fixed to a bogie side end 111a of the first anti rolling bar 111. Similarly, on the rear bogie 12 side, one end of the rear side coupling member 131 is rotatably connected with a right or left end of the rear diagonal beam 122, one end of the rear side support member 132 is coupled to the rear side coupling member 131 via a joint, and the other end of the rear side support member 132 is fixed to a bogie side end 112a of the second anti rolling bar 112.
Note that in this embodiment, as shown in
Further, in terms of improving the operability and the like in mounting of the coupling support mechanism 130, the coupling member 131 can have a length adjustment mechanism which can adjust the length of the vehicle in the vertical directions, as one example.
The carbody support device 102 of Embodiment 2 configured as described above operates as follows. That is, the front bogie 11 and the front diagonal beam 121, and the rear bogie 12 and the rear diagonal beam 122 are supported via the air springs 17, respectively, and each inclination of the front bogie 11 and the rear bogie 12 in the vehicle width directions 21 according to the orbital cant causes a rolling force to act independently on the front diagonal beam 121 and the rear diagonal beam 122, respectively. Therefore, for example, in the case of the cant gradually decreasing section as shown in
In the curved section with the cant as shown in
Thus, the carbody support device 102 of Embodiment 2 also enables to prevent the decreases in wheel load in both the front and rear bogies of the single vehicle.
Further, in Embodiments 1 and 2, the configuration where the gears are used as the reversing mechanism 113 is described as an example. However, the configuration is not limited to the use of the gears, and may be any other configurations having “reverse” movement functions as described above. For example, since each rotating angle of the first anti rolling bar 111 and the second anti rolling bar 112 is small, the gears may not need to be used. Therefore, as shown in
Next, a carbody support device 103 of Embodiment 3 will be described with reference to
In the carbody support device 103, the support mechanism 110 having the first anti rolling bar 111, etc. further includes a carbody vertical motion absorber mechanism 140, a coupling piping 150, and a leveling device 160, in addition to the coupling support mechanisms 130 described above. Such support mechanisms are described as a support mechanism 110-3 for convenience of illustration. Further, in the carbody support device 103, the coupling support mechanism 130 has a configuration also comprised of the carbody vertical motion absorber mechanism 140 as will be described below.
The configuration of the support mechanism 110 and the configuration of the coupling support mechanism 130 other than the carbody vertical motion absorber mechanism 140 are configurations already described and, thus, detailed explanation thereof is omitted herein; however, it differs in configuration in terms of the following matters. That is, although in the carbody support device 102 of Embodiment 2 described above, the support mechanism 110 and the coupling support mechanism 130 are disposed on either one of the right side or the left side in the vehicle width directions 21 under the carbody, they are disposed on both sides in Embodiment 3. This is a configuration associated with the removal of the diagonal beam 120. That is, in the carbody support device 103, the carbody 20 may be rolled in connection with air inhalation and exhalation of the air springs 17 on the left and right sides, and therefore, the center of rotation thereof may deviate from the center in the vehicle width directions 21. The both-side arrangement is a configuration in order to compensate the deviation. However, if the center deviation of the center of rotation is negligible, the support mechanism 110 and the coupling support mechanism 130 may be disposed on either one of the right side or the left side, similar to the case of Embodiment 2.
Since the diagonal beam 120 is not provided, the vertical rigidity of the carbody 20 with respect to each of the bogies 11 and 12 may increase and, thus, riding comfort may be degradated. Thus, the embody support device 103 of this embodiment includes the carbody vertical motion absorber mechanism 140. The carbody vertical motion absorber mechanism 140 includes a bar member 141, for example, such as a torsion bar, made of metal. As shown in
As described above, the inclining movement of the front bogie 11 and the rear bogie 12 in the vehicle width directions 21 becomes possible to act on the support mechanism 110 described above, by coupling the carbody vertical motion absorber mechanism 140 to the coupling support mechanisms 130.
Thus, in the carbody support device 103, although the coupling support mechanisms 130 are the components also containing the carbody vertical motion absorber mechanism 140, the carbody vertical motion absorber mechanism 140 may not be provided if the degradation of the riding comfort does not cause problems so much. In this case, one end of each of the front side and rear side coupling members 131 of the coupling support mechanism 130 is coupled to each bogie frame 13 of the bogies 11 and 12.
The coupling piping 150 is a piping for communicating between the air springs 17 on both sides in the vehicle width directions in each of the front bogie 11 and the rear bogie 12. A choke member 151, such as a valve, for suppressing and slowing down the air flow between the air springs 17 on both left and right sides may be mounted to the coupling piping 150.
The leveling device 160 is a device for performing air inhalation and exhalation of the air springs 17 on both sides in the vehicle width directions in each of the front bogie 11 and the rear bogie 12 to adjust the height of each air spring 17. The leveling device 160 includes a leveling valve 161, pipings 162 for communicating the leveling valve 161 with the respective left and right air springs 17, and a detecting member 163 coupled to each of the front bogie 11 and the rear bogie 12 in order to detect the height of the carbody 20 with respect to the bogies 11 and 12.
The leveling device 160 thus configured performs known operation in each of the front bogie 11 and the rear bogie 12. Briefly, when a displacement with respect to a prescribed height of the carbody 20 is detected via each detecting member 163 in the front bogie 11 and the rear bogie 12, each leveling valve 161 performs air inhalation or exhalation of the respective left and right air springs 17 to set the carbody 20 to the prescribed height.
The carbody support device 103 of Embodiment 3 configured as described above operates as follows. That is, in each of the front bogie 11 and the rear bogie 12, the two air springs 17 on both left and right sides in the vehicle width directions 21 are communicated with each other through the coupling piping 150, and one leveling valve 161 is provided for the two air springs 17 on both left and right sides, the carbody 20 is supported in the vertical directions with moderate rigidity; however, the carbody 20 is freely rollable.
On the other hand, if the carbody vertical motion absorber mechanism 140, the coupling support mechanisms 130, and the support mechanisms 110 are provided, and these are coupled, the free rolling motion can be prevented especially by the operation of the support mechanisms 110 which has already been described. That is, although the front bogie 11 and the rear bogie 12, and the carbody 20 of the single vehicle are mutually pivotable in the torsional directions (i.e., rotation to the different directions), they have a structure with rigidity in the roll direction (i.e., rotation to the same direction).
Therefore, also by the carbody support device 103 of Embodiment 3, the decreases in wheel load can be prevented at both the front and rear bogies of the single vehicle. Further, in the carbody support device 103, since the diagonal beam 120 is not provided unlike the carbody support device 102 of Embodiment 2, there are advantages that more space can be provided around the bogie under the carbody floor, and the weight of the vehicle can be reduced.
Note that, in
Next, a carbody support device 104 of Embodiment 4 will be described with reference to
Describing in more detail, in the carbody support device 102 of Embodiment 2 described above, although the configuration having the diagonal beam 120 with respect to the bolsterless bogie is illustrated, a bolster 170 of the bogie is also used as the diagonal beam 120 in the carbody support device 104 of Embodiment 4. Further, in this embodiment, a so-called indirect-mounting bogie is adopted as one example of the bolstered bogie. As shown in
Note that the center pivot 171 has, for example, a spherical surface, and supports the center pin 25 having a spherical tip end, for example, by a laminated rubber. With such a configuration, the bolster 170 can act as the diagonal beam 120, and the bolster 170 can displace in the roll and yaw directions with respect to the center pin 25.
Further, side bearers 175 are installed between both ends of each bolster 170 in the vehicle width directions 21 and the bottom surface of the carbody corresponding to the both ends, respectively. In this embodiment, each side bearer 175 has a configuration including a pedestal 1751 placed on both ends of the bolster 170, respectively, and a coil spring 1752 which supports the pedestal 1751 from the carbody 20 side. Note that a spring case 1753 which protrudes from the floor bottom surface of the carbody and accommodates the coil spring 1752, and the pedestal 1751 can contact with each other via a clearance, and function as a stopper. This clearance is a distance obtained by adding a margin to the amount of the orbital torsion.
One end of the coupling member 131 of the coupling support mechanism 130 is connected with each bolster 170 thus configured, and the support mechanism 110 is further connected with the coupling support mechanism 130. The coupling support mechanism 130 and the support mechanism 110 have same configurations as those described in Embodiment 2 and, thus, explanation thereof is omitted herein.
The carbody support device 104 of Embodiment 4 configured as described above performs operation in which the explanation related to the diagonal beam 120 (the front diagonal beam 121 and the rear diagonal beam 122) within the explanation of operation of the carbody support device 102 in Embodiment 2 is replaced by the bolster 170. Briefly, for example, within the cant gradually decreasing section as shown in
Thus, also by the carbody support device 104 of Embodiment 4, the decreases in wheel load can be prevented at both the front and rear bogies of the single vehicle. Further, since the diagonal beam 120 is not provided unlike the carbody support device 102 of Embodiment 2, there are advantages that the carbody support device 104 can generate a margin in a space around is the bogie under the carbody floor, and the weight of the vehicle can be reduced.
Note that, in
In Embodiments 2-4 described above, the configuration in which the support mechanisms 110 having the first anti rolling bar 111, the second anti rolling bar 112, and the reversing mechanism 113 are used as the support mechanisms provided to the carbody support device is described. On the other hand, in Embodiment 5 and the following Embodiment 6, support mechanisms have a configuration different from the support mechanisms 110.
First, a carbody support device 105 of Embodiment 5 will be described with reference to
The diagonal beams 120 are same as the diagonal beams 120 provided to the carbody support device 102 of Embodiment 2, are a front diagonal beam 121 provided corresponding to the front bogie 11 and a rear diagonal beam 122 provided corresponding to the rear bogie 12, and are provided under the carbody. Further, the shape, function, and operation of each of the bogies 11 and 12 are same as those of the diagonal beams 120 of Embodiment 2 and, thus, detailed explanation thereof is omitted herein.
The hydraulic cylinders 211 are cylinders disposed between each of the diagonal beams 121 and 122 and the bottom of the carbody, at total of four locations corresponding to both ends of the front diagonal beam 121 and both ends of the rear diagonal beam 122 in the vehicle width directions 21. A piston rod of each hydraulic cylinder 211 is coupled to both ends of the front diagonal beam 121 and both ends of the rear diagonal beam 122, respectively.
The confinement pipings 215 are pipings extending in vehicle longitudinal directions 22 at both left and right sides of the carbody 20 in the vehicle width directions 21, and are pipings communicating between two hydraulic cylinders 211 disposed on the same side in the vehicle width directions 21 and confining incompressible fluid therein. In this embodiment, mineral oil is used as the incompressible fluid.
The carbody support device 105 configured as described above operates as follows. Each inclination of the front bogie 11 and the rear bogie 12 in the vehicle width directions 21 according to orbital cant acts independently as the rolling force onto the front diagonal beam 121 and the rear diagonal beam 122, respectively. Therefore, for example, in the case of the cant gradually decreasing section as shown in
On the other hand, at the inside rail side, since the rear diagonal beam 122 receives the rolling force to the inside rail side as described above, the force acts on the piston rod of the hydraulic cylinder 211 disposed at the inside rail side (“a” side) of the rear bogie 12 so as to extend the piston rod. As a result, the fluid in the confinement piping 215 at the inside rail side of the carbody 20 acts on the hydraulic cylinder 211 at the inside rail side (“a” side) of the front bogie 11 to compress the hydraulic cylinder 211. That is, it acts so as not to disturb the rolling of the front diagonal beam 121 in the front bogie 11 to the outside rail side.
Further, in the curved section with cant as shown in
Thus, the decreases in wheel load can be prevented at both the front and rear bogies of the single vehicle, also by the carbody support device 105 of Embodiment 5. Further, the support mechanism 210 can reduce the number of components and simplify the structure, compared with the support mechanism 110 described above.
Next, a carbody support device 106 of Embodiment 6 will be described with reference to
Although the carbody support device 105 of Embodiment 5 described above has the configuration in which it is applied to the railway vehicle provided with the bolsterless bogie, the carbody support device 106 is applied to a railway vehicle having direct mounting bolstered bogies. Therefore, as shown in
Note that the configurations of the bolster center pivot 181 and the bogie. center pivot 13a are not limited to the spherical surface shape, and they can adopt the configurations, such as using a laminated rubber as illustrated in the rear bogie 12 of
Further, the side bearers 182 are provided to both ends of each bolster 180 in the vehicle width directions 21, respectively, and the hydraulic cylinders 211 is embedded in the bolster 180 corresponding to each side bearer 182. The piston rod of each hydraulic cylinder 211 is disposed via the side bearer 182 so as to oppose to each bogie frame 13 of the front and rear bogies 11 and 12, and a slide plate 183 is mounted to each bogie frame 13 side. Here, the side bearer 182 is not coupled to the slide plate 183.
For such hydraulic cylinders 211, the two hydraulic cylinders 211 disposed on the same side in the vehicle width directions 21 communicate with each other through the confinement piping 215.
The carbody support device 106 configured as described above operates similar to the carbody support device 105 described above. For example, in the cant gradually decreasing section as shown in
On the other hand, at the inside rail side of the rear bogie 12, the force acting on the hydraulic cylinder 211 from the bogie frame 13 becomes weaker compared with the outside rail side. Further, the side bearer 182 at the tip end of the piston rod of the hydraulic cylinder 211 is not coupled to the slide plate 183 on the bogie frame 13 side. Therefore, the fluid inside the confinement piping 215 at the inside rail side of the carbody 20 does not actively act to the hydraulic cylinder 211 at the inside rail side (“a” side) of the front bogie 11.
Further, in the curved section with cant as shown in
Thus, also by the carbody support device 106 of Embodiment 6, the decreases in wheel load can be prevented at both the front and rear bogies of the single vehicle. Further, as compared with the carbody support device 105 of Embodiment 5 described above, since the front diagonal beam 121 and the rear diagonal beam 122 can be removed, the carbody support device 106 has advantages that more space can be given around the bogie under the carbody floor, and the weight of the vehicle can be reduced.
Further, in the carbody support device 106 of Embodiment 6 and the carbody support device 105 of Embodiment 5, the support mechanism 210 may further have an oil pressure compensation part 216 for the confinement piping 215. This oil pressure compensation part 216 is a component for setting the oil pressure inside the piping within a prescribed range when an abnormal rise or an abnormal fall occurs to the oil pressure inside the confinement piping 215, and has a configuration in which an accumulator 2163 is connected with the confinement piping 215 via a check valve 2161 and a pressure relief valve 2162. By having such an oil pressure compensation part 216, the operational reliability of the support mechanism 210 can be improved.
Next, in Embodiments 7-10 described below, a carbody support device which has a simpler structure compared with the structures of the support mechanisms in the carbody support devices 101-104 of Embodiments 1-4 described above, and is also applicable, for example, to freight trains, such as container trains and tank trains, will be described. That is, although the reversing mechanism 113 is used as an essential configuration in the carbody support devices 101-104, the carbody support devices of the following Embodiments 7-10 provide the simple structure from which the reversing mechanism 113 is omitted.
A carbody support device 107 of Embodiment 7 will be described with reference to
First, the configuration around the front bogie 11 and the rear bogie 12 included in the carbody support device 107 will be briefly described. In
For convenience, although
Next, support mechanisms 310 provided to the carbody support device 107 where the front bogie 11 and the rear bogie 12 adopt the above configuration are described. Since the support mechanisms 310 do not have the reversing mechanism 113 described above, it is different from the support mechanisms 110 of Embodiments 2-4, and it is also different from the support mechanisms 210 of Embodiments 5 and 6. A pair of such support mechanisms 310 are installed, for example, under the carbody 20 of the freight train on both sides in the vehicle width directions 21. Each support mechanism 310 includes a front side lever member 3111 provided corresponding to the front bogie 11, a rear side lever member 3112 provided corresponding to the rear bogie 12, and a bar steel member 312 corresponding to one example of the connecting mechanism. Note that the front side lever member 3111 and the rear side lever member 3112 may be generically indicated as a lever member 311.
The front side lever member 3111 and the rear side lever member 3112 are members, for example, each of which is made from a steel plate into an angle shape, and pivots about a fulcrum 311c located between one end 311a and the other end 311b thereof. In this embodiment, the fulcrum 311c is supported by the carbody 20. Although the bending angle of the lever member 311 is normally an obtuse angle as illustrated, it may be set suitably according to the vehicle structure, etc., and may be a right angle or an acute angle.
Each of one ends 311a of the front side lever member 3111 and the rear side lever member 3112 is located corresponding to the side bearer 175 installed on both ends of each bolster 170 in the vehicle width directions 21, respectively, and presses the front bogie 11 and the rear bogie 12 according to pivoting of the lever member 311. Further, the support mechanism 310 has an elastic member 313 between each one end 311a and each side bearer 175, which applies a biasing force to each of the bogies 11 and 12 from each lever member 311. In this embodiment, rubber is used as one example of the elastic member 313. Further, the elastic member 313 thus disposed also functions as a part for adjusting the mounting (installation) between the pair of front and rear support mechanisms 310, and the front bogie 11 and the rear bogie 12, respectively. That is, the installation adjustment is possible by changing the thickness of the rubber in this embodiment. As the result, it becomes possible to appropriately adjust the rigidity in the roll direction (i.e., rotation to the same direction) and in the torsional directions rotation to the different directions) of the front bogie 11 and the rear bogie 12, and the carbody 20 of a single vehicle. Thus, the elastic member 313 can also be used as the member for adjustment, and is not an essential member in the support mechanism 310. Note that since the each bolster 170, together with the bogies 11 and 12, carry out a bogey rotation with respect to the carbody 20 centering on the center pin 25, and the lever member 311 is supported by the carbody 20 in this embodiment, the side bearer 175 and the elastic member 313 are configured to slide via a metal plate which is a so-called slide plate.
Each of the other ends 311b of the front side lever member 3111 and the rear side lever member 3112 is coupled to a bar steel member 312 (e.g., a pipe member) which is supported by the carbody 20 and extends in vehicle longitudinal directions 22. Note that since the lever member 311 is pivotable about the fulcrum 311c, each of the other ends 311b is pivotably mounted with respect to the bar steel member 312. Thus, since each lever member 311 is coupled via the bar steel member 312, and the bar steel member 312 is movable in the vehicle longitudinal directions 22, the front side lever member 3111 and the rear side lever member 3112 move in the same pivoting direction.
Operation of the carbody support device 107 of Embodiment 7 having the support mechanism 310 configured as described above is described below with reference to
This operation displaces oppositely for the support mechanism located rearward with respect to the drawing sheet (for convenience, indicated as “310R” in
On the other hand, as shown in
Here, in the support mechanism 310E on the opposite side, i.e., forward with respect to the drawing sheet in
As described in detail above, also in the carbody support device 107 of Embodiment 7, similar to the carbody support device in each embodiment described above, the front bogie 11 and the rear bogie 12, and the carbody of a single vehicle are mutually pivotable in the torsional directions (i.e., rotation to the different directions); however, they have the structure having rigidity in the roll direction (i.e., rotation to the same direction). Therefore, the decreases in wheel load can be prevented at both the front and rear bogies of the single vehicle.
Further, the carbody support device 107 of Embodiment 7 has peculiar effects that manufacture and maintenances are easy and the manufacturing cost can be reduced because it has the simple structure where the reversing mechanism 113 is omitted from the structures of the support to mechanisms in the carbody support devices 101-104 Embodiments 1-4. Further, resulting from the simple configuration, the carbody support device 107 of Embodiment 7 also has an effect that it is also applicable to freight trains, such as container trains and tank trains, for example. Especially, the freight train bogie which adopts the indirect-mounting carbody supporting structure has peculiar effects that manufacture and maintenances are easy and the manufacturing cost can be reduced because components below the bolster 170 can use existing bogie structures without any changes.
On the other hand, in Embodiment 7, as shown in
Operation of the carbody support device 107-1 in such modification is described below with reference to
On the other hand, when the vehicle rolls in the same direction, for example, to the inclination trough side as shown in
Next, a carbody support device 108 of Embodiment 8 will be described with reference to
These different matters are described in detail. The front and rear bogies 11 and 12 are bogies with the bolster 170, and between an upper surface of the bolster 170 and the carbody 20, the air spring 17 corresponding to one example of the secondary suspension is installed on both sides of the bolster 170 in the vehicle width directions 21 to constitute the direct mounting bogie. Therefore, the clearance between the bolster 170 and the carbody 20 varies in vertical directions. Further, a support mechanism 320 in the carbody support device 108 of Embodiment 8 corresponding to the support mechanism 310 in the carbody support device 107 includes the lever member 311, the bar steel member 312, and the elastic member 313 which were described above, and further includes the absorber mechanism 321. Further, the lever member 311 is supported by the carbody 20 so as to be pivotable about the fulcrum 311c in the carbody support device 107; however, on the other hand, the lever member 311 is supported by the bolster 170 so as to be pivotable about the fulcrum 311c in the carbody support device 108. Meanwhile, the bar steel member 312 is supported by the carbody 20 so as to be movable in the vehicle longitudinal directions 22 also in the carbody support device 108.
The absorber mechanism 321 is a mechanism for absorbing the vertical displacement of the bolster 170 and the carbody 20, between the other end 311b of the lever member 311 and the bar steel member 312, and as one example thereof, in this embodiment, it adopts a configuration in which one end of a steel bar 322 is coupled to the other end 311b of the lever member 311 via hearings 323, and the other end of the bar 322 is coupled to an end of the bar steel member 312, for example, via a universal joint 324, such as a spherical joint. Of course, the configuration of the absorber mechanism 321 is not intended to limit to the configuration of this example but can adopt any displacement absorbable configurations which can be perceived by the person skilled in the art.
Since the fundamental configuration of the carbody support device 108 of Embodiment 8 configured as described above is same as the configuration of the carbody support device 107, it performs the same operations as the operations described above of the carbody support device 107. Therefore, also in the carbody support device 108 of Embodiment 8, it can cause the same effects as the carbody support device 107 of Embodiment 7, and the decreases in wheel load can be prevented at both the front and rear bogies of the single vehicle. Further, since the absorber mechanism 321 is provided, the displacement between the bolster 170 and the carbody 20 in the vertical directions can be absorbed, and appropriate operations of the support mechanism 320 can be guaranteed in the direct mounting bogie.
Next, a carbody support device 109 of Embodiment 9 will be is described with reference to
The hydraulic circuit 340 corresponding to one example of the connecting mechanism includes a front side hydraulic cylinder 341 installed on the front bogie 11 side, a rear side hydraulic cylinder 342 installed on the rear bogie 12 side, and confinement piping 343 communicating between the hydraulic cylinders 341 and 342. The front side hydraulic cylinder 341 and the rear side hydraulic cylinder 342 are generally-used hydraulic cylinders and are supported by the carbody 20, in which a piston moves inside one cylinder so that a piston inside the other cylinder is moved in the opposite direction by, for example, mineral oil which is incompressible medium inside the confinement piping 343. Further, a piston rod of the front side hydraulic cylinder 341 is oriented in vehicle longitudinal directions 22, and it is connected with one end of a steel bar 345 via a joint. Similarly, the bar 345 extending in the vehicle longitudinal directions 22 is supported by the carbody 20 via bearings so as to be movable in the vehicle longitudinal directions 22, and it is coupled at the other end to the universal joint 324 of the absorber mechanism 321. By configured as described above, the piston inside the front side hydraulic cylinder 341 can be moved associated with pivoting operation about the fulcrum 311c of the front side lever member 3111. The rear side hydraulic cylinder 342 is also configured similar to the front side hydraulic cylinder 341, and the piston inside the rear side hydraulic cylinder 342 can be moved associated with pivoting operation of the rear side lever member 3112.
Therefore, according to the pivoting operation at least one of the front side lever member 3111 and the rear side lever member 3112, pivoting operation of at least one of the other of the front side lever members 3111 and the rear side lever members 3112 can be caused via the front side absorber mechanism 321 and the bar 345, the front side hydraulic cylinder 341, the confinement piping 343, the rear side absorber mechanism 321 and the bar 345, and the rear side hydraulic cylinder 342.
Further, in confinement piping 343, the oil pressure compensation part 216 described for the carbody support device 106 of Embodiment 6 can be provided as a component for setting the oil pressure inside the piping within a predetermined range when the oil pressure inside the confinement piping 343 increases or decreases abnormally. The oil pressure compensation part 216 includes the check valve 2161, the pressure relief valve 2162, and the accumulator 2163.
Operation of the carbody support device 109 in Embodiment 9 configured as described above is described below. When the vehicle travels through the curved cant gradually decreasing section having the orbital torsion as shown, for example, in
As shown in
As described in detail above, also in the carbody support device 109 of Embodiment 9, although the front bogie 11 and the rear bogie 12, and the carbody of the single vehicle are mutually pivotable in the torsional directions (i.e., rotation to the different directions), similar to the carbody support device in each embodiment described above, it has the structure having rigidity in the roll direction (i.e., rotation to the same direction). Therefore, the decrease in wheel load can be prevented at both the front and rear bogies of the single vehicle.
Further, in the carbody support device 109 of Embodiment 9, the hydraulic circuit 340 including the front side hydraulic cylinder 341, the rear side hydraulic cylinder 342, the confinement piping 343, and the bar 345 are loaded in the carbody 20, and it transmits the displacement of each of the bogies 11 and 12 via the absorber mechanism 321. By configured as described above, traveling vibration which acts on the hydraulic circuit 340, especially the traveling vibration from the front bogie 11 and the rear bogie 12 can be significantly reduced and, thus, the reliability of the hydraulic circuit 340 can be improved.
Note that, in Embodiments 7 and 8, instead of the bar steel member 312 as one example of the connecting mechanism, the configuration regarding the hydraulic circuit 340 provided to the carbody support device 109 of Embodiment 9 may be installed.
Next, a carbody support device of Embodiment 10 will be described with reference to
Operation of the carbody support device 1010 thus configured will be briefly described. Each diagonal beam 120 displaces in the roll direction about the bearings 40 according to the orbital cant. On the other hand, the support mechanism 310 acts on the front bogie 11 and the rear bogie 12, and the carbody of the single vehicle as described in Embodiment 7 so that they can mutually pivotable in the torsional directions (i.e., rotation to the different directions), and so that they have rigidity in the roll direction (i.e., rotation to the same direction). Therefore, the decrease in wheel load can be prevented at both the front and rear bogies of the single vehicle. Further, appropriate rigidity is securable also against the rolling in the vehicle width directions 21.
Next, a carbody support device of Embodiment 11 will be described with reference to
The carbody support device 1011 in Embodiment 11 is mainly adoptable to a coach train, is a carbody support device applied to a bolsterless bogie, and has a support mechanism 350. The support mechanism 350 corresponds to the modification of the support mechanism 310 of simple structure which is described in Embodiment 7 and from which the reversing mechanism 113 is omitted. That is, the support mechanism 350 provided to the carbody support device 1011 includes a configuration of the front bogie 11 and the rear bogie 12 which are bolsterless bogies, in which the carbody vertical motion absorber mechanism 140 described in Embodiment 3 and the support mechanism 310 of Embodiment 7 are combined. Although the to carbody support device 1010 of Embodiment 10 described above is also a carbody support device for a bolsterless bogie, the diagonal beam 120 is not used in the carbody support device 1011, as compared with the carbody support device 1010. Therefore, the front bogie 11 and the rear bogie 12 are typical bolsterless bogies, and the air springs 17 are provided between the m bogie frame 13 and the carbody 20 on both sides in the vehicle width directions 21. The left and right air springs 17 mutually communicate with each other through the coupling piping 150 to which the leveling device 160 is connected, as described in Embodiment 3.
The support mechanism 350 is described below. The support mechanism 350 includes the carbody vertical motion absorber mechanism 140 as described above and the support mechanism 310, and further includes the coupling member 351 coupling these.
The carbody vertical motion absorber mechanism 140 is a mechanism already described in Embodiment 3 and, thus, it will be briefly described here. That is, the carbody vertical motion absorber mechanism 140 is installed in each bogie frame 13 of the front bogie 11 and the rear bogie 12, respectively, and has a bar member 141 and arms 142. The bar member 141 is oriented in the vehicle width directions 21, and the arm 142 is disposed at both ends, respectively. The bar member 141 and the arms 142 form the channel shape. Further, each bar member 141 is pivotably supported by each bogie frame 13 of the front bogie 11 and the rear bogie 12 via the bearings 40. The coupling member 351 formed from a member, for example, made of metal, such as bar steel, is coupled to the tip end of each arm 142 at both ends of the bar member 141 via a universal joint 352, respectively. Note that the carbody vertical motion absorber mechanism 140 and the coupling member 351 which are thus configured correspond to the front side coupling support mechanism in the front bogie 11 and the rear side coupling support mechanism in the rear bogie 12, respectively. As described in Embodiment 3, the carbody vertical motion absorber mechanism 140 is not an essential configuration, and it can be omitted if the degradation of riding comfort does not cause a problem. If the carbody vertical motion absorber mechanism 140 is not provided, one end of each coupling member 351 disposed on both sides in the vehicle width directions 21 is coupled to each bogie frame 13 of the front bogie 11 and the rear bogie 12.
The support mechanism 310 is a mechanism already described in Embodiment 7 and, thus, it will be briefly described here. That is, a pair of support mechanisms 310 are installed on both sides in the vehicle width directions 21 under the carbody 20, and each support mechanism 310 includes the front side lever member 3111, the rear side lever member 3112, and the connecting mechanism. Here, as one example of the connecting mechanism, the bar steel member 312 (for example, a pipe member) is adopted. Note that Embodiment 7 and Embodiment 11 are different in the connecting configuration of the front side lever member 3111 and the rear side lever member 3112 with the front bogie 11 and the rear bogie 12. Therefore, the shapes of the front side lever member 3111 and the rear side lever member 3112 in Embodiment 11 are slightly different from those of Embodiment 7. However, similar to the case of Embodiment 7, the front side lever member 3111 and the rear side lever member 3112 in Embodiment 11 also have a substantially L-shape and, thus, the function thereof is also the same. Further, the font side lever member 3111 and the rear side lever member 3112 are generically referred to as the lever member 311, as described above. Further, the fulcrum 311c of each lever member 311 is supported by the carbody 20, and each lever member 311 is pivotable about the fulcrum 311c.
At the front bogie 11 side, one end of each front side lever member 3111 disposed on both sides in the vehicle width directions 21 is connected with the other end of each coupling member 351 via the universal joint 352. Further, at the rear bogie 12 side, one end of each rear side lever member 3112 disposed on both sides in the vehicle width directions 21 is also coupled to the other end of each coupling member 351 via the universal joint 352. Each of the other ends of the front side lever member 3111 and the rear side lever member 3112 disposed at one side in the vehicle width directions 21 is pivotably mounted to the single bar steel member 312. Each of the other ends of the front side lever member 3111 and the rear side lever member 3112 disposed at the other side in the vehicle width directions 21 is also pivotably mounted to the single bar steel member 312.
Operation of the carbody support device 1011 having the support mechanism 350 configured as described above will be briefly described below. As already described in Embodiment 3, the carbody 20 is vertically supported with moderate rigidity via the air springs 17 which are controlled by the leveling device 160. Further, the front bogie 11 and the rear bogie 12 are coupled to each other via the front side coupling support mechanism and the rear side coupling support mechanism comprised of the carbody vertical motion absorber mechanism 140 and the coupling member 351, and, further via the support mechanisms 310 provided on both sides in the vehicle width directions 21, i.e., the front side lever member 3111, the bar steel member 312, and the rear side lever member 3112.
On the other hand, the front bogie 11 and the rear bogie 12 are displaced in the roll direction or the torsional direction with respect to the carbody 20, according to the orbital cant. The force at this time acts on each support mechanism 310 respectively from the front side coupling support mechanism of the front bogie 11 and the rear side coupling support mechanism of the rear bogie 12. As already described in Embodiment 7, each support mechanism 310 acts so that the front bogie 11 and the rear bogie 12 of the single vehicle are mutually pivotable in the torsional directions (i.e., rotation to the different directions) with respect to the carbody 20, and, on the other hand, so that they have rigidity in the roll direction (i.e., rotation to the same direction).
As a result of this operation, the decreases in wheel load can be prevented at both the front and rear bogies 11 and 12 of the single vehicle. In particular, it is effective in prevention of the decrease in wheel load in the curved cant gradually decreasing section. Further, also in the carbody support device 1011 of Embodiment 11, since it has the simple structure in which the reversing mechanism 113 is omitted from the carbody support devices 101-104 of Embodiments 1-4, it has peculiar effects that the configuration is easy in manufacturing and maintenances and the manufacturing cost can be reduced, similar to the case of Embodiment 7. Further, as described in the beginning of this embodiment, the diagonal beam 120 is not used in the carbody support device 1011. Therefore, in the bolsterless bogie which uses the air springs 17, it can adopt a configuration in which the existing bogie structure is used as it is and the support mechanism 350 is added. Therefore, it is possible to reduce the manufacturing cost also in terms of the matters described above. Further, since the diagonal beam 120 is not provided, there are also advantages that more space can be given around the bogie under the carbody floor and the weight of the vehicle can be reduced.
Next, a modification of the embody support device 1011 having the support mechanism 350 described above is described below with reference to
Note that the installed direction of the front side hydraulic cylinder 341 and the rear side hydraulic cylinder 342 is not limited to the direction described above. For example, as shown in
Also in the carbody support device 1012 having the support mechanism 360 configured as described above, similar to the case of the carbody support device 1011 having the support mechanism 350, the front bogie 11 and the rear bogie 12 in the single vehicle act so that they are mutually pivotable in the torsional directions (i.e., rotation to the different directions) with respect to the carbody 20, and act so that they have rigidity in the roll direction (i.e., rotation to the same direction). Therefore, it is possible to prevent the decrease in wheel load at both the front and rear bogies of the single vehicle, and it is effective in the prevention of the decrease in wheel load especially in the curved cant gradually decreasing section. Further, if the space where the two bar steel members 312 are installed between the front bogie 11 and the rear bogie 12 cannot be secured on both sides of the carbody in the vehicle width directions 21, the hydraulic circuit 340 concerned can be an effective means. Further, similar to the configuration of Embodiment 9, the hydraulic circuit 340 which includes the front side hydraulic cylinder 341, the rear side hydraulic cylinder 342, and the confinement piping 343 can be mounted on the carbody 20 and transmits the displacement of each of the front and rear bogies 11 and 12 via the coupling member 351 and the carbody vertical motion absorber mechanism 140. By being configured as described above, the traveling vibration which acts on the hydraulic circuit 340, especially the traveling vibration from the front bogie 11 and the rear bogie 12 can be significantly reduced by the carbody vertical motion absorber mechanism 140 and the coupling member 351 and, thus, the reliability of the hydraulic circuit 340 can be improved. That is, the carbody vertical motion absorber mechanism 140 and the coupling member 351 in the support mechanism 360 correspond to the absorber mechanism 321 of Embodiment 9.
Further, as already described in each of Embodiments 1-11, it is needless to say that each railway vehicle provided with the respective carbody support devices 101-409 and 1010-1012 can be manufactured. In each railway vehicle respectively provided with such carbody support devices 101-109 and 1010-1012, it is possible to absorb the displacement due to the orbital torsion with respect to the carbody 20 without performing the active control operation as preventive measures of the decreases in wheel load, and, as a result, it is possible to prevent the decrease in wheel load between the front and rear bogies per vehicle.
Further, since the carbody support device and the railway vehicle of each embodiment can absorb initial torsional displacements of the bolster springs with respect to the carbody and static wheel load unbalance of each of the front and rear bogies can be reduced, they do not need an equalizing work of bolster spring supporting heights by liner adjustment and, thus, work efficiency improves.
Note that, by suitably combining any of the above various embodiments, a configuration can be achieved in which respective effects are obtainable. Further, although the present invention is fully described of the desirable embodiments with reference to the accompanying drawings, various modifications and corrections are apparent to the person skilled in the art. It should be understood that such modifications and corrections are included in the present invention unless otherwise departing from the scope of the present invention described in the appended claims. Further, the entire disclosures of respective specifications, drawings, claims, and abstracts of Japanese Patent Application No. 2012-157877 filed on Jul. 13, 2012 and Japanese Patent Application No. 2013-35607 filed on Feb. 26, 2013 are incorporate herein by reference.
The present invention is applicable to the carbody support device for suppressing variation in the wheel load of the railway vehicle, and to the railway vehicle provided with the carbody support device.
11: Front Bogie; 12: Rear Bogie; 13: Bogie Frame; 17: Air Spring; 20: Carbody; 21: Vehicle Width Directions; 22: Vehicle Longitudinal Directions; 101-109, 1010-1012: Carbody Support Device; 110: Support Mechanism; 111: First Anti Rolling Bar; 112: Second Anti Roiling Bar; 113: Reversing Mechanism; 115: Linkage Mechanism; 120: Diagonal Beam; 121: Front Diagonal Beam; 122: Rear Diagonal Beam; 130: Coupling Support Mechanism; 131: Coupling Member; 132: Support Member; 140: Carbody Vertical Motion Absorber Mechanism; 150: Coupling Piping; 160: Leveling Device; 170, 180: Bolster; 210: Support Mechanism; 211; Hydraulic Cylinder; 215: Confinement Piping; 310, 320, 330, 350, 360: Support Mechanism; 311: Lever Member; 311a; One End; 311b: The Other End; 311c: Fulcrum; 312: Bar Steel Member; 321: Absorber Mechanism; 340: Hydraulic Circuit; 341: Front Side Hydraulic Cylinder; 342: Rear Side Hydraulic Cylinder; 343: Confinement Piping; 3111: Front Side Lever Member; and 3112: Rear Side Lever Member.
This is a Division of U.S. application Ser. No. 14/403,399 filed Nov. 24, 2014, which is a National Stage of International Application No. PCT/JP2013/068858 filed Jul. 10, 2013, which claims the benefit of Japanese Application No. 2012-157877 filed Jul. 13, 2012 and Japanese Application No. 2013-035607 filed Feb. 26, 2013. The disclosures of the prior applications are hereby incorporated by reference herein in their entireties. The present invention relates to a carbody support device for reducing variations in wheel load on a railway vehicle, and to a railway vehicle provided with the carbody support device.
Number | Name | Date | Kind |
---|---|---|---|
2353503 | Rost | Jul 1944 | A |
4324187 | Sambo | Apr 1982 | A |
5454329 | Liprandi | Oct 1995 | A |
5558024 | Solera | Sep 1996 | A |
5784969 | Steidl | Jul 1998 | A |
5943962 | Birkhahn | Aug 1999 | A |
20090260537 | Brundisch et al. | Oct 2009 | A1 |
20110001301 | Li et al. | Jan 2011 | A1 |
20120118194 | Schneider | May 2012 | A1 |
Number | Date | Country |
---|---|---|
2146814 | Mar 1973 | FR |
S44-009127 | Apr 1969 | JP |
H02-12973 | Jan 1990 | JP |
H02-227365 | Sep 1990 | JP |
H02-227366 | Sep 1990 | JP |
H03-178862 | Aug 1991 | JP |
H06-127381 | May 1994 | JP |
2001-506560 | May 2001 | JP |
2001-334937 | Dec 2001 | JP |
2002-046603 | Feb 2002 | JP |
2002-87258 | Mar 2002 | JP |
2002-347619 | Dec 2002 | JP |
2002-356163 | Dec 2002 | JP |
2003-054403 | Feb 2003 | JP |
2005-096724 | Apr 2005 | JP |
2006-281969 | Oct 2006 | JP |
2007-269076 | Oct 2007 | JP |
2008-056195 | Mar 2008 | JP |
2010-076608 | Apr 2010 | JP |
2010-173354 | Aug 2010 | JP |
2011-514277 | May 2011 | JP |
2010-0076671 | Jul 2010 | KR |
9828160 | Jul 1998 | WO |
Entry |
---|
Oct. 15, 2013 Search Report issued in International Patent Application No. PCT/JP2013/068858. |
Feb. 26, 2016 Search Report issued in European Patent Application No. 13817277.0. |
Apr. 1, 2016 Office Action issued in Korean Patent Application No. 10-2014-7035309. |
U.S. Appl. No. 14/403,399, filed Nov. 24, 2014 in the name of Sato et al. |
U.S. Appl. No. 15/892,808, filed Feb. 9, 2018 in the name of Sato et al. |
Number | Date | Country | |
---|---|---|---|
20180162419 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14403399 | US | |
Child | 15892916 | US |