Carbon-based adsorption powder containing cupric chloride

Abstract
A carbon-based, adsorption powder containing an effective amount of cupric chloride suitable for removing mercury from a high temperature, high moisture gas stream, wherein the effective amount of cupric chloride ranges from about 1 to about 45 wt percent. Additional additives, such as potassium permanganate, calcium hydroxide, potassium iodide and sulfur, may be added to the powder to enhance the removal of mercury from the gas stream.
Description


BACKGROUND OF THE INVENTION

[0001] The present invention relates to an adsorption powder useful for the removal of metal and organic pollutants from gas streams. The adsorption powder is typically useful for treating solid waste contaminates, e.g. contaminated soil treatment by high efficiency incineration. More particularly, the invention relates to the capture of mercury and other metals, dioxins, furans and other organic compounds from high temperature, high moisture gas streams using an adsorption powder containing cupric chloride.


[0002] Strict standards exist for particulate and total mercury emissions by coal-fired power plants, petroleum refineries, chemical refineries, coal fired furnaces, trash burning facilities, incinerators, metallurgical operations, thermal treatment units and other particulate and mercury emitting facilities. These same restrictions apply to mercury vapor, which can enter the atmosphere as a result of low temperature thermal desorption (LTTD) treatment of contaminated soils.


[0003] These stringent standards exist in order to protect the environment and the community. When mercury-containing gases are released, the gases disperse and mercury is deposited over a wide area. The dispersed mercury can accumulate in the soil or water supplies, where it may be incorporated into the food chain. Mercury is extremely harmful to aquatic life and ultimately to the humans who consume mercury-contaminated plants and animals. It is necessary, therefore, to have a safe and effective method of eliminating mercury from the environment.


[0004] The problem of the capture and treatment of mercury vapor, typically in the context of coal-fired power plants and waste incinerators, has been previously considered. For example, U.S. Pat. No. 3,193,987 discloses passing mercury-containing vapor over activated carbon impregnated with a metal which forms an amalgam with mercury. U.S. Pat. No. 4,094,777 discloses passing a mercury-containing vapor over an adsorption mass consisting essentially of a support, sulfided copper and sulfided silver. U.S. Pat. No. 3,876,393 discloses passing mercury-containing vapors over activated carbon that has been impregnated with sulfuric acid. Selenium has also been used in the removal of mercury from a vapor. U.S. Pat. No. 3,786,619 discloses passing a mercury-containing gas over a mass containing as an active component, selenium, selenium sulfide or other selenium compounds. Electrostatic precipitators and various filters have traditionally been used for mercury removal, although complex apparatus have also been disclosed. (See e.g., U.S. Pat. Nos. 5,409,522 and 5,607,496.)


[0005] The problem of recapturing mercury from power plant gas streams is analogous to the need for recapturing mercury from incinerators that treat contaminated soils. A process currently in use at soil treatment facilities is known as low temperature thermal desorption (LTTD). LTTD is the main process by which contaminated soils are treated to remove mercury and other contaminants. In this process, contaminated soils are fed into a heating furnace, most commonly a rotary kiln/drum, where the soil is heated by conduction. The heating volatizes the soil components and when a thermal oxidizer is added, the components are oxidized to manageable gases, such as CO2, Cl2, NOx and SOx, where x is 1-3.


[0006] The hot gas stream is subsequently cooled. The stream may be quenched with water, which cools the stream and concurrently increases the moisture content. Although water quenching is a highly effective cooling method, this treatment increases the difficulty of removing mercury from the gas stream. The gas stream is further treated to reduce and remove metals, HCl, NOx and SOx using acid scrubbers, carbon beds, condensation units and through the addition of adsorption powders.


[0007] When adsorption powders are injected into the gas stream, mercury and other metals bind to moieties present in the powder, precipitating them from the gas stream. The powder-bound mercury is ultimately collected in a bag house for appropriate disposal, while the clean gas stream is exhausted to the outside atmosphere. The problem with standard LTTD methods is that some metals, such as mercury, are not removed from the stream at high efficiency and will move with the gas stream, ultimately into the environment. Other methods require the use of complex machinery and expensive adsorption beds. LTTD and other methods also suffer from the limitation that mercury removal from high moisture gas streams is much more difficult than mercury removal from dry streams.


[0008] Available adsorption powders remove organics, metals and other contaminants, but they do not effectively remove mercury. For example, one available powder (Sorbalite™) consisting of carbon, calcium hydroxide and sulfur removes HCl from a gas stream, but it removed only about 55-65% of the mercury. Another powder (WUELFRAsorb-C™) consisting of alcohol saturated lime and activated carbon is also inefficient at removing mercury.


[0009] Some powders include sulfur or iodine impregnated carbon. At temperatures of 75° C. or less, sulfur or iodine impregnated carbon based powders show a 95% mercury removal efficiency, however, powders formulated with sulfur impregnated carbon require that the gas stream to which they are added is dry.


[0010] Lastly, the mercury removal efficiency of the powders described and other available powders is known to be very temperature dependent, placing an additional limitation on powder formulations.


[0011] Accordingly, there is a need in the industry for an adsorption powder that effectively removes metals and other organic compounds, in general, and mercury, in particular, from high temperature, high moisture gas streams generated by the incineration of contaminated soils, treatment of hazardous materials, combustion of coal and other mercury liberating sources. The powder must be inexpensive and easy to use. Ideally, such an adsorption powder can be employed at treatment facilities already in place and can take advantage of equipment already in position, without requiring retooling or reconfiguring existing equipment.



SUMMARY OF THE INVENTION

[0012] There is disclosed an adsorption powder and method for removing mercury, other metals, and contaminants from a gas stream comprising an adsorption powder, wherein the powder is characterized as containing a carbon-based powder selected from the group consisting of coal carbons, wood carbons, graphite carbons, activated carbons, coconut shell carbons, peat carbons, petroleum cokes, synthetic polymers, the like, and combinations thereof, and an effective amount (about 3 to about 10 weight percent) of cupric chloride. Optionally, sulfur, potassium iodide and permanganate, calcium hydroxide, and combinations thereof may be added to the powder.







BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The instant invention will be more fully understood in the following detailed description, however, the invention is not confined to the precise disclosure. Changes and modifications may be made that do not affect the spirit of the invention, nor exceed the scope thereof, as expressed in the appended claims. Accordingly, the instant invention will now be described with particular reference to the accompanying drawings.


[0014]
FIG. 1 is a view in elevation of a schematic diagram illustrating the design of an LTTD facility in which the claimed adsorption powder can be used to remove mercury from gas streams; and


[0015]
FIG. 2 is a view in elevation of a schematic diagram illustrating the bench scale model of the LTTF facility.







DETAILED DESCRIPTION OF THE INVENTION

[0016] There is disclosed an adsorption powder suitable for removing metals and organic compounds from high temperature, high moisture gaseous streams, wherein the metals are selected from the group consisting of mercury, lead, nickel, zinc, copper, arsenic, cadmium, other heavy metals, and combinations thereof, wherein the organic compounds selected from the group consisting of furans and dioxins. The powder may be characterized as containing a carbon-based powder and an effective amount of cupric chloride, i.e. from about 90 to about 97 weight percent carbon-based powder and from about 3 to about 10 weight percent of cupric chloride.


[0017] It has been found that the addition of cuprous and cupric chlorides to carbon-based powders provides suitable efficiency for removing metals and organic compounds from high temperature, high moisture vaporous streams. While the addition of other ingredients may enhance metal removal efficiency, dependent upon the operating conditions of the removal process, the addition of copper, in various salt forms, to a carbon-based powder will aid the efficiency of metals removal from various gas streams.


[0018] Typically, the performance of the carbon-based powder may be further enhanced, dependent upon the process of removal operating conditions, by the addition of calcium hydroxide, sulfur, potassium permanganate, potassium iodide and combinations thereof, and like compounds.


[0019] In one embodiment of the invention, the adsorption powder is characterized as containing from 0 to about 62 weight percent of calcium hydroxide, from 0 to about 4 weight percent of sulfur, from 0 to about 15 weight percent of potassium permanganate, from 0 to about 10 weight percent of potassium iodide, from about 3 to about 10 weight percent of cupric chloride, and a balancing weight percent of carbon-based powder to provide 100, total, weight percent of adsorption powder. Within this embodiment is a powder characterized as containing a carbon-based powder, calcium hydroxide, potassium iodide, and cupric chloride, characterized as containing from about 35 to about 38 weight percent of carbon-based powder, from about 52 to about 62 weight percent of calcium hydroxide, from about 5 to about 10 weight percent of potassium iodide, and from about 3 to about 10 weight percent of cupric chloride. While another embodiment is a carbon-based, calcium hydroxide, potassium permanganate, and cupric chloride powder, characterized as containing from about 35 to about 38 weight percent of carbon-based powder, from about 52 to about 62 weight percent of calcium hydroxide, from about 5 to about 10 weight percent of potassium permanganate, and from about 3 to about 10 weight percent of cupric chloride. Still in another variation of this embodiment, the adsorption powder may contain from about 35 to about 38 weight percent of carbon, from about 52 to about 62 weight percent of calcium hydroxide, from 1 to about 4 weight percent of sulfur, from about 5 to about 10 weight percent of potassium permanganate, and from about 3 to about 10 weight percent of cupric chloride.


[0020] In yet another embodiment of the invention, the adsorption powder may be characterized as containing from about 35 to about 38 weight percent of carbon, from about 52 to about 62 weight percent of calcium hydroxide, from about 0 to about 4 weight percent of sulfur, and from about 3 to about 10 weight percent of cupric chloride. In still a further embodiment of the invention, the powder is characterized as containing about 38 weight percent of carbon, about 58 weight percent of calcium hydroxide, about 4 weight percent of sulfur, and about 4 weight percent of cupric chloride.


[0021] In one embodiment of the invention the potassium permanganate- and potassium iodide-containing powders, optionally, may be impregnated onto a carbon substrate as will become apparent to those skilled in the art. One aspect of this embodiment is a powder characterized as containing from about 35 to about 38 weight percent of coal carbon, from about 52 to about 60 weight percent of calcium hydroxide, from about 5 to about 10 weight percent of potassium iodide impregnated onto a carbon substrate, and from about 5 to about 10 weight percent of cupric chloride. However, the identical potassium iodide component may be in blended with other components to form the adsorption powder.


[0022] The invention is also directed to a process for removing mercury and organic compounds from gaseous streams using the adsorption powder described herein, the process being characterized by the steps of:


[0023] a) placing a solid phase mercury-containing contaminated soil feed into a rotary kiln/drum;


[0024] b) heating said kiln/drum containing said soil feed to form gaseous and solid components of the sample;


[0025] c) transferring the gaseous component of said soil feed to an exhaust cleaning unit/afterburner and the solid component of clean soil to a soil cooling unit;


[0026] d) heating the gaseous component of said contaminated soil feed in said exhaust cleaning unit/afterburner;


[0027] e) cooling the gaseous component of said contaminated soil feed;


[0028] f) adding the adsorption powder to the gaseous component;


[0029] g) transferring the powder-containing gaseous component to a baghouse; and


[0030] h) releasing the substantially mercury-free gaseous component of said sample to the atmosphere.


[0031] An adsorption powder for the removal of mercury and other metals, dioxins, furans and other organic compounds must be efficient under a range of conditions. Currently available powders do not function well at high temperatures and in high moisture environments, conditions that are favorable to mercury removal.


[0032] High temperatures are necessary for effective removal of contaminants from soil. Temperatures of about 1800° F. are necessary to volatize organics, metals and other impurities from the contaminated soil. Mercury that is trapped in contaminated soil, however, is most efficiently adsorbed on carbon at about 300-500° F. The most practical method of cooling a gas stream exiting an 1800° F. oven is to inject water into the gas stream. Water injection cools the gas stream to a temperature favorable to mercury removal, but also increases the moisture content of the sample, which decreases the efficiency of available mercury adsorption powders. The mercury absorbing properties of available powders suffer dramatically in a high moisture environment. The adsorption powder of the invention, however, operates effectively even in a higher moisture environment.


[0033] Experiments with carbon sources showed that coal carbon was superior to wood carbon for mercury adsorption. Many available adsorption powders use wood carbon as a component, rather than coal carbon. Cupric chloride was observed to significantly enhance the adsorption of mercury from a gas stream and is the key to the instant invention. Cupric chloride supplies chlorine and activated copper to the elemental mercury in the exhaust stream. Elemental mercury reacts with the chlorine to form mercury chloride and the activated copper to form a stable mercury amalgam. Both forms of mercury are easily captured from the exhaust gas stream. KI3 impregnated carbon was also found to increase mercury adsorption when it was included in the powder.


[0034]
FIG. 1 shows a schematic diagram of the actual process and equipment used to carry out the invention. Prescreened contaminated feed soil ready to be processed 2 is placed within soil cleaning unit 4. The contaminated soil is heated to about 900° F. or a temperature that will completely volatize the contaminants from the soil and generate a gaseous stream, as well as a clean/remediated solid soil component. Preferably, soil cleaning unit 4 is a rotary kiln. The gas stream is then passed out of soil cleaning unit 4 to dust remover 6, while any solid fraction of the feed soil is transferred to clean soil cooling unit 8, where the soil is cooled and prepared for reuse. Dust remover 6 is preferably a multi-tube dust collector.


[0035] After dust remover 6 removes any particulate matter from the gas stream sample, the gas stream is passed into the Exhaust Cleaning Unit 10. The Exhaust Cleaning Unit heats the volatilized contaminates to a temperature of about 1800° F. for a minimum of two seconds retention time, which assures complete destruction of any remaining organic or other contaminants. From the Exhaust Cleaning Unit 10, the gas stream then passes through cooling chamber 12 wherein a water pump (not shown) injects water into the cooling chamber 12 to lower the temperature of the sample to about 360° F. This cooling process consequentially increases the moisture content of the sample.


[0036] The high temperature, high moisture gas stream is then contacted to the adsorption powder of the invention, which is stored in adsorbent storage silo 14 and injected into the gas stream. This powder formulation is effective in removing metals, particularly mercury, and other contaminants.


[0037] After the gas stream has been contacted to the adsorption powder, the powder/gas stream mixture continues on to baghouse 16. The carbon component of the adsorption powder collects on the walls of bags and acts as a particulate filter for the gases leaving the baghouse. Baghouse 16 collects the particulate mercury-containing fraction of the adsorption powder mixture, which is transported to a suitable bulk storage facility 20 and subsequently removed. The gaseous fraction is released to the outside atmosphere through vent 18, while the remaining dust particulate fraction is handled in a similar manner to the particulate mercury fraction of the adsorption powder mixture 20.



EXAMPLES 1-84

[0038] A bench-scale, batch rotary kiln system to simulate the system of FIG. 1 was utilized to conduct and compare various powder mixtures for their capacity to adsorb vaporous mercury from a gaseous stream. A schematic of the system 31 is shown in FIG. 2. A 4-inch diameter quartz rotary kiln 32 was utilized to contain the soil, and an insulated clamshell furnace 33 was utilized to indirectly heat the furnace. The 4-inch diameter section of the kiln was 14-inches in length and contained raised dimples to provide mixing of the soil sample during rotation of the kiln. A variable-speed electric motor 34 and controller rotated the kiln. Purge gas 35 was metered to the kiln with calibrated rotameters from cylinders. Behind the rotary kiln in the process was a thermal oxidizer 36 (another furnace containing a quartz tube). The temperatures within the rotary kiln and thermal oxidizer were maintained with separate controllers. After the thermal oxidizer, quench water 37 was injected into the gaseous stream to lower the temperature of the hot gases. The high moisture, quenched gases were passed through an adsorbent powder filter unit positioned inside a temperature-controlled oven 38, wherein vaporous mercury was efficiently adsorbed by the powder of the invention. The gases were then directed to scrubbing unit 39 that consisted of 2 impingers containing acidic potassium permanganate.


[0039] Several soil samples containing known amounts of mercury were screened to at ½-inch to remove rocks and other large particles. The samples were thoroughly blended and divided into approximately 1-kilogram charges. These soil samples were found to contain from about 14 to about 16 ppm of mercury. Several kilogram samples of Magnus soil, containing from about 0.1 to 0.4 ppm of mercury were mixed with the samples containing from about 14 to about 16 ppm of mercury to create samples containing from about 4 to about 6 ppm of mercury. The final samples were air-dried at less than 120° F. to eliminate the majority of free moisture therein. The air-dried soil aided in providing consistent performance of the batch system.


[0040] Adsorbent mixtures were prepared by separately weighing each selected component thereof and blending them together. About 4.0 gms. of adsorbent mixture per about 1 kg. of soil was used in each batch measurement (1 kg of soil, as received basis, or about 0.88 kg of air-dried soil). The adsorbent mixture was then packed into a 1.5-inch diameter tube (Test Nos. 1-28) or, alternatively, loaded into a 102 mm×1.6 mm filter holder (Test Nos. 29-84) and evenly distributed, and the tube or filter holder, respectively, was placed inside the filter oven.


[0041] The air-dried soil (about 0.88 kg) was loaded into the quartz kiln, gross and net weights were calculated therefor, and the kiln was positioned within the furnace. A small amount quartz wool was inserted into the exhaust gas end of the system to filter and trap any dust that might be elutriated from the soil. Behind the filter oven was placed 2 impingers, as final gas scrubbers to capture any mercury vapors that might pass through the adsorbent powder. About 100 mls. of acidic potassium permanganate solution was added to each impinger, they were placed in ice baths, and connected to the filter outlet with ground-glass connections so the gaseous stream would bubble through the solution. Inlet gases were mixed to provide a composition of 10 vol. % oxygen, 3.2 vol. % carbon dioxide, 100 ppm of nitrogen oxide, 10 ppm of sulfur dioxide, and the balance nitrogen. The gases were metered into the kiln after all of the connections were complete and gas flow was initiated to the inlet of the kiln at 4.0 standard liters per minute. The system's units were pre-heated to target temperatures before the gas was directed through the thermal oxidizer, water-quench section, and filter oven. Water addition at the outlet of the thermal oxidizer was at a rate of 0.2 ml/min for Test Nos. 1 through 27 and 1.5 mls/min for Test Nos. 28 through 84 (about 30 wt percent moisture in the gas stream entering the adsorbent filter).


[0042] Unless otherwise specified, the experimental conditions were as follows:
1TABLE 1ValueParameterKiln Charge (dry air), kg0.88Adsorbent Weight, g4.0Water Addition, cm/min1.5Purge Gas Flow, L/min4.0Temperatures, ° C.Kiln480Thermal Oxidizer960Thermal Oxidizer Outlet204Adsorbent204


[0043] After the target temperatures had been achieved for the gas handling units, kiln rotation (1 rpm) and heating 480° F. (900° C.) were initiated, and water injection downstream of the thermal oxidizer was also initiated. About 30 minutes were required to heat the soil to the required temperature, and about 10 minutes after the soil reached that temperature the experiment was stopped. Throughout the experiments, temperatures and gas flows were monitored and controlled at their desired set points. At the end of each experiment, the treated soil, adsorbent powder, and potassium permanganate solution were recovered and analyzed for total mercury. A material balance and distribution of mercury were calculated based on weights and assay results. Mercury capture presented herein was calculated as the difference between 100 and the percent of recovered mercury reporting to the off-gas impingers.


[0044] Tables 2 through 8 present the data obtained from the Test Nos. 1 through 84 utilizing 3 base, adsorbent powder mixtures, as follows:


[0045] Powder No. 1: 38% carbon+58% Ca(OH)2+4% sulfur


[0046] Powder No. 2: 38% carbon+58% Ca(OH)2+4% sulfur+10% KMnO4


[0047] Powder No. 3: 38% carbon+62% Ca(OH)2+10% KMnO4


[0048] Additional components (in weight percent) added to the powders are listed in the tables. For each test run, the soil sample weight, amount of assay mercury contained therein, and the total amount of mercury in the sample was recorded. “Residue” refers to the amount of sample left in the kiln after the heating process, and mercury capture percent provides the efficiency of mercury removal from the sample. “Hg accountability” is the total amount of mercury calculated by material balance.
2TABLE 2Test NumberMeasurement12A2B345678Soil (air-dried at 120° F.)MagnusMagnusMagnusMagnusMagnusMagnusMagnusMagnusMagnusweight, g871.0889.2975.3910.4871.2912.6876.0885.4879.7assay, ppm8888882.32.33.0Total Hg, mg6.9687.1147.8027.2836.9707.3012.0152.0362.639Residueweight, grams856.5873.6961.5895.5858.8894.1860.4870.8865.5weight loss, %1.661.751.411.641.422.031.781.651.61assay, ppm Hg0.20.30.10.10.10.10.10.10.1Hg, mg0.1710.2620.0960.0900.0860.0890.0860.0870.087Water additionfollowing afterburnermediawaterwaterwaterwater + 5%water + 1%water + 5%indirectwaterwatercascadePolymerNashcooling8705volume, cc8.07.57.59.98.07.007.06.0rate, cc/min0.20.20.20.20.20.20.00.20.2AbsorbantTubeTubeTubeTubeTubeTubeTubeTubeTubeTemperature, ° F.300300300300300300300300300TypeMix 1Mix 2Mix 3Mix 1Mix 1Mix 1Mix 2Mix 2Mix 2weight, grams4.104.173.853.853.823.443.773.613.70assay, ppm Hg620395433161230161148240312Hg, mg2.5421.6471.6670.6200.8790.5540.5580.8661.154% of recovered Hg71.974.065.133.049.528.443.565.179.7Off-gas (KMnO4)volume, liter0.5200.5200.5200.5250.5100.5150.5100.510seeassay, mg/liter1.580.611.532.231.592.541.250.74belowHg, mg0.8220.3170.7961.1710.8111.3080.6380.3770.207% of Head11.794.4610.2016.0711.6317.9231.6418.537.84% of Recovered23.2414.2531.0962.2745.6767.0449.7528.3614.28Total Hg recovered, mg3.5352.2262.5591.8801.7751.9511.2821.3311.448Mercury Capture, %76.7685.7568.9137.7354.3332.9650.2571.6485.72Hg Accountability, %50.731.332.825.825.526.763.665.454.9Test NumberMeasurement910111213141516Soil (air-dried at 120° F.)MagnusMagnusMagnusMagnusMagnusMagnusMagnusMagnusweight, g882.8877.8878.7880.2870.1879.0878.5877.0assay, ppm2.42.82.82.114.52.12.12.8Total Hg, mg2.1192.4582.4601.84812.6161.8461.8452.456Residueweight, grams867.5863.1863.8863.1854.0863.8865.1859.1weight loss, %1.731.671.701.941.851.731.532.04assay, ppm Hg0.10.10.10.10.20.10.10.1Hg, mg0.0870.0860.0860.0860.1710.0860.0870.086Water additionfollowing afterburnermediawaterwaterwaterwaterwaterwaterwater + 5%watercascadevolume, cc6.27.07.08.09.08.57.29.0rate, cc/min0.20.20.20.20.20.20.20.2AbsorbantTubeTubeTubeTubeTubeTubeTubeTubeTemperature, ° F.300300300300300300300300TypeMix 1Mix 3Mix 1 +Mix 1 +Mix 2Mix 1 +Mix 3Mix 1 +5% CuCl215% KMnO45% CuCl210% CuCl2weight, grams3.803.913.893.933.923.883.8413.82assay, ppm Hg2371424863811320244153353Hg, mg0.9010.5551.8911.4975.1740.9470.5881.348% of recovered Hg67.037.491.677.955.853.141.190.8Off-gas (KMnO4)volume, liter0.5200.5100.5200.5200.5400.5200.4900.500assay, mg/liter0.6851.650.1670.657.261.441.540.10Hg, mg0.3560.8420.0870.3383.9200.7490.7550.050% of Head16.8134.243.5318.2931.0740.5740.902.04% of Recovered26.5156.744.2117.5942.3142.0252.813.37Total Hg recovered, mg1.3441.4832.0641.9229.2661.7821.4291.484Mercury Capture, %73.4943.2695.7982.4157.6957.9847.1996.63Hg Accountability, %63.460.383.9104.073.496.577.460.4Mix 1: 38% carbon + 58% Ca(OH)2 + 4% Sulfurvolmg/lmg HgMix 2: 38% carbon + 58% Ca(OH)2 + 4% Sulfur Plus 10% KMnO4Test 8 imp 10.2600.7560.1966Mix 3: 38% carbon + 62% Ca(OH)2 plus 10% KMnO4Test 8 imp 20.2500.0410.0103


[0049]

3







TABLE 3













Test Number



















Measurement
171/
172/
181/
182/
191/
192/
201/
202/
211/
212/
221/
222/
















Soil (air-dried at
Magnus Rec'd 2/1
Magnus Rec'd 2/1
Magnus Rec'd 2/1
Magnus Rec'd 2/1
Magnus Rec'd 2/1
Magnus Rec'd 2/1


120° F.)



















weight, g
877.2
877.2
883.2
883.2
878.1
878.1
896.0
896.0
876.6
876.6
877.6
877.6


assay, ppm
2.1
2.0
2.2
2.5
2.1
2.2
2.0
2.1
1.9
1.9
1.9
2.0


Total Hg, mg
1.842
1.754
1.943
2.208
1.844
1.932
1.792
1.882
1.666
1.666
1.667
1.755


Residue


weight, grams
861.6
861.6
868.9
868.9
862.8
862.8
878.5
878.5
861.7
861.7
860.4
860.4


weight loss, %
1.78
1.78
1.62
1.62
1.74
1.74
1.95
1.95
1.70
1.70
1.96
1.96


assay, ppm Hg
0.1
0.034
0.1
0.038
0.1
0.034
0.1
0.041
0.1
0.13
0.1
0.024


Hg, mg
0.086
0.029
0.087
0.033
0.086
0.029
0.088
0.036
0.086
0.112
0.086
0.021


Water addition


following


afterburner













media
water
water
water
water
water
water



















volume, cc
8.0
8.0
8.2
8.2
8.8
8.8
8.5
8.5
7.2
7.2
7.8
7.8


rate, cc/min
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2













Absorbant
Filter
Filter
Filter
Filter
Filter
Filter


Temperature, ° F.
300
300
400
300
300
400


Type
Mix 1 + 5% CuCl2
Mix 1 + 5% CuCl2
Mix 1 + 5% CuCl2
Mix 1 + 10%
Mix 1 + 10%
Mix 1 + 10%






KMnO4
KMnO4
KMnO4



















weight, grams
4.0
4.0
4.0
4.0
3.96
3.96
3.99
3.99
4.03
4.03
3.97
3.97


assay, ppm Hg
415
360
464
290
420
130
385
210
416
220
394
200


Hg, mg
1.660
1.440
1.856
1.160
1.663
0.515
1.536
0.838
1.676
0.887
1.564
0.794


% of recovered Hg
94.3
97.4
92.8
92.7
92.1
85.2
90.3
86.0
92.5
84.1
87.7
83.4


Off-gas (KMnO4)


volume, liter
0.540
0.540
0.535
0.535
0.545
0.545
0.560
0.560
0.555
0.555
0.550
0.550


assay, mg/liter
0.025
0.017
0.108
0.110
0.105
0.11
0.137
0.18
0.089
0.10
0.242
0.25


Hg, mg
0.0135
0.0092
0.0578
0.0589
0.0572
0.0600
0.0767
0.1008
0.0494
0.0555
0.1331
0.1375


% of Head
0.73
0.52
2.97
2.67
3.10
3.10
4.28
5.36
2.97
3.33
7.98
7.83


% of Recovered
0.77
0.62
2.89
4.70
3.17
9.92
4.51
10.34
2.73
5.27
7.46
14.44


Total Hg recovered,
1.760
1.478
2.001
1.252
1.807
0.604
1.701
0.975
1.812
1.054
1.783
0.952


mg


Mercury Capture, %
99.23
99.38
97.11
95.30
96.83
90.08
95.49
89.66
97.27
94.73
92.54
85.56


Hg Accountability,
95.5
84.3
103.0
56.7
98.0
31.3
94.9
51.8
108.8
63.3
106.9
54.2


%










[0050]

4







TABLE 4













Test Number













Measurement
23
24
25
26
27
28





Soil (air-dried at 120° F.)
Magnus,
Magnus,
Magnus,
Magnus,
Magnus,
Magnus,



rec'd 2/1
rec'd 2/1
rec'd 2/1
rec'd 2/1
rec'd 2/1
rec'd 2/1


weight, g
880.0
878.4
877.7
882.7
879.2
879.4


assay, ppm
2.4
2.7
2.0
2.0
3.1
3.1


Total Hg, mg
2.112
2.372
1.755
1.765
2.726
2.726


Residue


weight, grams
863.9
860.9
861.7
865.1
862.2
863.7


weight loss, %
1.83
1.99
1.82
1.99
1.93
1.79


assay, ppm Hg
0.1
0.1
0.1
0.1
0.1
0.1


Hg, mg
0.086
0.086
0.086
0.087
0.086
0.086


Water addition


following afterburner


media
water
water
water
water
water
water


volume, cc
8.5
8.0
8.0
8.2
8.2
8.1


Absorbant (Filter)


Temperature, ° F.
300
300
400
400
300
400


Type
Mix 1
Mix 1 +
Mix 1
Powder
Repeat 23
Repeat 25




5% CuCl2 +

w/o sulfur +
Mix 1
Mix 1




5% KMnO4

5% CuCl2


weight, grams
3.98
3.99
3.98
3.99
4.00
4.00


assay, ppm Hg
435
510
363
440
560
426


Hg, mg
1.731
2.035
1.445
1.756
2.240
1.704


% of recovered Hg
91.4
95.1
81.0
92.2
92.1
77.5


Off-gas (KMnO4)


volume, liter
0.530
0.550
0.550
0.540
0.550
0.545


assay, mg/liter
0.145
0.036
0.460
0.113
0.193
0.748


Hg, mg
0.077
0.020
0.253
0.061
0.106
0.408


% of Head
3.64
0.83
14.41
3.46
3.89
14.95


% of Recovered
4.06
0.92
14.18
3.21
4.36
18.55


Total Hg recovered, mg
1.895
2.141
1.784
1.903
2.432
2.198


Mercury Capture, %
95.94
99.08
85.82
96.79
95.64
81.45


Hg Accountability, %
89.7
90.3
101.6
107.8
89.2
80.6












Test Number













Measurement
29
30
31
32
33
34





Soil (air-dried at 120° F.)
Magnus,
Magnus,
Magnus,
Magnus,
Magnus,
Magnus,



rec'd 2/1
rec'd 2/1
rec'd 2/1
rec'd 2/1
rec'd 2/1
rec'd 2/1


weight, g
874.9
877.0
872.2
882.9
878.4
878.9


assay, ppm
3.1
2.9
2.2
2.9
3.0
2.9


Total Hg, mg
2.712
2.543
1.919
2.560
2.635
2.549


Residue


weight, grams
855.9
858.8
854.1
866.5
862.4
862.6


weight loss, %
2.17
2.08
2.08
1.86
1.82
1.85


assay, ppm Hg
0.1
0.1
0.1
0.1
0.1
0.1


Hg, mg
0.086
0.086
0.085
0.087
0.086
0.086


Water addition


following afterburner


media
water
water
water
water
water
water



1.48
1.49
1.47
1.48
1.46
1.49



cc/min
cc/min
cc/min
cc/min
cc/min
cc/min


volume, cc
62.0
61.0
63.0
59.0
60.0
61.0


Absorbant (Filter)


Temperature, ° F.
400
400
400
400
400
400


Type
Mix 1
Mix 1 +
Mix 1 +
Mix 1 +
Mix 1 +
Mix 1 +




5% CuCl2
10%
5% CuCl2 +
10% CuCl2
5% FeCl3





KMnO4
5% KMnO4


weight, grams
3.98
4.00
3.98
4.00
3.90
3.95


assay, ppm Hg
316
522
312
697
579
461


Hg, mg
1.258
2.088
1.242
2.788
2.258
1.821


% of recovered Hg
56.2
85.9
70.3
91.0
89.3
67.1


Off-gas (KMnO4)


volume, liter
0.600
0.600
0.595
0.590
0.600
0.605


assay, mg/liter
1.49
0.428
0.738
0.320
0.309
1.33


Hg, mg
0.894
0.257
0.439
0.189
0.185
0.805


% of Head
32.96
10.10
22.88
7.37
7.04
31.57


% of Recovered
39.96
10.56
24.86
6.16
7.33
29.67


Total Hg recovered, mg
2.237
2.431
1.766
3.063
2.530
2.712


Mercury Capture, %
60.04
89.44
75.14
93.84
92.67
70.33


Hg Accountability, %
82.5
95.6
92.0
119.6
96.0
106.4










[0051]

5







TABLE 5













Test Number

















Measurement
35
36
37
38
39
401/
41
42
43
44





Soil (air-dried at
Magnus,
Magnus,
Magnus,
Magnus,
Pile 22
Magnus,
Magnus,
Magnus,
Magnus,
Pile 22 +


120° F.)
rec'd 2/1
rec'd 2/1
rec'd 2/1
rec'd 2/1
High Hg
rec'd 2/1
rec'd 2/1
rec'd 2/1
rec'd 2/1
treated


weight, g
880.1
881.4
880.5
877.6
880.0
868.9
881.3
876.9
877.1
875.6


assay, ppm
2.9
2.8
2.6
3.1
16.2
6.94
2.5
1.6
2.6
4.4


Total Hg, mg
2.552
2.468
2.289
2.721
14.256
6.030
2.203
1.403
2.280
3.853


Residue


weight, grams
862.7
864.1
863.5
859.6
861.7
853.9
863.2
859.4
861.8
862.2


weight loss, %
1.98
1.96
1.93
2.05
2.08
1.73
2.05
2.00
1.74
1.53


assay, ppm Hg
0.1
0.1
0.1
0.1
0.2
0.2
0.1
0.1
0.1
0.1


Hg, mg
0.086
0.086
0.086
0.086
0.172
0.171
0.086
0.086
0.086
0.086


Water addition


following


afterburner


media
water
water
water
water
water
water
water
water
water
water


volume, cc
61
61
64
71
71
67
66
64
66
63


rate, cc/min
1.49
1.45
1.49
1.45
1.48
1.49
1.50
1.49
1.50
1.50


Absorbant (Filter)


Temperature, ° F.
400
400
400
400
400
400
400
400
400
400


Type
Westates
Coal
Coal
Original
Original
Original
Our powder
Original
Westates
Coconut



Virgin
Carbon
Carbon
Powder
Powder
Powder
comp. Using
Powder
Virgin
Carbon



Coal
plus
plus
w/o sulfur +
with Sulfur +
with Sulfur +
westates
with Sulfur +
Coconut
plus



Carbon
Sulfur
KI3
5% CuCl2
5% CuCl2
5% CuCl2
coal carbon
3% CuCl2
Carbon
Sulfur


weight, grams
3.93
3.94
3.36
4.10
3.96
3.95
4.04
3.96
3.81
3.85


assay, ppm Hg
502
426
524
462
2510
1280
477
592
219
882


Hg, mg
1.973
1.678
1.761
1.894
9.940
5.056
1.927
2.344
0.834
3.396


% of recovered
91.4
71.8
94.7
87.0
85.2
83.7
71.5
76.1
33.6
65.3


Hg


Off-gas (KMnO4)


volume, liter
0.600
0.600
0.600
0.600
0.600
0.605
0.605
0.580
0.600
0.600


assay, mg/liter
0.167
0.953
0.020
0.330
2.590
1.35
1.13
1.12
2.61
2.87


Hg, mg
0.100
0.572
0.012
0.198
1.554
0.817
0.684
0.650
1.566
1.722


% of Head
3.93
23.17
0.52
7.28
10.90
13.54
31.03
46.30
68.67
44.70


% of Recovered
4.64
24.47
0.65
9.09
13.32
13.51
25.35
21.09
62.98
33.09


Total Hg
2.159
2.337
1.859
2.178
11.666
6.044
2.697
3.080
2.487
5.204


recovered, mg


Mercury Capture,
95.36
75.53
99.35
90.91
86.68
86.49
74.65
78.91
37.02
66.91


%


Hg Account-
84.6
94.7
81.2
80.1
81.8
100.2
122.4
219.5
109.0
135.1


ability, %








1/
Hg2Cl2 added to soil.









[0052]

6







TABLE 6













Test Number














Measurement
451/
461/
471/
482/
492/
50
512/





Soil (air-dried at 120° F.)
Pile 22 +
Magnus,
Magnus,
Magnus,
Magnus,
Pile 22 +
Magnus,



Treated
red'd 2/26
rec'd 2/26
rec'd 2/26
rec'd 2/26
Treated
rec'd 2/26


weight g
870.2
877.7
878.1
878.8
881.1
879.0
879.2


assay, ppm
11.1
2.3
2.2
4.5
4.0
10.5
4.57


Total Hg, mg
9.659
2.019
1.888
3.955
3.524
9.230
4.018


Residue


weight, grams
856.7
864.5
864.5
865.8
867.7
868.0
863.1


weight loss, %
1.55
1.50
1.55
1.48
1.52
1.25
1.83


assay, ppm Hg
0.2
0.1
0.1
0.1
0.3
0.1
0.1


Hg, mg
0.171
0.086
0.086
0.087
0.260
0.087
0.086


Water addition


following afterburner


media
water
water
water
water
water
water
water


volume, cc
64
65
62
63
64
61
62


rate, cc/min
1.49
1.48
1.51
1.50
1.49
1.53
1.51


Absorbant (Filter)


Temperature, ° F.
400
400
400
300
400
Repeat
400








45 w/o








Hg2Cl2








400


Type
Powder
Powder
Powder
Powder
Powder
Powder
Dravo



w/o S +
w/o S +
w/o S +
w/o S +
w/o S +
w/o S +
Wood



5% CuCl2
3% CuCl2
5% CuCl2
5% CuCl2
10% CuCl2
5% CuCl2
Carbon


weight, grams
3.97
3.96
3.95
3.94
3.89
3.96
3.73


assay, ppm Hg
1610
416
312
783
623
1410
269


Hg, mg
6.392
1.647
1.232
3.086
2.421
5.584
1.003


% of recovered Hg
83.7
80.9
78.6
80.0
85.3
66.4
24.4


Off-gas (KMnO4)


volume, liter
0.605
0.605
0.610
0.610
0.600
0.605
0.605


assay, mg/liter
1.770
0.498
0.408
1.120
0.259
4.52
5.00


Hg, mg
1.071
0.301
0.249
0.683
0.155
2.735
3.025


% of Head
11.09
14.92
13.18
17.28
4.41
29.63
75.29


% of Recovered
14.03
14.80
15.88
17.72
5.48
32.54
73.52


Total Hg recovered, mg
7.634
2.035
1.568
3.856
2.837
8.405
4.115


Mercury Capture, %
85.97
85.20
84.12
82.28
94.52
67.46
26.48


Hg Accountability, %
79.0
100.8
83.0
97.5
80.5
91.1
102.4












Test Number














Measurement
522/
53
54
55
56
57
58





Soil (air-dried at 120° F.)
Magnus,
No Soil;
Treated
Treated
Treated
Treated
Treated



rec'd 2/26
Hg2Cl2
Soil Plus
Soil plus
Soil plus
Soil plus
Soil plus




only
HgCl2
HgS
HgO
HgSO4
Hg


weight, g
879.0
0.0054
679.9
880.1
879.0
879.0
879.8


assay, ppm
4.43

6.2 mg
4.9 mg
4.6 mg
7.1 mg
4.8 mg


Total Hg, mg
3.894
4.60
4.58
4.22
4.26
4.80
4.80


Residue


weight, grams
865.8
0.0010
870.2
869.6
862.4
867.4
864.9


weight loss, %
1.50
81.48
1.10
1.19
1.89
1.32
1.69


assay, ppm Hg
0.2
assumed
0.1
0.1
0.1
0.1
0.4




Hg2Cl2


Hg, mg
0.173
0.850
0.087
0.087
0.086
0.087
0.346


Water addition


following afterburner


media
water
water
water
water
water
water
water


volume, cc
63
44
63
61
61
62
63


rate, cc/min
1.50
1.52
1.50
1.53
1.49
1.48
1.51


Absorbant (Filter)


Temperature, ° F.
400
400
400
400
400
400
400


Type
Powder
Powder
Powder
Powder
Powder
Powder
Powder



w/o S +
w/o S +
w/o S +
w/o S +
w/o S +
w/o S +
w/o S +



5% CuCl
5% CuCl2
5% CuCl2
5% CuCl2
5% CuCl2
5% CuCl2
5% CuCl2


weight, grams
3.98
3.92
3.96
3.96
3.95
3.97
3.96


assay, ppm Hg
371
470
1030
663
889
921
973


Hg, mg
1.478
1.843
4.079
2.625
3.515
3.654
3.851


% of recovered Hg
46.7
64.9
82.1
80.4
84.2
85.8
83.5


Off-gas (KMnO4)


volume, liter
0.605
0.590
0.605
0.600
0.605
0.600
0.610


assay, mg/liter
2.50
0.251
1.33
0.921
0.944
0.861
0.680


Hg, mg
1.513
0.148
0.805
0.553
0.571
0.517
0.415


% of Head
38.84
3.22
17.57
13.09
13.41
10.76
8.64


% of Recovered
47.81
5.21
16.19
16.92
13.69
12.14
8.99


Total Hg recovered, mg
3.163
2.841
4.970
3.265
4.172
4.257
4.612


Mercury Capture, %
52.19
94.79
83.81
83.08
86.31
87.86
91.01


Hg Accountability, %
81.2
61.8
108.5
77.4
97.9
88.7
96.1








1/
= 2 milligrams Hg2Cl2 added to soil.







2/
= 4 milligrams Hg2Cl2 added to soil.









[0053]

7







TABLE 7













Test Number














Measurement
59
601/
61
62
631/
64
65





Soil (air-dried at 120° F.)
Magnus
Magnus
Magnus
Magnus
Magnus
Magnus
Magnus



3/3-plus
rec'd 3/3
rec'd 3/3
3/3 plus
rec'd 3/3
3/3 plus
3/3 plus



Pile 22

Plus Hg
Pile 22

Pile 22
Pile 22


weight, g
879.6
880.9
879.9
879.7
879.7
878.8
879.2


assay, ppm
5.3
na

5.5
5.1
4.9
4.89


Total Hg, mg
4.6
4.9
4.8
4.838
4.515
4.324
4.299


Residue


weight, grams
862.4
865.1
864.2
863.2
863.4
863.6
861.7


weight loss, %
1.96
1.79
1.78
1.88
1.85
1.73
1.99


assay, ppm Hg
0.2
0.4
0.1
0.1
0.2
0.1
0.1


Hg, mg
0.172
0.346
0.086
0.086
0.173
0.086
0.086


Water addition


following afterburner


media
water
water
water
water
water
water
water


volume, cc
62
63
61
60
60
61
61


rate, cc/min
1.51
1.50
1.49
1.50
1.46
1.49
1.45


Absorbant (Filter)


Temperature, ° F.
400
400
400
Repeat
400
400
400






29






400


Type
35%
35%
35%
Original
38%
38%
Only



Westates
Westates
Westates
Powder
Westates
Westates
CuCl2 on



Coal
Coal
Coal
with
Coal
Coal
Filter,



Carbon,
Carbon
Carbon
sulfur
Carbon,
Carbon w/
8.0 g to



60%
60%
60%

52%
KI3, 62%
cover



Ca(OH)2,
Ca(OH)2,
Ca(OH)2,

Ca(OH)2,
Ca(OH)2



5% CuCl2
5% CuCl2
5% CuCl2

10% CuCl2


weight, grams
3.92
3.92
3.90
3.96
3.90
3.742
6.26


assay, ppm Hg
1020
1090
853
615
1050
1040
10


Hg, mg
3.998
4.275
3.327
2.435
4.095
3.892
0.063


% of recovered Hg
90.6
82.9
71.1
55.3
93.3
96.1
1.8


Off-gas (KMnO4)


volume, liter
0.610
0.605
0.615
0.605
0.600
0.615
0.600


assay, mg/liter
0.399
0.882
2.060
3.110
0.199
0.116
5.54


Hg, mg
0.243
0.534
1.267
1.882
0.119
0.071
3.324


% of Head
5.29
10.89
26.39
38.89
2.64
1.65
77.32


% of Recovered
5.51
10.35
27.07
42.73
2.72
1.76
95.72


Total Hg recovered, mg
4.414
5.155
4.680
4.403
4.387
4.049
3.473


Mercury Capture, %
94.49
89.65
72.93
57.27
97.28
98.24
4.28


Hg Accountability, %
96.0
105.2
97.5
91.0
97.2
9.37
80.8












Test Number













Measurement
66
67
68
69
70
71





Soil (air-dried at 120° F.)
Magnus
Magnus
Magnus
Magnus
Magnus
Magnus



3/3 plus
3/3 plus
3/3 plus
3/3 plus
rec'd 3/3
3/3 plus



Pile 22
Pile 22
Pile 22
Pile 22
Plus Hg
Pile 22


weight, g
880.2
881.2
880.8
880.1
879.7
881.0


assay, ppm
5.5
5.6
4.9
5.5
6.5
6.2


Total Hg, mg
4.841
4.961
4.316
4.841
5.718
5.462


Residue


weight, grams
863.7
867.1
866.1
864.9
865.5
864.4


weight loss, %
1.87
1.60
1.67
1.73
1.61
1.88


assay, ppm Hg
0.2
0.1
0.1
0.2
0.1
0.1


Hg, mg
0.173
0.087
0.087
0.173
0.087
0.086


Water addition


following afterburner


media
water
water
water
water
water
water


volume, cc
63
64
62
62
64
66


rate, cc/min
1.50
1.52
1.55
1.48
1.52
1.53


Absorbant (Filter)


Temperature, ° F.
Repeat 51
400
400
Repeat 37
Repeat test
400



w/o Hg2Cl2


400
61



400



400


Type
Dravo
38% Westates
Sorbent
Westates
35%
38%



Wood
Coal Carbon
Tech. Merc
Coal
Westates
Westates



Carbon
Sorbent
Sorbent
Sorbent
Coal Carbon,
Coal Carbon,




w/KI3, 52%
No. 2 + 62%
w/KI3
60%
52%




Ca(OH)2,
Ca(OH)2

Ca(OH)2,
Ca(OH)2,




10% CuCl2


5% CuCl2
10% ZnCl2


weight, grams
3.72
3.62
4.02
3.33
3.93
3.91


assay, ppm Hg
687
1460
956
1390
1130
1050


Hg, mg
2.556
5.285
3.843
4.633
4.444
4.109


% of recovered Hg
51.9
97.1
93.7
96.0
74.9
62.1


Off-gas (KMnO4)


volume, liter
0.610
0.610
0.610
0.610
0.610
0.615


assay, mg/liter
3.60
0.116
0.282
0.033
2.30
3.94


Hg, mg
2.196
0.071
0.172
0.020
1.403
2.423


% of Head
45.36
1.43
3.99
0.42
24.54
44.36


% of Recovered
44.59
1.30
4.19
0.42
23.64
36.61


Total Hg recovered, mg
4.924
5.443
4.102
4.826
5.934
6.618


Mercury Capture, %
55.41
98.70
95.81
99.58
76.36
63.39


Hg Accountability, %
101.7
109.7
95.0
99.7
103.8
121.2








1/
Hg2Cl2 added









[0054]

8







TABLE 8













Test Number














Measurement
72
73
74
75
76
771/
78A





Soil (air-dried at 120° F.)
Magnus
Magnus
Magnus
Magnus
Magnus
Magnus
Magnus



3/3 plus
3/3 plus
3/3 plus
3/3 plus
3/3 plus
3/3 with
3/3 plus



Pile 22
Pile 22
Pile 22
Pile 22
Pile 22
Hg2Cl2
Pile 22


weight, g
880.2
879.9
880.3
880.8
878.9
879.4
879.1


assay, ppm
4.6
4.9
5.7
5.7
5.3
5.1
5.6


Total Hg, mg
4.014
4.320
5.027
4.977
4.614
4.503
4.923


Residue


weight, grams
864.7
863.7
864.6
868.5
864.7
865.5
864.9


weight loss, %
1.76
1.84
1.78
1.40
1.62
1.58
1.62


assay, ppm Hg
0.1
0.1
0.1
0.1
0.1
0.2
0.1


Hg, mg
0.086
0.086
0.086
0.087
0.086
0.173
0.086


Water addition


following afterburner


media
water
water
water
water
water
water
water


volume, cc
67
62
61
65
62
62
65


rate, cc/min
1.52
1.51
1.53
1.51
1.51
1.51
1.51


Absorbant (Filter)


Temperature, ° F.
400
400
400
400
400
Repeat
400








63








400


Type
35%
35%
35%
38%
38% Norit
−30 hour
38%



Westates
Westates
Westates
Westates
Coal Carbon
Aged
Westates



Coal Carbon
Coal Carbon,
Coal Carbon
Coal Carbon
PAC-20R,
Powder
Coal Carbon



60% Ca(OH)2,
55% Ca(OH)2,
55% Ca(OH)2,
52%
62%
Mix
w/KI3, 62%



5% WCC/KI3
10% WCC/KI3
5% CuCl2,
Ca(OH)2,
Ca(OH)2

Ca(OH)2





5% WCC/KI3
10% CaCl2


weight, grams
3.90
3.91
3.91
3.86
3.92
3.89


assay, ppm Hg
755
923
1340
1060
425
1050


Hg, mg
2.946
3.604
5.239
4.086
1.666
4.086
0.000


% of recovered Hg
78.9
91.7
96.3
77.2
37.1
95.0
0.0


Off-gas (KMnO4)


volume, liter
0.610
0.610
0.605
0.610
0.610
0.615
0.615


assay, mg/liter
1.15
0.396
0.193
1.840
4.490
0.070
0.116


Hg, mg
0.702
0.242
0.117
1.122
2.739
0.043
0.071


% of Head
17.48
5.59
2.32
22.55
59.36
0.96
1.45


% of Recovered
18.79
6.14
2.15
21.20
60.98
1.00
na


Total Hg recovered, mg
3.734
3.932
5.443
5.296
4.492
4.302
0.158


Mercury Capture, %
81.21
93.86
97.85
78.80
39.02
99.00


Hg Accountability, %
93.0
91.0
108.3
106.4
97.3
95.5
na












Test Number















Measurement
78B
79A
79B
80
811/
82
83
84





Soil (air-dried at 120° F.)
Magnus
Magnus
Magnus
Magnus
Magnus
Magnus
Magnus
Magnus



3/3 plus
3/3 plus
3/3 plus
3/3 plus
3/3 with
3/3 plus
3/3 plus
3/3 plus



Pile 22
Pile 22
Pile 22
Pile 22
Hg2Cl2
Pile 22
Pile 22
Pile 22


weight, g
879.8
879.9
878.8
879.4
879.0
878.8
880.0
879.9


assay, ppm
5.7
5.5
5.3
4.9
4.1
6.3
4.9
5.0


Total Hg, mg
5.015
4.839
4.658
4.309
3.604
5.536
4.312
4.400


Residue


weight, grams
863.8
862.7
861.5
857.1
863.1
863.3
863.1
862.8


weight loss, %
1.82
1.95
1.97
2.54
1.81
1.76
1.92
1.94


assay, ppm Hg
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1


Hg, mg
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086


Water addition


following afterburner


media
water
water
water
water
water
water
water
water


volume, cc
70
64
63
64
67
65
67
65


rate, cc/min
1.52
1.49
1.50
1.49
1.49
1.51
1.52
1.54


Absorbant (Filler)


Temperature, ° F.
400
400
400
Seidler
Seidler
Seidler
Philbro-
Philbro-






CuCl2
CuCl2
CuCl2
tech
tech






400
400
400
CuCl2
CuCl2









400
400


Type
Coal and
38%
Coal and
38%
38%
35%
38%
35%



Reuse
Westates
Reuse
Westates
Westates
Westates
Westates
Westates



Previous
Coal
Previous
Coal
Coal
Coal
Coal
Coal



Powder
Carbon
Powder
Carbon,
Carbon,
Carbon,
Carbon,
Carbon,




w/KI3, 52%

52%
52%
50%
52%
50%




Ca(OH)2,

Ca(OH)2,
Ca(OH)2,
Ca(OH)2,
Ca(OH)2,
Ca(OH)2,




10% CuCl2

10% CuCl2
10% CuCl2
5% CuCl2,
10% CuCl2
5% CuCl2,








10%

10%








WCC/KI3

WCC/KI3


weight, grams
7.60

7.54
3.86
3.83
3.87
3.85
3.85


assay, ppm Hg
1670

1280
1050
827
1550
1010
1050


Hg, mg
12.692
0.000
9.645
4.053
3.167
6.002
3.889
4.043


% of recovered Hg
98.2
0.0
98.7
95.3
96.1
95.5
94.7
93.9


Off-gas (KMnO4)


volume, liter
0.620
0.625
0.620
0.610
0.605
0.615
0.615
0.615


assay, mg/liter
0.232
0.017
0.068
0.188
0.067
0.320
0.217
0.290


Hg, mg
0.144
0.011
0.042
0.115
0.041
0.197
0.133
0.178


% of Head
2.87
0.22
0.91
2.66
1.12
3.55
3.09
4.05


% of Recovered
1.11
na
0.43
2.70
1.23
3.13
3.25
4.14


Total Hg recovered, mg
12.922
0.097
9.773
4.253
3.294
6.285
4.108
4.307


Mercury Capture, %
98.89

99.57
97.30
98.77
96.87
96.75
95.86


Hg Accountability, %
130.0
na
102.9
98.7
91.4
113.5
95.3
97.9








1/
Hg2Cl2 added









[0055]

9









TABLE 9












Vapor Mercury
Test Numbers



Absorbent Powder Mixture
Capture, %
Achieving Capture









38% WCC with KI3
  98.7 to 99.5
67, 79A, and 79B



52% Ca(OH)2



10% CuCl2



38% WCC
  96.7 to 99.0
63, 77,



52% Ca(OH)2

80, 81,1/



10% CuCl2

and 832/



38% WCC with KI3
>98.2
64, 78A, and B



62% Ca(OH)2



35% WCC
  95.9 to 96.9
821/



50% Ca(OH)2

842/



 5% WCC with KI3



10% CuCl2



Original Rahway
  57.3 and 60.0
29 and 62



Powder Mixture










1/
Seidler Chemical Co. CuCl2








2/
Phibro-Tech. Inc. CuCl2






WCC = Westates Coal Carbon








[0056] In accordance with the tables, Test Numbers 29 and 62 utilized the a powder without additives (38 wt. % of carbon, 52 wt. % of calcium hydroxide, and 4 wt. % of sulfur), and the mercury capture results were 60 and 57.3%, respectively. The addition of 5% cupric chloride (by weight) of Test Numbers 30, 39 and 40 resulted in mercury capture efficiency ranging from 86.5 to 90.0%. Ten percent cupric chloride added to the kiln charge, Test Number 33, resulted in a mercury capture of 93%. Test Number 32 containing additives of 5% potassium permanganate and 5% cupric chloride resulted in a mercury capture efficiency of 93.8%. Five tests, Test Numbers 54 through 58 were preformed using soil (containing no mercury) spiked with various mercury compounds to achieve approximately 4 to 5 milligrams of mercury in the kiln burden. Spiking compounds included HgCl2, HgS, HgO, HgSO4, and elemental mercury, and the adsorbent powder included a 5% cupric chloride additive. The mercury removal efficiency for these examples ranged from 83 to 91%.


[0057] Test Numbers 37 and 69 (repeat examples) achieved mercury capture efficiencies of 99.3 and 99.6%, respectively, utilizing Westates coal carbon impregnated with potassium iodide. Westates coal carbon impregnated with potassium iodide mixtures, as tested in Tests 64 and 67, provided mercury capture efficiencies of 98.3 and 98.7%, respectively. Test Numbers 79A and 79B contained an adsorbent powder characterized as containing 38% Westates coal carbon impregnated with potassium iodide, 52% calcium hydroxide, and 10% cupric chloride, and the mercury capture increased to 99.6% with the addition of cupric chloride the powder.


Claims
  • 1. An adsorption powder suitable for removing metals and organic compounds from a gaseous stream, wherein the powder comprises a carbon-based powder and an effective amount of cupric chloride to remove metals and organic compounds.
  • 2. The adsorption powder according to claim 1, wherein the carbon-based powder is selected from the group consisting of coal carbons, wood carbons, graphite carbons, activated carbons, coconut shell carbons, peat carbons, petroleum cokes, synthetic polymers, and combinations thereof.
  • 3. The adsorption powder according to claim 2, wherein the effective amount of cupric chloride is from about 3 to about 10 weight percent.
  • 4. The adsorption powder according to claim 3, comprises from about 90 to about 97 weight percent carbon-based powder and from about 3 to about 10 weight percent of cupric chloride.
  • 5. The adsorption powder according to claim 4, further comprises a component selected from the group consisting of calcium hydroxide, sulfur, potassium permanganate, potassium iodide and combinations thereof.
  • 6. The adsorption powder according to claim 4, comprising from 0 to about 62 weight percent of calcium hydroxide, from 0 to about 4 weight percent of sulfur, from 0 to about 15 weight percent of potassium permanganate, from 0 to about 10 weight percent of potassium iodide, from about 3 to about 10 weight percent of cupric chloride, and a balancing weight percent of carbon-based powder to provide a 100, total, weight percent of adsorption powder.
  • 7. The adsorption powder according to claim 6, comprising from about 35 to about 38 weight percent of carbon-based powder, from about 52 to about 62 weight percent of calcium hydroxide, from about 5 to about 10 weight percent of potassium iodide, and from about 3 to about 10 weight percent of cupric chloride.
  • 8. The adsorption powder according to claim 6, wherein the powder comprises from about 35 to about 38 weight percent of carbon, from about 52 to about 62 weight percent of calcium hydroxide, from about 5 to about 10 weight percent of potassium permanganate, and from about 3 to about 10 weight percent of cupric chloride.
  • 9. The adsorption powder according to claim 6, wherein the powder comprises from about 35 to about 38 weight percent of carbon, from about 52 to about 62 weight percent of calcium hydroxide, from about 1 to about 4 weight percent of sulfur, from about 5 to about 10 weight percent of potassium permanganate, and from about 3 to about 10 weight percent of cupric chloride.
  • 10. The adsorption powder according to claim 6, wherein the powder comprises from about 35 to about 38 weight percent of carbon, from about 52 to about 62 weight percent of calcium hydroxide, from about 1 to about 4 weight percent of sulfur, and from about 3 to about 10 weight percent of cupric chloride.
  • 11. The adsorption powder according to claim 4, wherein the powder comprises from about 35 to about 38 weight percent of carbon, from about 52 to about 62 weight percent of calcium hydroxide, and from about 3 to about 10 weight percent of cupric chloride.
  • 12. The adsorption powder according to claim 10, wherein the powder comprises about 38 weight percent of carbon, about 58 weight percent of calcium hydroxide, about 4 weight percent of sulfur, and about 4 weight percent of cupric chloride.
  • 13. An adsorption powder suitable for removing metals and organic compounds from a gas stream, comprising a carbon-based powder selected from the group consisting of coal carbons, wood carbons, graphite carbons, activated carbons, coconut shell carbons, peat carbons, petroleum cokes, synthetic polymers, and combinations thereof, and from about 3 to about 10 weight percent of cupric chloride.
  • 14. The adsorption powder according to claim 13, wherein the powder further comprises a component selected from the group consisting of calcium hydroxide, sulfur, potassium permanganate, potassium iodide and combinations thereof.
  • 15. The adsorption powder according to claim 14, wherein the powder comprises from about 35 to about 38 weight percent of coal carbon, from about 52 to about 60 weight percent of calcium hydroxide, from about 5 to about 10 weight percent of potassium iodide impregnated onto a carbon substrate, and from about 5 to about 10 weight percent of cupric chloride.
  • 16. The adsorption powder according to claim 15, wherein the metals are selected from the group consisting of mercury, lead, nickel, zinc, copper, arsenic, cadmium and combinations thereof.
  • 17. The adsorption powder according to claim 15, wherein the organic compounds selected from the group consisting of furans and dioxins.
  • 18. An adsorption powder suitable for removing metals and organic compounds from a gas stream, wherein the adsorption powder comprises a carbon-based powder selected from the group consisting of coal carbons, wood carbon, graphite carbon, activated carbon, coconut shell carbon, peat carbons, petroleum cokes, synthetic polymers, and combinations thereof and about 5 to about 10 weight percent of potassium iodide.
Continuation in Parts (2)
Number Date Country
Parent 09408361 Sep 1999 US
Child 09902285 Jul 2001 US
Parent 09590843 Jun 2000 US
Child 09408361 Sep 1999 US