Nano-carbon allotropes, such as carbon nanotubes (CNTs), graphene, and nano-carbon fibers, have a variety of uses in nanotechnology, electronics, optics and other material sciences. Nano-carbon allotropes are both thermally and electrically conductive. Further, due to their much lighter mass, substituting nano-carbon allotropes for metal heating components can reduce the overall weight of a heating component significantly. This makes the use of nano-carbon allotropes of particular interest for applications where weight is critical, such as in aerospace and aviation technologies.
Nano-carbon allotropes are available in various concentrations for creating carbon allotrope heaters. The range of available concentrations is limited, however, and results in a limited range of resistances for ice protection systems that use carbon allotrope heaters. This limited range of resistances directly impacts the performance of carbon allotrope heaters in ice protection operations; such limited resistance does not allow ideal heat output from the carbon allotrope heaters. Thus, many commercially available carbon allotrope materials cannot currently be used as a substitute for metal heating elements.
A heating element includes an electrode array having first and second interdigitated electrodes. The first electrode is configured to have a first polarity, and the second electrode is configured to have a second polarity. The electrode array substantially encloses a plurality of regions. The heating element further includes a heating surface including a layer of a carbon allotrope material having a first electrical resistance. The electrode array is in electrical communication with the carbon allotrope material.
A method of making a heating element includes forming a heating surface from a carbon allotrope material having a first electrical resistance, and forming an electrode array from first and second interdigitated electrodes. The first electrode is configured to have a first polarity, and the second electrode is configured to have a second polarity. The method further includes placing the electrode array in electrical communication with the carbon allotrope material, and enclosing a plurality of regions with the electrode array.
The present disclosure provides a carbon allotrope heating element having acceptable electrical resistances for use in aircraft ice protection applications. The carbon allotrope heating element having the disclosed resistances can replace conventional metal alloy or other heating elements.
Carbon allotrope layer 16 can include materials such as carbon nanotubes (CNTs), graphene, and nano-carbon fibers, to name a few, non-limiting examples. CNTs can be in sheet form, such as a carbon nanotube nonwoven sheet material (CNT-NSM). Carbon nanotube sheets are generally manufactured as a flat sheet or tape that is very thin, as thin as or thinner than the thickness of an ordinary sheet of paper (about 0.07 to 0.18 millimeters). Some CNT sheets have a thickness as small as about 127 μm (0.5 mils). CNT-NSMs do not typically include adhesives, resins or polymers and CNTs present in the sheet are held together by Van der Waals forces. Van der Waals forces are non-covalent and non-ionic attractive forces between CNTs caused by fluctuating polarizations of the CNTs. Individual CNTs can align themselves by pi-stacking, one type of Van der Waals interaction. Pi-stacking refers to attractive, non-covalent interactions between aromatic rings that occur due to the presence of pi bonds. As each carbon ring within a CNT possesses pi bonds, pi-stacking occurs between nearby CNTs. “Dry” CNT sheets (those having no adhesives, resins or polymers) generally have a uniform electrical resistance.
Carbon allotrope layer 16 can also be a CNT-filled thermoplastic film. Carbon nanotube-filled thermoplastic films include a thermoplastic matrix through which CNT particles are dispersed. The thermoplastic matrix is typically a solid at room temperature (˜25° C.). Examples of suitable materials for the thermoplastic matrix include epoxies, phenolic resins, bismaleimides, polyimides, polyesters, polyurethanes and polyether ether ketones. The electrical resistance of CNT-filled thermoplastic films can vary depending on the uniformity of the distribution of CNT particles within the film. Where CNTs are generally uniformly distributed throughout the film, the electrical resistance is generally uniform throughout the film.
Carbon allotrope layer 16 can include a single sheet of a carbon allotrope material disposed along the length of heating element 10, or a plurality of individual sheets located within the plurality of regions (not shown). The plurality of individual sheets can be in communication with one another, or spaced apart some distance from one another. In other embodiments (shown in
Interdigitated electrodes 12 are spaced apart some distance from one another. In the embodiment shown in
Interdigitated electrodes 12 are formed from a conductive material, such as a metal or metal alloy. Alternatively, interdigitated electrodes 12 can be formed from a carbon allotrope material that is more conductive (having a lower resistivity) than carbon allotrope layer 16. For example, interdigitated electrodes 12 can include a CNT-filled thermoplastic film having a higher concentration of CNTs than is found within carbon allotrope layer 16.
Heating element 10, as shown in
Regions R1-R5 of heating element 10 act as parallel resistors. With parallel resistors, the total resistance (RT) of a circuit—in this case, heating element 10—is calculated based on the sum of the inverse of each individual resistor, such that 1/RT=1/R1+1/R2 . . . +1/RN. Due to this relationship, the total resistance RT will always be less than that of any individual resistor, and RT will decrease with each resistor added to the circuit. Thus, the disclosed heating element can achieve total resistances within the requisite resistance ranges to provide aircraft heating and ice protection, despite the fact that the off-the-shelf sheet resistances of many nano-carbon allotropes are too high for such applications.
The shape of carbon allotrope layer 16 can be selected based on the heating needs at a particular location on the aircraft. Generally speaking, the greater the area of region R that is covered by carbon allotrope layer 16, the lower the resistance of heating element 10 will be. For example, due to the shape of carbon allotrope layer 16 in the embodiment of
In another embodiment, heating element 10 can include a second carbon allotrope layer (not shown) over carbon allotrope layer 16. Other embodiments can include more than two carbon allotrope layers. Much the same as carbon allotrope layer 16, the additional layers can be a single, continuous sheet, or a plurality of individual sheets. Adding additional carbon allotrope layers can create more robust heating in the area of heating element 10 because more heat will be generated as current passes through the increased amount of carbon allotrope material.
In the embodiment of
In the embodiment of
In the embodiments of
In each of the embodiments of the disclosed heating element, the spacing between electrodes of opposite polarity can be varied to achieve different resistances. This applies for embodiments having variable or uniform electrode spacing. Generally speaking, resistance and electrode spacing are proportional, such that increasing the distance between adjacent electrodes increases the resistance, while decreasing the distance between electrodes decreases the resistance.
The power source (18, 118, 218) of the disclosed heating element can vary, because different aircraft types have varying types of power sources available for running ice protection systems. For example, small aircraft and unmanned aerial vehicles (UAVs) typically use 28 volt (V) direct current (DC) power. Helicopters often use 115 V alternating current (AC) power or 270 V DC power, and commercial turbofan and turboprop aircraft typically use 115 V AC power, 230 V AC power or 208 V DC power. More Electric Aircraft (MEA) concepts have also explored using 270 V DC power and 540 DC power.
A method of forming the disclosed heating element includes forming a heating surface from at least one layer of a carbon allotrope material and forming an electrode array from first and second interdigitated electrodes. The first electrode is configured to have a first polarity and the second electrode is configured to have a second polarity. The electrode array is placed in electrical communication with the carbon allotrope material. Heating element 10 can then be cured using an autoclave or out-of-autoclave (OOA) manufacturing process, and attached to an aircraft surface using a commercially available or other adhesive.
In the embodiments of heating element 10 in which carbon allotrope layer 16 is a single, continuous sheet, interdigitated electrodes 12 can be attached in several ways. Interdigitated electrodes 12 can be printed directly onto the carbon allotrope layer 16, as a metallic or carbon allotrope ink. Interdigitated electrodes 12 can also be formed independently and adhered to carbon allotrope layer 16 with using an adhesive material.
Heating element 10 has several benefits. First, the components can be tailored to achieve many different heat distributions and power densities. As discussed above, this includes altering the shape and thickness of the carbon allotrope material, as well as the shape, spacing, and number of electrodes used. The various embodiments of heating element 10 can achieve the resistances required for electro-thermal ice protection, as well as other heating applications, such as wind turbines, heated floor panels, local comfort heating applications, area heating, water tank heating blankets and other aerospace heating applications.
Another benefit of the heating element is that carbon allotrope materials are lightweight and have a lighter thermal mass, making them very efficient at converting energy to heat. The carbon allotrope material may be carbon nanotubes, graphene, and nano-carbon fiber, which are all sufficiently lighter than metals or alloys used in traditional heaters.
The following are non-exclusive descriptions of possible embodiments of the present invention.
A heating element includes an electrode array having first and second interdigitated electrodes. The first electrode is configured to have a first polarity, and the second electrode is configured to have a second polarity. The electrode array substantially encloses a plurality of regions. The heating element further includes a heating surface including a layer of a carbon allotrope material having a first electrical resistance. The electrode array is in electrical communication with the carbon allotrope material.
The heating element of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
Each plurality of regions contains the carbon allotrope material, and the carbon allotrope material is configured to act as a resistor.
The heating element has a total resistance less than the first resistance.
The total resistance ranges from about 0.005Ω/sq to about 3.0Ω/sq.
A shape of the heating surface is selected from the group consisting of straight sheets, strips, a grid-type pattern, a serpentine pattern, a tapered pattern, and combinations thereof.
The heating element further includes a second layer of carbon allotrope material.
The carbon allotrope material is selected from the group consisting of carbon nanotubes, graphene, nano-carbon fibers, and combinations thereof.
The electrode array comprises a third electrode, and the third electrode has a polarity opposite the polarity of the second electrode.
A shape of the electrodes is selected from the group consisting of straight, curved, serpentine, tapered, circular, and combinations thereof.
A method of making a heating element includes forming a heating surface from a carbon allotrope material having a first electrical resistance, and forming an electrode array from first and second interdigitated electrodes. The first electrode is configured to have a first polarity, and the second electrode is configured to have a second polarity. The method further includes placing the electrode array in electrical communication with the carbon allotrope material, and enclosing a plurality of regions with the electrode array.
The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
The method includes curing the heating element.
The method includes configuring the carbon allotrope material as a resistor.
The method includes adding a second layer of carbon allotrope material to the heating element.
The method includes forming the carbon allotrope material from the group consisting of carbon nanotubes, graphene, nano-carbon fibers, and combinations thereof.
The method includes adding a third electrode to the electrode array, the third electrode having a polarity opposite the polarity of the second electrode.
The method includes forming the electrode array from a conductive material, wherein the conductive material is more conductive than the carbon allotrope material.
The method includes attaching a protective layer to the heating element.
The method includes connecting the heating element to a power source.
The method includes lowering a total resistance of the heating element to a value lower than the first resistance.
The method includes attaching the heating element to an aircraft surface.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.