Carbon Capture Solvents having Alcohols and Amines and Methods for Using Such Solvents

Information

  • Patent Application
  • 20170274317
  • Publication Number
    20170274317
  • Date Filed
    August 21, 2015
    9 years ago
  • Date Published
    September 28, 2017
    7 years ago
Abstract
Methods and compositions useful, for example, for physical solvent carbon capture. The solvents may include an aqueous mixture of 2-amino-2-methylproponol, 2-piperazine-1-ethylamine, diethylenetriamine, 2-methylamino-2-methyl-1-propanol, and potassium carbonate or potassium carbonate buffer salt. The solvent may also contain less than about 75% by weight of dissolving medium (i.e., water) and may have a single liquid phase. The solvents and methods have favourable regeneration energies, chemical stability, vapour pressure, total heat consumption, net cyclic capacity, and reaction kinetics.
Description
FIELD OF TECHNOLOGY

This application relates generally to and more particularly to carbon capture.


BACKGROUND

Separating CO2 from gas streams has been commercialized for decades in food production, natural gas sweetening, and other processes. Aqueous monoethanolamine (MEA) based solvent capture is currently considered to be the best commercially available technology to separate CO2 from exhaust gases, and is the benchmark against which future developments in this area will be evaluated. Unfortunately, amine-based systems were not designed for processing the large volumes of flue gas produced by a pulverized coal power plant. Scaling the amine-based CO2 capture system to the size required for such plants is estimated to result in an 83% increase in the overall cost of electricity from such a plant.


Accordingly, there is always a need for an improved solvent.


SUMMARY

Embodiments described herein include, for example, compounds and compositions, and methods of making and methods of using the compounds and compositions. Systems and devices can also be provided which use these compounds and compositions and relate to the methods. For illustration, this disclosure relates to a carbon capturing solvent (an example termed “APBS”) and a methods for treating industrial effluent gases using the solvent. The solvent disclosed herein removes CO2 at a more efficient rate than MEA and degrades at a rate lower than other solvents (e.g., MEA).


In one embodiment, the composition and method disclosed herein may be implemented at various types of industrial plants, including power plants, for example. In one example, the solvent may include an aqueous mixture of 2-amino-2-methylproponol, 2-piperazine-1-ethylamine, diethylenetriamine, 2-methylamino-2-methyl-1-propanol, and potassium carbonate buffer salt. The composition may also contain less than about 75% by weight of dissolving medium (i.e., water) and may have a single liquid phase. In another example, the solvent may include an aqueous mixture of amino hindered alcohol, polyamine with three or more amino group and a carbonate buffer salt.


Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of the following detailed description exemplifying the best mode for carrying out the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of devices, systems, and methods are illustrated in the figures of the accompanying drawings which are meant to be exemplary and not limiting, in which like references are intended to refer to like or corresponding parts, and in which:



FIG. 1 illustrates APBS vapor liquid equilibrium data at 40 C and 120 C to determine CO2 loading (mol/L) versus the partial pressure of CO2 (kPa);



FIG. 2 illustrates APBS solvent vapor liquid equilibrium data as compared to MEA according to the present disclosure;



FIG. 3 illustrates a flow-scheme of a carbon capture pilot according to the present disclosure;



FIG. 4 illustrates corrosion/solvent metal content MEA (30 wt. %) and APBS according to the present disclosure;



FIG. 5 illustrates ammonia emissions during a pilot plant campaign according to the present disclosure;



FIG. 6 illustrates aerosol particle size distribution according to the present disclosure;



FIG. 7 illustrates the effect of L/G ratio on regeneration efficiency according to the present disclosure;



FIG. 8 illustrates the effect of stripper pressure on regeneration efficiency according to the present disclosure; and



FIG. 9 illustrates methane recovery using solvent according to the present disclosure.





DEFINITIONS

As used herein, the term “solvent” can refer to a single solvent or a mixture of solvents and may be used interchangeable with the term “composition.”


DETAILED DESCRIPTION

The detailed description of aspects of the present disclosure set forth herein makes reference to the accompanying drawings and pictures, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not limited to the order presented. Moreover, references to a singular embodiment may include plural embodiments, and references to more than one component may include a singular embodiment.


Generally, this disclosure provides a composition and method of using the composition to reduce or eliminate CO2 emissions from a process steam, e.g., as coal-fired power plants, which burn solid fuels. The solvent and method disclosed herein capture/sequester CO2 from flue gases. The flue gases may be generated by gas and oil fired boilers, combined cycle power plants, coal gasification, and hydrogen and biogas plants.


In one embodiment, a solvent an amino hindered alcohol with vapor pressure less 0.1 kPa at 25 C and a polyamine with three or more amino groups with vapor pressure less 0.009 kPa at 25 C, and a carbonate buffer to buffer the solvent to a pH greater than 8 (e.g., a pH of about 8, about 10, or about 13). The solvent can have a vapor pressure less than 1.85 kPa at 25 C.


In another embodiment, a polyamine with vapor pressure less than 0.009 kPa at 25 C (e.g., as 2-Piperazine-1-ethylamine or diethylenetriamine) creates resiliency to an aerosol phase emissions due to very low pressure, which may result of carbamate reaction with CO2. The amino hindered alcohol with vapor pressure less 0.1 kPa at 25 C will form aerosol phase emissions due to carbonate/bicarbonate reaction with CO2. In specific embodiment, a hindered alcohol with a polyamine with low vapor pressure (0.009) yields less than 32 mg/Nm3 aerosol formation. In specific embodiment, a hindered alcohol with a polyamine with low vapor pressure (0.009) yields less than 28 mg/Nm3 aerosol formation. In other embodiments, a hindered alcohol with a polyamine with low vapor pressure (0.009) yields more than half of aerosols being less than 32 mg/Nm3. In another embodiment, a hindered alcohol with a polyamine with low vapor pressure (0.009) yields more than half of the aerosols being less than 28 mg/Nm3.


In one example, the solvent may include an aqueous solution of 2-amino-2-methylproponol, 2-Piperazine-1-ethylamine, diethylenetriamine, 2-methylamino-2-methyl-1-propanol, and potassium carbonate. The solvent and method have favorable solvent regeneration (i.e., amount of input energy is low), chemical stability, vapor pressure, total heat consumption, net cyclic capacity, and reaction kinetics. The solvent and method also result in low emission of aerosols and nitrosamines, and substantially no foaming.


In one example, the solvent comprises an amino hindered alcohol having a vapor pressure less than 0.1 kPa at 25 C, a polyamine with three or more amino groups having vapor pressure less 0.009 kPa at 25 C, and a carbonate buffer. The solvent has a vapor pressure less than 1.85 kPa at 25 C. The polyamine can be 2-Piperazine-1-ethylamine and diethylenetriamine together, and the amino hindered alcohol can be 2-Methylamino-2-methyl-1-propanol and 2-amino-2-methylproponol together.


For illustration, 2-amino-2-methylproponol and 2-Methylamino-2-methyl-1-propanol are sterically hindered alcohols that have low absorption heats, high chemical stabilities, and relatively low reactivity. Piperazine-1-ethylamine and diethylenetriamine have very high, fast kinetics and are chemically stable under the conditions disclosed herein. Piperazine-1-ethylamine and diethylenetriamine have very low volatilities, which reduce environmental concerns of the disclosed solvent. Piperazine-1-ethylamine and diethylenetriamine may act as promoters for 2-amino-2-methylproponol and 2-methylamino-2-methyl-1-propanol to provide high absorption activity and fast reaction kinetics.


The CO2 solvent may contain a carbonate buffer. A pH range for the carbonate buffer may be between about 8.0 and about 13. The presence of the carbonate buffer can increase the pH of the solvent. A pH of about 8.0 to about 9.0 allows for increased CO2 capture in the form of bicarbonate salts. The carbonate buffer may be regenerated when the solvent is heated. For example, percarbonate may be utilized.


Carbonate buffer salts may also be used. The amount of carbonate buffer salt used should be sufficient to raise salivary pH to about 7.8 or more, about 8.5 or more, or about 9 or more (e.g., about 9 to about 11), irrespective of the starting pH. Thus, the amount of carbonate buffer salt used in the solvent will depend upon implementation conditions. In an example, the carbonate buffer salt may be sodium carbonate, potassium carbonate, calcium carbonate, ammonium carbonate, or magnesium carbonate.


Bicarbonate salts may also be used. Exemplary bicarbonate salts include, for example, sodium bicarbonate, potassium bicarbonate, calcium bicarbonate, ammonium bicarbonate, and magnesium bicarbonate.


Binary buffer compositions may additionally be utilized. An exemplary binary buffer composition includes a combination of sodium carbonate and sodium bicarbonate. In an example, the sodium bicarbonate of the solvent may be dessicant-coated sodium bicarbonate.


An amount of carbonate buffer and amine promoter in the solvent may be limited by the solubility of both components in water, resulting in a solid solubility limit for aqueous solutions. For example, at 25 C, the solubility of potassium carbonate buffer in a CO2 rich solution is 3.6 m. With the solid solubility limitation, the resulting lower concentration can result in a slow reaction rate and low solution capacity. By combining Piperazine-1-ethylamine, Diethylenetriamine, and carbonate buffer, for example, the resultant solubility increases.


When promoter absorbent amines such as Piperazine-1-ethylamine and Diethylenetriamine reach with CO2, an equilibrium reaction occurs to form carbamate and dicarbamate and some free and bound promoter amines. Because of the addition of carbonate buffer salt, which reacts with free and bound promoter amines, the equilibrium reaction is driven to completion, thereby resulting in more CO2 absorption.


In an example, the solvent contains 2-amino-2-methylproponol in an amount of about 10 wt % to about 32 wt %, about 11 wt % to about 28 wt %, and preferably in an amount of about 13 wt % to about 25 wt %. When about 12 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 19.5 wt % of 2-amino-2-methylproponol may be desirable. When about 4 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 13.3 wt % of 2-amino-2-methylproponol may be desirable. When about 40 vol % CO2 is experienced at the inlet of a biogas CO2 capture system, about 24.2 wt % of 2-amino-2-methylproponol may be desirable.


In another example, the solvent contains 2-Piperazine-1-ethylamine in an amount of about 10 wt % to about 35 wt %, about 12 wt % to about 30 wt %, and preferably in an amount of about 14 wt % to about 28 wt %. When about 12 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 22.4 wt % of 2-Piperazine-1-ethylamine may be desirable. When about 4 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 27.6 wt % of 2-Piperazine-1-ethylamine may be desirable. When about 40 vol % CO2 is experienced at the inlet of a biogas CO2 capture system, about 15.15 wt % of 2-Piperazine-1-ethylamine may be desirable.


In a further example, the solvent contains diethylenetriamine in an amount of about 0.1 wt % to about 4 wt %, about 0.1 wt % to about 3 wt %, and preferably in an amount of about 0.1 wt % to about 0.35 wt %. When about 12 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 0.2 wt % of diethylenetriamine may be desirable. When about 4 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 0.35 wt % of Diethylenetriamine may be desirable. When about 40 vol % CO2 is experienced at the inlet of a biogas CO2 capture system, about 0.1 wt % of diethylenetriamine may be desirable.


In yet another example, the solvent contains 2-Methylamino-2-methyl-1-propanol in an amount of about 0.8 wt % to about 5 wt %, about 1 wt % to about 2.8 wt %, and preferably in an amount of about 1.2 wt % to about 1.8 wt %. When about 12 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 1.5 wt % of 2-Methylamino-2-methyl-1-propanol may be desirable. When about 4 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 1.2 wt % of 2-methylamino-2-methyl-1-propanol may be desirable. When about 40 vol % CO2 is experienced at the inlet of a biogas CO2 capture system, about 1.8 wt % of 2-methylamino-2-methyl-1-propanol may be desirable.


In an additional example, the solvent contains buffer (e.g., potassium carbonate) in an amount of about 0.1 wt % to about 6 wt %, about 0.2 wt % to about 3 wt %, and preferably in an amount of about 0.5 wt % to about 1.0 wt %. When about 12 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 0.5 wt % of potassium carbonate may be desirable. When about 4 vol % CO2 is experienced at the inlet of a flue gas CO2 capture system, about 0.7 wt % of potassium carbonate may be desirable. When about 40 vol % CO2 is experienced at the inlet of a biogas CO2 capture system, about 0.4 wt % of potassium carbonate may be desirable.


Characteristics of the solvent play a major role in determining both equipment size and process energy requirements. In certain circumstances, the following factors can be considered when choosing a solvent:

    • Regeneration energy: since the exothermic reactions taking place in the absorber are reversed by addition of heat in a reboiler, a solvent having a low or lower heat of absorption is desirable;
    • Cyclic capacity (the difference between CO2 concentration in the solvent leaving the absorber and that leaving the reboiler): a solvent having a high or higher cyclic capacity is desirable since higher cyclic capacities result in a lower rebolier duty, reduced electrical consumption in pumps, and possible downsizing of equipment, which results in lower investment costs;
    • Evaporation loss: a solvent has high evaporation loss, a water wash section is needed on top of the absorber. Thus, a solvent having a low evaporation loss is desirable, thereby eliminating the need for a water wash section;
    • Solubility in water: amines with bulky non-polar parts showing limited solubility in water. Thus, a solvent having amines soluble in water is desirable;
    • Chemical stability: a solvent that is not vulnerable to oxidative degradation is desired. A problem with MEA is its vulnerability towards oxidative degradation when exposed to an exhaust gas;
    • Corrosivity: the solvent, as well as its possible degradation products, should exhibit limited corrosivity;
    • Foaming: if not controlled, foaming may lead to gas cleaning and mal-distribution of liquid flow in the absorption tower, thus reducing its performance. Accordingly, a solvent exhibiting minimal to no foaming is desirable;
    • Toxicity and environment impact: a solvent exhibiting minimal to no toxicity and environmental impact is desirable; and
    • Aerosol and nitrosamine emissions: since aerosols and nitrosamine are volatile, a solvent exhibiting minimal to no production of aerosols and nitrosamine is desirable.


      Certain exemplary solvents have characteristics with respect to the aforementioned criteria compared to other solvants (e.g., MEA), presently accepted industry standard. These characteristics are exemplified through the below detailed experiments involving MEA as a reference solvent. Certain solvents disclosed herein has low energy requirements and good chemical stability. The method of using the solvent disclosed herein makes use of the solvent's characteristics, resulting in the method having a low energy consumption with minimal environment impact. Other benefits of the disclosed solvent and method will become apparent in light of the description set forth herein.


A variety of container, absorber, or tower devices as known in the art can be used for the contacting step. The size and shape, for example, can be varied. The container can have one or more input ports and one or more exit ports. For example, the contacting step can be carried out in an absorption column. In the contacting step, a gas such as the first composition can be passed through a liquid composition such as the second composition. One can adapt the parameters to achieve a desired percentage of carbon dioxide capture such as, for example, at least 70%, or at least 80%, or at least 90% carbon dioxide capture. Recycling can be carried out where solvent is looped back into a reactor for further processing. In one embodiment, after the contacting step, the second composition with its dissolved carbon dioxide is subjected to one or more carbon dioxide removal steps to form a third composition which is further contacted with a first composition comprising carbon dioxide. Other known processing steps can be carried out. For example, filtering can be carried out. As known in the art, pumps, coolers, and heaters can be used.


A contacting step can be part of a larger process flow with other steps both before and after the contacting step. For example, membrane separation steps can also be carried out as part of the larger process. For example, PBI membranes can be used. The contacting step can be also part of a larger process in which components are removed. In some preferred embodiments, the contacting step is part of a carbon capture process. For example, an IGCC plant and carbon capture are described in the literature. As known in the art, pre-combustion capture processes and compression cycles can be carried out. Continuous or batch processing can be carried out. The contacting step results in at least partial dissolution of the carbon dioxide of the first composition in the second composition.


EXAMPLES AND EXPERIMENTS

The following examples illustrate methods and embodiments in accordance with the invention.


Screening

In certain examples, a mini-vapor-liquid equilibrium (“VLE”) setup was used to test exemplary solvents. The mini-VLE setup included six (6) apparatuses in parallel. The 6 apparatuses were capable of being operated at different temperatures. Different combinations of solvent components and concentrations were screened at 40 C and 120 C. These solvents components screened were 2-amino-2-methylproponol, 2-Piperazine-1-ethylamine, Diethylenetriamine, 2-Methylamino-2-methyl-1-propanol, potassium carbonate, piperazine, 2-methyl piperazine, N-ethyl ethanolamine, and N-methyl diethanolamine.


VLE Measurements Using Autoclave

VLE measurements demonstrate the relationship between partial pressure of CO2 in the vapor phase and the loading (i.e., concentration) of CO2 in a solvent at different temperatures. An autoclave apparatus used to perform VLE testing is described. The autoclave includes a glass vessel, a stirrer, a pH sensor, and pressure sensors. The volume of the vessel was 1 liter. Prior to commencing the experiment, pressure was brought down to −970 mbar using a vacuum pump. 0.5 liter of solvent was added to the vessel and was heated up so equilibrium could be determined at a constant temperature of the solvent. VLE was determined at several CO2 partial pressures and temperatures.


At the start of the experiment, a CO2 pulse was performed. A subsequent pulse was performed only if the following two conditions were satisfied: (1) the time between two pulses was at least 45 minutes; and (2) the average pressure value of 5 minutes of data did not deviate by more than 1 mbar from the average value of 5 other minutes of data points 15 minutes earlier. The latter condition ensured the subsequent pulse was only given when the pressure was stabilized. The pressure measured in the vessel at t=0 s was subtracted from pressures measured after the CO2 pulses. At higher temperatures, the vapor pressure of the solvent (measured in a separate experiment) was subtracted from the measured pressures.



FIGS. 4 and 6 show results of the aforementioned VLE testing. The partial pressure of CO2 in the vapor phase increased with temperature for a given CO2 loading in the solvent. The points of interest for a solvent based CO2 capture process are the observed CO2 loading at “rich” and “lean” solvent conditions. “Lean” solvent is the fresh solvent entering the absorber and is ideally free of CO2. “Rich” solvent is the solvent leaving the absorber having absorbed as much CO2 as possible. The two main parameters of a solvent that influence its absorption performance are (a) net cyclic capacity (i.e., the difference of rich and lean loading); and (b) kinetics due to change in the temperature of both lean solvent and flue gas.


As indicated in FIG. 3, the APBS solvent was tested at 40 C and 120 C to determine vapor equilibrium data of the APBS solvent (i.e., CO2 loading (mol/L) versus the partial pressure of CO2 (kPa)). The APBS solvent was screened and optimized based on CO2 vol % at the inlet in resultant flue gases, such as coal (12 vol % CO2)/gas (4 vol % CO2) fired flue gases and biogas (40 vol % CO2). The CO2 loading of the solvent increased as the partial pressure of the CO2 was increased. However, temperature played a role in the magnitude of CO2 loading versus the CO2 partial pressure.



FIG. 5 show a comparison of vapour-liquid equilibrium data of the solvent disclosed herein (APBS 12 vol % CO2) versus MEA at different temperatures (i.e., 40 C and 120 C); under absorber and stripper conditions. The points of interest for a solvent based CO2 capture process are the observed CO2 loading at “rich” and “lean” solvent conditions. “Lean” solvent is the fresh solvent entering the absorber and is ideally free of CO2. “Rich” solvent is the solvent leaving the absorber having absorbed as much CO2 as possible. For a typical coal fired plant (12 vol % CO2), the CO2 partial pressure in the exhaust gas stream is about 12 kPa. For a counter current based absorption system, the rich solvent is in contact with this flue gas at the inlet and is defined as the rich loading. Generally, the temperature of the rich solvent is taken to be 40 C. This leads to a rich loading of 3.3 mol/L for 90% CO2 capture. The CO2 partial pressure should not be more than 1 kPa and thus, the lean loading too should not exceed the corresponding value. Based on the VLE measurements, the lean loading of the APBS solvent at CO2 partial pressure of 1 kPa is 0.74 mol/L. Commercially this data is very important, as difference of rich and lean loading is the amount of CO2 captured. For APBS solvents this difference is twice the benchmark solvent MEA used today, leading to 50% reduction in solvent circulation rates. Lower solvent circulation rates result in lower solvent circulation cycles, lowering overall energy, degradation, and corrosion.


Kinetic Measurement of CO2 Reaction in Aqueous Solvent

Referring to FIG. 7, a device used to determine the kinetics of CO2 reacting with aqueous APBS is described. The device includes a glass stirred cell reactor having a plane and a horizontal gas-liquid interface used for obtaining absorption rate measurements. The gas and liquid are stirred separately by impellers. The setup was supplied by two reservoirs (equipped with heat exchangers), one for the gas phase and one for the liquid phase.


The rate of absorption as a function of CO2 partial pressure at various temperatures using the device of FIG. 7 are represented in Table 1 below.









TABLE 1







Rate of absorption as a function of CO2 partial pressure at


various temperatures.











APBS (RCO2 ×


Temperature

106)


(C.)
PCO2 (kPa)
(kmol/(m2sec))












40
5.4
12.5


50
8.1
24.4


60
7.28
30.4









Energy and Reboiler Duty Comparison for MEA and APBS/the Solvent

For the CO2 to be transferred from the liquid phase to the gas phase, there needs to be a driving force on the basis of partial pressure. Steam provides this driving force, resulting in the mass transfer of CO2 from the liquid phase to the gas phase being enhanced. This also has energy associated with it, which contributes to the overall reboiler duty. By finding out the amount of water associated with the pure CO2 steam produced (this energy being in the form of water lost that needs to be provided by the reboiler), the amount of energy associated with mass transfer of CO2 from the liquid phase to the gas phase can be determined. The total amount of energy/heat needed to transfer CO2 from the liquid phase to the gas phase is represented by Equation 8.






Q
T
=Q
sens
+Q
des
+Q
strip   Equation 8


A solvent loaded with CO2 in the absorber may be heated up to stripper temperature for the regeneration of CO2. A solvent stream can be pre-heated in the lean-rich cross heat exchanger and then additional heat may be used to maintain the temperature of a solvent in the stripper (represented by Equation 9).










Q
sens

=


δ






C
P


Δ





T



(


α
rich

-

α
lean


)



C
amine







Equation





9







Contributing factors to sensible heat are solvent flow, specific heat capacity of a solvent, and the temperature increase. Thus, the parameter that can be varied is one solvent flow, which further depends on the concentration of one solvent and the one solvent's loadings. This can be decreased by circulating less solvent and maintaining the same CO2 production rate. This is checked by means of comparing the net capacity of a solvent, which is defined as the difference in the loading at absorption and desorption conditions.


The CO2 which is reversibly bound to a solvent needs to be regenerated. The heat of desorption (Qdes) is equivalent to the heat of absorption. The stripping heat is represented by Equation 10.










Q
strip

=





P

H





2

O

sat



(

T

top
,
des


)




χ


H





2

O

,
freebasis





P

CO





2

*



(


T

top
,
des


·

α
rich


)




Δ






H

H





2

O

vap






Equation





10







ΔHH2Ovap is the heat of vaporization of water and P*CO2 is the partial pressure of CO2 at equilibrium with the rich solution at the bottom of the absorber.


Table 2 below shows a comparison of the reboiler duty in a typical CO2 capture plant based on 5 M MEA and APBS 12 vol % CO2 solvent. The total heat requirement in terms of reboiler duty was 2.3 GJ/ton CO2 for the APBS solvent, which is about 30.5% lower than that of MEA (i.e., 3.31 GJ/ton CO2).









TABLE 2







Comparison of the reboiler duty in a typical CO2 capture plant


based on 5M MEA and the APBS 12 vol % solvent.












Heat Consumption

APBS 12 vol %
5M MEA
















Qsens
kJ/kg CO2
140
517



Qdes

1539
1864



Qstrip

555
924.5



QT
GJ/ton CO2
2.3
3.31










Pilot Plant Testing—E.ON CO2 Capture Pilot—Netherlands (6 Tons/Day CO2 Capture

The APBS 12 vol % solvent test campaign was conducted at the E.ON CO2 capture plant in Maasvlakte, Netherlands. The CO2 capture plant receives flue gas from unit 2 of the E.ON coal based power station. The capture plant can capture 1210 Nm3/h of flue gas. A schematic representation of the capture plant is depicted in FIG. 8. Table 3 below is a legend for the FIG. 3 schematics and Table 4 provides the main parameters of the columns of the E.ON CO2 capture plant.









TABLE 3





Legend of FIG. 8 CO2 capture plant schematics.




















C-01
SO2-
E-01
Reboiler
P-01
Lean solvent pump



scrubber
E-02
Condenser
P-02
Rich solvent pump


C-02
Absorber
E-03
Lean-rich HX
P-03
Condensate pump


C-03
Stripper
E-04
Lean solvent
P-04
Scrubber pump


F-01
Filter unit

cooler
P-05
Wash section pump


V-01
Condensate
E-05
Wash section
K-01
Flue gas fan



drum

cooler




E-06
Scrubber cooler
















TABLE 4







Main parameters of the E.ON capture plant columns.











SO2 scrubber
Absorber
Stripper














Packing height (m)
3 (1 bed)
8 (4 × 2 m)
8 (2 × 4 m)


Diameter (m)
0.7
0.65
0.45


Washing Section

2
1.1


(m)


Packing
IMTP 50
IMTP 50
IMTP 50


Demister

Yorkmesh 172
Yorkmesh 172









Degradation of and Corrosion Caused by the APBS Solvent

Degradation of solvent often occurs either thermally or due to oxidation in the flue gas. The oxygen content of flue gas from a typical coal fired power plant is about 6% to about 7% by volume. Thermal solvent degradation typically occurs in hot zones such as in the stripper. However, the extent of thermal degradation is lower than oxidative degradation. Degradation of the solvent leads to loss in active component concentration, corrosion of the equipment by the degradation products formed, and ammonia emissions.


Degradation can be observed visually as shown in FIG. 9, which contains pictures of MEA and the APBS solvent over the duration of a campaign lasting 1000 operating hours. The color of degraded MEA solution is almost black while the color of degraded APBS seems to be largely unchanged from the start of the test campaign to the end. This indicates that APBS has higher resistance to degradation than MEA. Also, the APBS solvent exhibits zero foaming tendency and a high resistivity towards SO2 in the flue gas.


As mentioned above, degradation of solvent leads to corrosion of the equipment of CO2 capture systems. Typically, most of the equipment in contact with the solvent is stainless steel. Thus, based on the amount of metals such as Fe, Cr, Ni, and Mn dissolved in the solvent, it is possible to estimate the extent of internal plant corrosion. FIG. 4 shows the metal content of APBS and MEA during the pilot plant campaign. The metal content of APBS remained below 1 mg/L, even after 1000 operation hours. By comparison, during a previous MEA campaign at the same pilot plant, metal content of MEA was about 80 mg/L within 600 operating hours. Since the metal content of a solvent is correlated with the amount of equipment corrosion caused by the solvent, this comparison of APBS and MEA demonstrates that APBS causes less corrosion of equipment than MEA (which is known by those skilled in the art to degrade rapidly, leading to severe corrosion).


Ammonia (NH3) is a degradation product of CO2 capture solvents. Ammonia, since it is volatile, may only be emitted into the atmosphere in small quantities with CO2 free flue gas. Consequently, monitoring and minimization of ammonia emission levels is essential. FIG. 5 illustrates measured ammonia emission levels of MEA and APBS during the pilot/campaign at the E.ON CO2 capture plant. For most of the campaign, ammonia emission levels of the APBS solvent were below 10 mg/Nm3. This is in stark contrast to the ammonia emission levels of the MEA solvent, which ranged from about 10 mg/Nm3 to about 80 mg/Nm3. Accordingly, APBS is a safer solvent than MEA regarding production and emission of ammonia due to degradation.


Aerosol of APBS Solvent Using Impactor and Impingers

The aerosol box has been installed at a sampling point above the water wash section of the pilot plant. From prelimairy tests it has been decided to raise the temperature in the aerosol box 1.5 C above the temperature monitored in the sorption tower and at the measurement location, It takes some time for the conditions in the pilot plant to stabilize as the internal temperature of the aerosol box very fast in order to condition the Anderson cascade impactor. The duration of the first measurement was for 63 min. The second measurement was of at least equal duration (66 min). At the end of 66 min, the impinger sampling was continued. In the first measurement the temperature at the sample location varied between 39.94 and 41.05 C, while the temperature in the aerosol measurement box varies between 40.8 and 42.2 C. In the second measurement the temperature at the sample location varies between 39.7 and 41.4 C and the aerosol box temperature between 40.7 and 42.2 C. Samples from aerosol trapped from the 28.3 L/min flow through the impactor stages and collected by adding 5 mL of water to vials with each one of the filter papers. After shaking the vials, the 8 liquid volumes are added for further analysis by LC-MS.


Table 10 shows the results from the solvent components polyamine and the amino hindered alcohol from impactor (aerosol) droplets and impingers (vapour). As per the results of experiment 1, most of the amines are found from the impactor. The absolute amount of 2-Piperazine-1-ethylamine is as expected. Moreover the ratio of 2-amino-2-methylproponol and 2-Piperazine-1-ethylamine is as expected. The results from experiments 2 indicate that more amount of amines is present in the impingers rather than the impactor. This is due to the fact that the second hour of the sampling included both aerosols and vapour based emissions. Thus, most of the contribution in the impingers is due to the aerosol component.


The concentration of amines in the droplets collected by the impactor is about 3 wt. %. Thus, most of content of the droplets is water. This is quite low as compared to MEA aerosols, whose concentration in the droplets is greater than 50 wt. %. from experiments performed at the pilot plant using a similar method.









TABLE 5







Resiliency of APBS as compared to MEA regarding aerosol


solvent emissions.














2-amino-2-
2-Piperazine-1-





methylproponol
ethylamine


Exp.
Exposure
Instrument
(mg/Nm3)
(mg/Nm3)














1
63 min aerosol
Impactor
16.4
5.6



droplets



63 min vapour
Impinger
<3
<3



Total

19.4 (max)
8.6 (max)


2
66 min aerosol
Impactor
8.5
2.5



66 min vapour + 60
Impingers
10
11



min aerosol droplets



and vapour





Total

18.5
13.5
















MEA (mg/Nm3)





3
Aerosol
Impactor
1580



Vapour
Impinger
6.8



Total

1587









The aerosol box separates particles into one of eight stages with a particle distribution from 0.43 mm to 11 mm. Stage 1 contains the biggest particles, stage 8 contains the smallest. In the first measurement, most aerosol particles were collected on the top three stages with a maximum near 5.8 mm to 9 mm. In the second measurement, most aerosol particles were collected on the top four stages with a maximum near 4.7 mm to 5.8 mm. The total weight collected from all the stages was 421 mg and 690 mg for the first and second experiments, respectively. The corresponding aerosol concentration was 271 mg/Nm3 and 423 mg/Nm3 for first and second measurements, respectively. The aerosol particle size distribution over the eight stages for both measurements is given in FIG. 6. Overall, this demonstrates that APBS is more resilient to aerosol production/formation than MEA.


Nitrosamine Emissions of APBS Solvent Using Impactor and Impingers

Nitrosamines are known to be carcinogenic. However, nitrosamines are also present in the environment. Thus, it is important to quantify the extent of nitrosamines accumulated in the solvent and emitted to the atmosphere. Primarily, secondary amines form nitrosamines on reaction with NO3accumulated in the solvent from the flue gas. However, it is a very tedious task to list all the specific nitrosamines. Thus, only the total nitrosamines in the form of the functional group “NNO”. Table 8, the nitrosamine content of the first impinge was below the measured threshold, i.e <15 ug/kg, the content for the second impinge is 15 ug/kg. A total of <15 ug/kg*0.1 kg+15 ug/kg*0.1 kg is less than 3 ug total nitrosamines in the 66+60 min duration of the experiment. The resulting nitrosamine concentration in the vapor phase at the sample location is <4.4 ug/Nm3.









TABLE 6







Nitrosamine content in samples from two impingers placed in series.













Total





Nitrosamine


Exp
Exposure
Instrument
(ug/Nm3)





1
66 min aerosol
Impactor




66 min vapor + 60 min aerosol
First Impinger
<2.2



droplets and vapour



66 min vapor + 60 min aerosol
Second Impinger
2.2



droplets and vapour









Pilot Testing—US-DOE's National Carbon Capture Center (NCCC)—4 Vol % CO2 Flue Gas

The APBS 4 vol % solvent test campaign was conducted at US-DOE's NCCC CO2 capture pilot plant at the Southern Company in Alabama. The APBS solvent was specifically developed to capture 3-6 vol % CO2 from flue gas emissions gas based power generations.


APBS Testing: 4 Vol % CO2 NCCC CO2 Capture Pilot Plant

The APBS testing was conducted from March 2014 to April 2014 and February 2015 to March 2015 for detailed parametric testing and baseline using state of the art MEA solvent. Table 7 below details a summary of the test data collected from the NCCC pilot testing. All of the testing involved the following conditions:


(1) APBS solvent;


(2) Wash water flow=10,000 lb/hr;


(3) Wash water section exit gas temperature=110 F;


(4) Three stages of packing (J19 was packed with 2 beds);


(5) No inter-stage cooling; and


(6) Steam at 35 psi and 268 F (enthalpy=927 Btu/lb).









TABLE 7







Summary of test data from PSTU at NCCC (all runs with 4.3% CO2 wet).



















Strip
Gas
Liquid

CO2
CO2

Steam/
Energy,




P,
Flow,
Flow,
L/G,
eff.,
Abs.,
Steam,
CO2,
Btu/lb


No.
Run Date
psig
lb/hr
lb/hr
w/w
%
lb/hr
lb/hr
lb/lb
CO2




















J3
May 1, 2014
9.8
8,000
5,200
0.65
85.5
439.8
718.9
1.63
1,529.9


J4
May 1, 2014
10.3
8,000
6,000
0.75
88.9
496.0
754.2
1.52
1,419.5


J5
May 1, 2014
10.0
8,000
6,800
0.85
88.9
458.9
721.3
1.57
1,469.3


J6
May 2, 2014
12.8
8,000
5,200
0.65
91.4
468.2
713.2
1.52
1,414.3


J7
May 3, 2014
18.3
8,000
5,200
0.65
90.9
466.2
743.6
1.59
1,472.1


J8
May 5, 2014
23.1
8,000
5,200
0.65
89.3
458.4
743.2
1.62
1,488.1


J9
May 7, 2014
11.7
8,000
6,000
0.75
90.5
464.5
719.5
1.55
1,442.8


J10
May 8, 2014
11.7
8,000
6,000
0.75
89.0
457.3
727.1
1.59
1,480.1


J11
May 8, 2014
11.7
8,000
6,000
0.75
90.7
464.9
729.3
1.57
1,460.1


J12
May 10, 2014
14.7
8,000
6,000
0.75
90.7
463.2
671.9
1.45
1,346.8


J13
May 11, 2014
14.9
8,000
6,000
0.75
90.5
464.9
670.1
1.44
1,337.1


J14
May 12, 2014
14.7
8,000
6,000
0.75
91.9
470.7
696.2
1.48
1,372.1


J15
May 13, 2014
14.7
8,000
6,000
0.75
92.5
475.6
682.3
1.43
1,330.9


J16
May 13, 2014
22.6
8,000
6,000
0.75
89.5
458.6
716.6
1.56
1,437.7


J19
May 15, 2014
22.6
8,000
6,000
0.75
90.4
463.6
763.8
1.64
1,515.1









Effect of L/G Ratio

The stripper pressure was held constant at 10 psig for runs J3 to J5. The regeneration energy goes through a minima at L/G=0.75 w/w (or 6,000 lb/hr liquid flow for 8,000 lb/hr of gas flow). The “smooth curve” minima was at L/G ratio of about 0.76 (w/w) and about 1,416 Btu/lb. Table 8 below details the data plotted in FIG. 7.









TABLE 8







Data plotted in FIG. 7.



















Strip
Gas
Liquid

CO2
CO2

Steam/
Energy,




P,
Flow,
Flow,
L/G,
eff.,
Abs.,
Steam,
CO2,
Btu/lb


No.
Run Date
psig
lb/hr
lb/hr
w/w
%
lb/hr
lb/hr
lb/lb
CO2




















J3
May 1, 2014
9.8
8,000
5,200
0.65
85.5
439.8
718.9
1.63
1,529.9


J4
May 1, 2014
10.3
8,000
6,000
0.75
88.9
496.0
754.2
1.52
1,419.5


J5
May 1, 2014
10.0
8,000
6,800
0.85
88.9
458.9
721.3
1.57
1,469.3









Effect of Stripper Pressure

The effect of the stripper pressure on regeneration efficiency is shown in FIG. 8. The L/G ratio was held constant at 0.75 w/w. The regeneration energy goes through sharp minima at stripper pressure close to 15 psig. The “smooth curve” minima is at stripper pressure of about 14 psig and 1,325 Btu/lb CO2. Table 9 below details the data plotted in FIG. 8.









TABLE 9







Data plotted in FIG. 8.



















Strip
Gas
Liquid

CO2
CO2

Steam/
Energy,




P,
Flow,
Flow,
L/G,
eff.,
Abs.,
Steam,
CO2,
Btu/lb


No.
Run Date
psig
lb/hr
lb/hr
w/w
%
lb/hr
lb/hr
lb/lb
CO2




















J9
May 7, 2014
11.7
8,000
6,000
0.75
90.5
464.5
719.5
1.55
1,442.8


J15
May 13, 2014
14.7
8,000
6,000
0.75
92.5
475.6
682.3
1.43
1,330.9


J19
May 15, 2014
22.6
8,000
6,000
0.75
90.4
463.6
763.8
1.64
1,515.1









Optimal L/G Ratio and Stripper Pressure

The CO2 absorption efficiency for Run J15 (illustrated in Table 8) was 92.5%, which had the minimum energy of regeneration. This shows that the regeneration energy for the conditions of Run J15, but for CO2 removal efficiency of 90%, would have been about 1,290 Btu/lb CO2 (or 3.0 GJ/ton CO2). From the plots in FIGS. 7 and 8, a global minimum value below 1,250 Btu/lb (2.9 GJ/ton CO2) should be obtained to achieve 90% CO2 capture at NCCC with G=8,000 lb/hr, L/G ratio of 0.76 (or L=6,080 lb/hr), and a stripper pressure of 14.5 psig.


Effect of Inter-Cooling

Runs J16 and J17 were performed under the same conditions, except run J17 was carried out with inter-cooling. The regeneration energy reduced only slightly (less than 0.3%) to 1,434.4 Btu/lb CO2 with the use of inter-cooling, suggesting that inter-cooling may not be effective in reducing the regeneration energy for 4 vol % CO2 flue gas.


Effect of Number of Packed Beds

Runs J16 and J19 were performed under the same conditions, except run J19 was carried out 2 beds. The regeneration energy increased to 1,515.1 Btu/lb CO2 with the use of 2 beds, but the CO2 removal efficiency was slightly higher at 90.4% (as against 89.5% for run J16). This shows that the APBS solvent of the present disclosure was capable of removing 90% CO2 with two packed beds (of 6 meter or 20′ packing in PTSU) with about 5% more regeneration energy as compared to that required with 3 beds.


Expected Minimum Energy Consumption

The projected regeneration energy for 90% CO2 capture (1,290 Btu/lb CO2 or 3.0 GJ/ton CO2) using the solvent of the present disclosure is 35% to 40% lower than the values reported for MEA for gas-fired boiler flue gas. However, this is not the lowest achievable value for the APBS solvent. The PSTU was designed for operation using 30% MEA with the flexibility to accommodate other solvents, but the NCCC lean/rich heat exchanger was not designed for the higher viscosity of the APBS solvent relative to 30% MEA. Thus, the measured approach temperatures during the APBS solvent test were higher than those for MEA leading to less than optimal heat recovery.


Simulations with g-PROMs have predicted that with an optimal lean/rich heat exchanger and an advanced stripper design, the minimum regeneration energy of 1,200 Btu/lb CO2 (2.8 GJ/ton CO2) can be achieved for CO2 removal of 90% under the following conditions:


(1) Flue gas with 4.3 vol % CO2 and 16 vol % O2 (G=8,000 lb/hr at PSTU);


(2) Absorber gas velocity=9 ft/sec (PSTU absorber diameter=2′, Area=3.142 ft2);


(3) L/G ratio of 0.76 w/w (or L=6,080 lb/hr at PSTU); and


(4) Stripper pressure=14.5 psig.


Effect of Oxygen: Ammonia Emissions (16 Vol % O2)

Table 10 illustrates ammonia (NH3) emissions measured in the vapor stream at the wash water outlet in the PSTU at NCCC for a flue gas with 4.3 vol % CO2 and 16 vol % O2 (simulating a natural gas fired boiler). As can be extrapolated, the average ammonia emissions were 3.22 ppm. The NH3 emissions measured at the PSTU while treating a flue gas with 11.4 vol % CO2 and 8 vol % O2 (from coal-fired boiler) with MEA as the solvent were 53.7 ppm. This is almost 17 times higher than the average for APBS solvent (3.22 ppm), which was measured with almost twice the amount of O2 in the flue gas.









TABLE 10







Ammonia emissions with APBS solvent


(4.3 vol % CO2, 16 vol % O2.












Wash Water Outlet
Vapor 1
Vapor 2
Vapor 3
















NH3 emissions, ppm
2.84
3.07
3.75










Dissolved Metals Concentrations

During tests, samples were taken for fresh solvent at the beginning of the test runs and from spent solvent at the end of the test runs. Similar tests were carried out for MEA runs in 2013. A comparison of the results of the APBS solvent and MEA tests is depicted in Table 11.









TABLE 11







Metal concentrations in solvents before


and after the test runs (ppb wt).













Fresh
Fresh
Rich
Rich
RCRA


Metal
MEA
APBS
MEAb
APBSb
Limit















Arsenic
<12
53.2
219
114
5,000


Barium
<12
<10
265
11.8
100,000


Cadmium
<12
<5
<10
<5
1,000


Chromium
<12
42.2
45,090
2,120
5,000


Selenium
44.1
41.8
1,950
660
1,000









As can be seen, the level of chromium for MEA was more than 22 times that in the APBS solvent, after two months of testing. This indicates that MEA is much more corrosive than the APBS solvent.


NCCC has concluded that the major source of selenium may be the flue gas. The inlet flue gas with APBS solvent testing was not sampled for selenium or other metals. However, since the coal used at the Gaston power plant was from the same source, the metals level in the flue gas would not have changed significantly from MEA tests in 2013 to those for APBS in 2014. The level of selenium is three times higher in the MEA sample at the end of the runs, and this level (1,950 ppb wt) is almost twice of the RCRA limit of 1,000 mg/L (which is the same as ppb wt for a liquid with specific gravity of 1.0).


CO2 Purity

The CO2 stream after the condenser was analyzed and it was found to be consistently higher than 97 vol % in CO2 with about 2.5 vol % water vapor and 210 ppm N2.


APBS Emissions Testing

An analysis of amines and degradation products in the gas leaving the water wash was conducted. The results are summarized in Tables 12 and 13 below.









TABLE 12







Analysis of non-condensed vapor at wash tower outlet (May 2015).









Run Identification











CCS-
CCS-
CCS-



WTO-7
WTO-9
WTO-10








Compounds Analyzed
All values in ppm wt













Sum of nitrsoamines in Thermosorb N
0.0
0.0
0.0


tube,


Sum of amines on sorbent tube SKC
2.62
9.75
2.60


226-30-18


Sum of aldehydes on sorbent tube SKC
1.46
1.70
1.48


226-119


Total hydrocarbons on sorbent tube
1.95
3.15
3.13


SKC 226-01 (as C6H6)
















TABLE 13







Details of compounds analyzed for data in Table 11 (May 2015).









Run Identification











CCS-
CCS-
CCS-



WTO-7
WTO-9
WTO-10











Aldehyde Profile on sorbent tube SKC 226-119 (rotameter #1);


Detection Limit 0.5 μg










Acetaldehyde, Total μg
22.7
36.3
1.23


Acrolein, Total μg
BDL
BDL
BDL


Butyraldehyde, Total μg
3.46
12.1
0.482


Formaldehyde, Total μg
1.08
1.11
0.974


Glutaraldehyde, Total μg
BDL
BDL
BDL


Isovaleraldehyde, Total μg
BDL
BDL
BDL







Total Hydrocarbons on sorbent tube SKC 226-01 (rotameter #4);


Detection Limit 1.0 μg










Total Hydrocarbons as Hexane, Total μg
52.5
88.7
81.7







Amine Profile on sorbent tube SKC 226-30-18 (rotameter #5)


Detection Limit 1.0 μg










Allylamine, Total μg
BDL
BDL
BDL


Butylamine, Total μg
BDL
BDL
BDL


Dibutylamine, Total μg
BDL
BDL
BDL


Diethanolamine, Total μg
BDL
BDL
BDL


Diethylenetriamine, Total μg
BDL
BDL
BDL


Dimethylamine, Total μg
BDL
BDL
BDL


Ethanolamine, Total μg
31.5
125
31.4


Ethylamine, Total μg
BDL
1.78
BDL


Ethylenediamine, Total μg
BDL
1.45
BDL


Isopropylamine, Total μg
BDL
BDL
BDL


Methylamine, Total μg
3.68
2.85
1.16









APBS Nitrosamines Testing

Detailed Nitrosamine APBS solvent testing was performed. In all three samples tested (CCS-WTO-7, CCS-WTO-8 and CCS-WTO-10), the values of N-Nitroso-diethanolamine and a series of nitrosoamines were below detection limits of the two methods used. The results are summarized in Tables 14 and 15 below.









TABLE 14







Test for N-Nitrosodiethanolamine by OSHA Method 31-Modified


(April 2015).












Detection Limit
Concentration



Sample ID
(ug/tube)
(ug/tube)







CCS-WTO-7, -9 and -10
0.04
<0.04

















TABLE 15







Results for Nitrosamines by NIOSH 2522-Modified (April, 2015).












Detection





Limit
(ug/


Sample ID
Analyte
(ug/tube)
tube)













CCS-WTO-7, -9 and -10
N-Nitrosodimethylamine
0.02
<0.02


CCS-WTO-7, -9 and -10
N-Nitrosomethylethylamine
0.02
<0.02


CCS-WTO-7, -9 and -10
N-Nitrosodiethylamine
0.02
<0.02


CCS-WTO-7, -9 and -10
N-Nitrosodi-n-propylamine
0.02
<0.02


CCS-WTO-7, -9 and -10
N-Nitrosodi-n-butylamine
0.02
<0.02


CCS-WTO-7, -9 and -10
N-Nitrosopiperidine
0.02
<0.02


CCS-WTO-7, -9 and -10
N-Nitrosopyrrolidine
0.02
<0.02


CCS-WTO-7, -9 and -10
N-Nitrosomorpholine
0.02
<0.02









Testing—MT Biomethane Biogas Up-Gradation CO2 Capture Pilot Plant—40 Vol % CO2 Biogas

An APBS 40 vol % solvent test campaign was conducted at the MT Biomethane biogas up-gradation CO2 capture pilot plant in Zeven, Germany. The APBS solvent was specifically developed to capture 40 vol % CO2 from biogas. The MT Biomethane facility has a biogas up-gradation capacity of 200 to 225 Nm3/hr. Agricultural waste is used to produce biogas using a digester. The heat needed for regeneration of the solvent was provided by hot water.


APBS Testing: 40 Vol % CO2 Capture Pilot Plant

The APBS testing was conducted from July 2014 to June 2015 for a detailed parametric test and baseline with an aMDEA solvent. After APBS was used by the plant, CO2 released through the absorber top was negligible. The methane rich stream leaving from the top of the absorber should contain 2% mol of CO2, hence all the optimization test was conducted to meet this requirement.


Net Loading Capacity

It has been observed that the APBS solvent has a net loading capacity for CO2 1.5 times higher than aMDEA. FIG. 15 illustrates the results of a capacity comparison of aMDEA and APBS. As easily seen, APBS has a higher capacity for CO2 than does aMDEA. A higher capacity of a solvent for CO2 leads to a decrease in circulation rate of the solvent, and hence a reduction in size of the equipment needed.


Recovery of Methane From Biogas


FIG. 9 illustrates methane recovery using APBS solvent. As APBS is inert to methane, the recovery from biogas is >99.9%.


Foaming

One of the major operational problems encountered by aMDEA was foaming once a week, which lead to undue stoppage of plant operations and loss of processing of biogas, and hence revenue. In contrast, the use of APBS did not result in any foaming in the absorber.


Energy


FIG. 17 illustrates thermal and electrical energy performance of APBS. The average thermal energy for APBS is about 0.55 kWh/Nm3 of raw biogas. The electrical energy was 0.1 kWh/Nm3 of raw biogas.


Make-Up Chemicals

Over a period of time, due to vapor pressure and degradation, performance of aMDEA starts to diminish. Thus, a regular make-up of chemicals are needed to achieve required performance using aMDEA. In the case of APBS, it has been observed that there is no need for make-up chemicals. FIG. 18 illustrates a comparison of aMDEA and APBS make-up chemicals needed for on-going operations.


MT Biomethane Biogas Up-Gradation CO2 Capture Pilot Plant Testing

Use of APBS leads to savings in thermal and electrical energy up to about 20% and to about 40%, respectively. Since APBS did not lead to a single occurrence of foaming, APBS can increase productivity of biogas processing. Due to higher solvent life and very low corrosion rate, the overall investment over the plant life can be decreased by using APBS.

Claims
  • 1.-31. (canceled)
  • 32. A aqueous solvent comprising: a first amino hindered alcohol having a vapor pressure less than 0.1 kPa at 25 C, the first amino hindered alcohol is a sterically hindered amine with an alcohol group, and the first amino hindered alcohol is between about 10% to about 32% of the solvent by weight,a first polyamine having two or more amino groups having a vapor pressure less 0.009 kPa at 25 C, the first polyamine is between about 12% to about 30% of the solvent by weight,a second polyamine is a linear polyamine that is between about 0.1% and about 4% of the solvent by weighta second amino hindered alcohol is between about 0.8% and about 5% of the solvent by weight, anda carbonate buffer,wherein the solvent has a vapor pressure less than 1.85 kPa at 25 C, the solvent exhibits an inherent aerosol solvent emission level that is less than about 423 mg/nm3 at about 40 C, the first polyamine and the second polyamine are different polyamines, and the first amino hindered alcohol and the second hindered alcohol are different alcohols.
  • 33. The solvent of claim 32, wherein the first polyamine is 2-piperazine-1-ethylamine, the second polyamine is diethylenetriamine, and the first amino hindered alcohol is 2-amino-2-methylpropanol, and the second amino hindered alcohol is 2-methylamino-2-methyl-1-propanol.
  • 34. The solvent of claim 33, wherein the carbonate buffer creates a pH selected from the group consisting of about 13 or more.
  • 35. The solvent of claim 32, wherein the carbonate salt is selected from the group consisting of sodium carbonate, potassium carbonate, calcium carbonate, ammonium carbonate, magnesium carbonate, and a combination thereof.
  • 36. The solvent of claim 32, wherein the first polyamine is between 12% and 30% of the solvent by weight, the second polyamine is between 0.1% and 4% of the solvent by weight, the first amino hindered alcohol is between 11% and 28% of the solvent by weight, and second amino hindered alcohol is between 1% and 2.8% by weight.
  • 37. The solvent of claim 32, wherein the first polyamine is between 13% and 25% of the solvent by weight, the second polyamine is between 0.1% and 3% of the solvent by weight, the first amino hindered alcohol is between 13% and 25% of the solvent by weight, and second amino hindered alcohol is between 1.2% and 1.8% of the solvent by weight.
  • 38. The solvent of claim 32, wherein the first polyamine is about 20% the solvent by weight, the second polyamine is about 0.4% of the solvent by weight, the first amino hindered alcohol is about 20% of the solvent by weight, and second amino hindered alcohol is about 0.2% of the solvent by weight.
  • 39. The solvent of claim 33, wherein the 2-amino-2-methylproponol is between 10% and 32% of the solvent by weight.
  • 40. The solvent of claim 33, wherein the 2-piperazine-1-ethylamine is between about 10% to about 35% of the solvent by weight.
  • 41. The solvent of claim 33, wherein the diethylenetriamine is between about 0.1% to about 4% of the solvent by weight.
  • 42. The solvent of claim 33, wherein the 2-methylamino-2-methyl-1-propanol is about 2% of the solvent by weight.
  • 43. The solvent of claim 32, wherein the buffer is about 0.1% to about 6% of the solvent by weight.
  • 44. The solvent of claim 32, wherein the solvent exhibits an inherent aerosol solvent emission level that is less than about 271 mg/nm3 at about 40 C.
  • 45. The solvent of claim 32, wherein the solvent has an emission level that is less than about 32 mg/Nm3 at 40 degrees.
  • 46. A method for removing CO2 from CO2-containing gas, the method comprising: contacting an aqueous solvent with the CO2-containing gas to remove the carbon dioxide from the CO2-containing gas, wherein the solvent has a first amino hindered alcohol having a vapor pressure less than 0.1 kPa at 25 C, the first amino hindered alcohol is a sterically hindered amine with an alcohol group, and the first amino hindered alcohol is between about 10% to about 32% of the solvent by weight, a first polyamine having two or more amino groups having a vapor pressure less 0.009 kPa at 25 C, the first polyamine is between about 12% to about 30% of the solvent by weight, a second polyamine is a linear polyamine that is between about 0.1% and about 4% of the solvent by weight, a second amino hindered alcohol is between about 0.8% and about 5% of the solvent by weight, and a carbonate buffer, wherein the solvent has a vapor pressure less than 1.85 kPa at 25 C, the solvent exhibits an emission level that is less than about 423 mg/nm3, the first polyamine and the second polyamine are different polyamines, and the first amino hindered alcohol and the second hindered alcohol are different alcohols.
  • 47. The method of claim 46, wherein the first polyamine is 2-piperazine-1-ethylamine, the second polyamine is diethylenetriamine, the first amino hindered alcohol is 2-amino-2-methylpropanol, and the second amino hindered alcohol is 2-methylamino-2-methyl-1-propanol.
  • 48. The method in claim 46, wherein the vapor pressure of the solvent is less than about 1.85 kPa at 25 C and wherein the solvent exhibits an inherent aerosol solvent emission level that is less than about 271 mg/nm3 at about 40 C.
  • 49. The method of claim 46, wherein the amino hindered alcohol and polyamine concentration of amines in the aerosols droplets are less 3% of the gas by weight.
  • 50. The method of claim 46, wherein the gas comprises a combustion gas.
  • 51. The method of claim 46, wherein the gas comprising SOX and dust.
  • 52. The process of claim 46, wherein the gas comprises waste from a combustion process and the process is used to remove a carbon-containing compound in a post-combustion carbon capture process.
  • 53. The process of claim 46, wherein the carbon-containing compound comprises a carbon oxide.
  • 54. The process of claim 46, wherein the carbon-containing compound comprises carbon dioxide, oxygen, SOX and dust.
  • 55. A aqueous solvent comprising: a first amino hindered alcohol having a vapor pressure less than 0.1 kPa at 25 C, the first amino hindered alcohol is a sterically hindered amine with an alcohol group, and the first amino hindered alcohol is between about 20% of the solvent by weight,a first polyamine having two or more amino groups having a vapor pressure less 0.009 kPa at 25 C, the first polyamine is between about 22% of the solvent by weight,a second polyamine is a linear polyamine that is between about 0.2% of the solvent by weight,a second amino hindered alcohol is about 1.4% of the solvent by weight, anda carbonate buffer,wherein the solvent has a vapor pressure less than 1.85 kPa at 25 C, the solvent exhibits an inherent aerosol solvent emission level that is less than about 423 mg/nm3 at about 40 C, the first polyamine is 2-piperazine-1-ethylamine, the second polyamine is diethylenetriamine, the first amino hindered alcohol is 2-amino-2-methylpropanol, the second amino hindered alcohol is 2-methylamino-2-methyl-1-propanol.
CROSS-REFERENCE TO RELATED APPLICATION DATA

This application claims priority to U.S. Provisional Patent Application Ser. No. 62/040,911, which is incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2015/001855 8/21/2015 WO 00
Provisional Applications (1)
Number Date Country
62040911 Aug 2014 US