The disclosure relates to carbon-carbon composite materials.
Carbon fiber-reinforced carbon materials, also referred to as carbon-carbon (C—C) composite materials, are composite materials that include carbon fibers reinforced in a matrix of carbon material. The C—C composite materials can be used in many high temperature applications. For example, the aerospace industry employs C—C composite materials as friction materials for commercial and military aircraft, such as brake friction materials.
Devices, systems, and techniques for forming carbon-carbon composite components including antioxidant coatings, and those components resulting therefrom, are described. In some examples, a carbon-carbon composite component may include an antioxidant coating over at least a portion of the surface of a carbon-carbon substrate, e.g., over a non-working surface region of the substrate, which may be a non-friction surface region. In some examples, the antioxidant coating may be formed by an additive manufacturing process and may include a plurality of individual layers of antioxidant material. Each of the plurality of individual layers may be formed by depositing the antioxidant material on (either directly or indirectly) desired surface region of the carbon-carbon substrate by a print head of a three-dimensional (3D) printing device. For example, the individual layers of antioxidant material may be sequentially formed on a layer-by-layer basis in three-dimensions on the carbon-carbon composite substrate. Throughout the formation of the individual antioxidant layers, the three-dimensional position of the print head in may be under automated control to produce an antioxidant coating of a desired 3D geometry over a desired surface region of the carbon-carbon substrate.
In one aspect, the disclosure is directed to a method for forming a carbon-carbon composite component including an antioxidant coating, the method comprising depositing an antioxidant material on a first surface region of a carbon-carbon composite substrate via a print head of a three-dimensional printing device to form a first layer of the antioxidant material on the first surface region of the substrate and depositing the antioxidant material on a second surface region of the substrate via the print head of the three-dimensional printing device to form a second layer of the antioxidant material on the second surface region, wherein the antioxidant coating includes the first layer and second layer of the antioxidant material.
In another aspect, the disclosure is directed to a system system comprising a three-dimensional print head configured to deposit an antioxidant material on a carbon-carbon composite component to form an antioxidant coating; and a controller configured to control the print head to deposit the antioxidant material on a first surface region of the carbon-carbon composite substrate to form a first layer of the antioxidant material on the first surface region of the substrate, and control the print head to deposit the antioxidant material on a second surface region of the substrate via the print head of the three-dimensional printing device to form a second layer of the antioxidant material on the second surface region, wherein the antioxidant coating includes the first layer and the second layer.
In another aspect, the disclosure is directed to an article comprising a carbon-carbon composite substrate; and an antioxidant coating on a surface of the substrate, wherein the antioxidant coating includes a first layer of the antioxidant material on a first surface region of the substrate, and a second layer of the antioxidant material on a second surface region, wherein each of the first layer and second layer are formed by depositing the antioxidant material via a print head of a three-dimensional printing device.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.
As described, some examples of the disclosure relate to carbon-carbon composite components. C—C composite components used, for example, in aerospace applications such as brake discs, may be formed from carbon fiber preforms that have been densified using a variety of densification techniques. For example, a carbon fiber preform may be formed by layering fabric sheets formed of woven or nonwoven carbon fiber, which may be then be densified by infiltrating the preform with liquid pitch using vacuum pressure infiltration (VPI) and/or resin transfer molding (RTM) followed by carbonization of the pitch to achieve a C—C composite material exhibiting a desired final density. Additionally or alternatively, chemical vapor infiltration (CVI) or chemical vapor deposition (CVD) may be used to densify the fabric preform or other preform. In the case of an aircraft brake disc, in some examples, the carbonized preform may take the form of an annular ring, although other shapes may also be used.
In some examples, carbon-carbon composite components may exhibit relatively low resistance to oxidation, by atmospheric oxygen, at elevated temperatures, e.g., temperatures of 500 degrees Celsius or higher. Such oxidation may not only attack the surface of the carbon-carbon composites but may also enter pores that invariably are present in such structures and oxidize the carbon fibers adjacent to the pores and surfaces of the pores, thereby potentially weakening the composites. Thus, the oxidation of carbon-carbon composite components, particularly when used in high temperature environments (e.g., aircraft brake assemblies), may be a significant contributor to wear of the carbon-carbon composite component.
In some examples, an antioxidant coating may be applied to non-friction surfaces of a carbon-carbon composite brake disc. The application of antioxidant coating may be applied through “line of sight” spraying (e.g., via a bottle and foam dispensing head), dip coating, or brushing. However, difficulties may arise with each of these techniques, where the difficulties may relate to, e.g., achieving full and even coverage across complex geometries of the application surfaces of a carbon-carbon composite brake disc.
For example, while using line of sight application techniques such as spraying, complex part geometries may mask or otherwise block the intended areas to be coated. The masking may result in an antioxidant coating with non-uniform thickness and, in some cases, shield an area of a substrate entirely from a coating being applied. As another example, brushing can result in a non-uniform amount of material being applied to the substrate. During brushing of complex geometries, the coating may only be applied in areas in which the bristles of the brush touch the substrate, thus, limiting brushing's ability, e.g., to apply coatings around sharp corners, inside small radius, and the like.
These techniques for applying such coating, such as line of sight spraying, dip coating, and brushing, may include mixing the coating material in bulk, applying the bulk coating material to a substrate, and then heat treating the coated component to achieve the final chemistry. Uniform bulk mixing and application of consistent concentrations of the bulk mixture to the surface of the carbon-carbon composite substrate to achieve the desired coating chemistry may be difficult. For example, variations in the concentration and bulk application of the coating prior to heat treatment can cause variation in the final chemistry, thus, variation in product reliability and performance.
In accordance with one or more examples of the disclosure, a carbon-carbon composite component may include an antioxidant coating over at least a portion of the surface of a carbon-carbon substrate, e.g., over a non-working surface region of the substrate). The antioxidant coating may be formed by an additive manufacturing process and include one or a plurality of individual layers of antioxidant material. Each of the individual layers may be formed by depositing the antioxidant material on (either directly or indirectly) desired surface region of the carbon-carbon substrate by a print head of a 3D printing device. For example, the individual layers of antioxidant material may be sequentially formed on a layer-by-layer basis in three-dimensions on the carbon-carbon composite substrate. Throughout the formation of the individual antioxidant layers, the 3D position of the print head in may be under automated control to produce an antioxidant coating of a desired 3D geometry over a desired surface region of the substrate.
Examples of the disclosure may provide for one or more benefits. In some examples, the use of 3D printing of antioxidant coatings may allow for greater control over the thickness profile of the antioxidant coating, e.g., compared to that of spraying, brushing, or dip coating. For example, as the print head of a 3D printing device may be able to achieve much more accessibility to intricate areas such as sharp radii, corners, and the like, 3D printing of the individual antioxidant layers may allow for antioxidant coatings with substantially uniform thickness and/or tailored thickness profiles on the surface of the composite substrate.
Additionally or alternatively, the use of 3D printing of antioxidant coatings may allow for the carbon-carbon composite substrate with relatively more complex geometries while still maintaining a substantially uniform coating. Moreover, as 3D printing may allow for better control of chemistry (in some cases even to an atomic level), a more uniform coating chemistry (e.g., from a compositional standpoint) may be achieved by building up small individual layers of the antioxidant material during the printing process instead the bulk application of a coating that results from spraying or brushing.
In some examples, the final coating chemistry may be achieved by thermal processing of the antioxidant material during 3D printing and, in some case, additional heat treatment after the complete antioxidant coating has been formed may not be required. Thermal processing of antioxidant may refer to curing the antioxidant in order to achieve necessary properties that prevent carbon oxidation. In some examples, the curing may be, e.g., either a process of calcination applied to phosphorus based antioxidation systems or a process of chemical conversion applied to ceramic based antioxidation coatings.
In the example of
Wheel assembly 10 includes wheel 18, which in the example of
Wheel assembly 10 may be mounted to an aircraft via torque tube 42 and axle 18. In the example of
During operation of the aircraft, braking may be necessary from time to time, such as during landing and taxiing. Wheel assembly 10 is configured to provide a braking function to an aircraft via actuator assembly 14 and brake stack 16. Actuator assembly 14 includes actuator housing 30 and ram 34. Actuator assembly 14 may include different types of actuators such as one or more of, e.g., an electrical-mechanical actuator, a hydraulic actuator, a pneumatic actuator, or the like. During operation, ram 34 may extend away from actuator housing 30 to axially compress brake stack 16 against compression point 48 for braking.
Brake stack 16 includes alternating rotor discs 36 and stator discs 38. Rotor discs 36 are mounted to wheel hub 20 for common rotation by beam keys 40. Stator discs 38 are mounted to torque tube 42 by splines 44. In the example of
Rotor discs 36 and stator discs 38 may provide opposing friction surfaces for braking an aircraft. As kinetic energy of a moving aircraft is transferred into thermal energy in brake stack 16, temperatures may rapidly increase in brake stack 16, e.g., beyond 200 degrees Celsius. With some aircraft, emergency braking (e.g., rejected takeoff) may result in component temperatures in excess of 500 degrees Celsius, and in some cases, even beyond 800 degrees Celsius. As such, rotor discs 36 and stator discs 38 that form brake stack 16 may include robust, thermally stable materials capable of operating at such temperatures.
In one example, rotor discs 36 and/or stator discs 38 are formed of a C—C composite component including an antioxidant coating according to one or more example techniques of this disclosure. For example, at least one of rotor discs 36 and/or at least one of stator discs 38 may be formed from a C—C composite substrate including an antioxidant coating formed on at least a portion of the surface by depositing the antioxidant material via a print head of a three-dimensional printer. Rotor discs 36 and stator discs 38 may be formed of the same materials or different materials. For example, wheel assembly 10 may include metal rotor discs 36 and C—C composite stator discs 38, or vice versa. Further, each disc of the rotor discs 36 and/or each disc of the stator discs 38 may be formed of the same materials or at least one disc of rotor discs 36 and/or stator discs 38 may be formed of a different material than at least one other disc of the rotor discs 36 and/or stator discs 38.
As briefly noted, in some examples, rotor discs 36 and stator discs 38 may be mounted in wheel assembly 10 by beam keys 40 and splines 44, respectively. In some examples, beam keys 40 may be circumferentially spaced about an inner portion of wheel hub 20. Beam keys 40 may, for example, be shaped with opposing ends (e.g., opposite sides of a rectangular) and may have one end mechanically affixed to an inner portion of wheel hub 20 and an opposite end mechanically affixed to an outer portion of wheel hub 20. Beam keys 40 may be integrally formed with wheel hub 20 or may be separate from and mechanically affixed to wheel hub 20, e.g., to provide a thermal barrier between rotor discs 36 and wheel hub 20. Toward that end, in different examples, wheel assembly 10 may include a heat shield (not shown) that extends out radially and outwardly surrounds brake stack 16, e.g., to limit thermal transfer between brake stack 16 and wheel 12.
In some examples, splines 44 may be circumferentially spaced about an outer portion of torque tube 42. Splines 44 may, for example, be integrally formed with torque tube 42 or may be separate from and mechanically affixed to torque tube 42. In some examples, splines 44 may define lateral grooves in torque tube 42. As such, stator discs 38 may include a plurality of radially inwardly disposed notches configured to be inserted into a spline.
Because beam keys 40 and splines 44 may be in thermal contact with rotor discs 36 and stator discs 38, respectively, beam keys 40 and/or splines 44 may be made of thermally stable materials including, e.g., those materials discussed above with respect to rotor discs 36 and stator discs 38. Accordingly, in some examples, example techniques of the disclosure may be used to form a beam key and/or spline for wheel assembly 10.
The example assembly 10 shown in
Carbon-carbon composite substrate 50 may be formed using any suitable technique. For example, substrate 50 may be formed by densifying a carbon fiber preform including layers of fabric sheets formed of woven or nonwoven carbon fiber. Densification of the carbon fiber preform may include infiltrating the preform with liquid pitch using vacuum pressure infiltration (VPI) and/or resin transfer molding (RTM) followed by carbonization of the pitch to achieve a C—C composite material exhibiting a desired final density. Additionally or alternatively, chemical vapor infiltration (CVI) or chemical vapor deposition (CVD) may be used to densify the fabric preform. In some examples, densified carbon-carbon composite substrate 52 exhibits a density greater than or equal to approximately 1.7 grams per cubic centimeter (g/cc), such as, e.g., between approximately 1.75 g/cc and approximately 1.90 g/cc.
In some examples of CVD/CVI, the carbonized preform is heated in a retort under the cover of inert gas, such as at a pressure below 100 torr. When the carbonized preform reaches a temperature between about 900 degrees Celsius and about 1200 degrees Celsius, the inert gas is replaced with a carbon-bearing gas such as natural gas, methane, ethane, propane, butane, propylene, or acetylene, or a combination of at least two of these gases. When the carbon-bearing gas flows around and through the carbonized preform, a complex set of dehydrogenation, condensation, and polymerization reactions occur, thereby depositing the carbon atoms within the interior and onto the surface of the carbonized preform. Over time, as more and more of the carbon atoms are deposited onto the surfaces of pores in the carbonized preform, the carbonized preform becomes denser. This process may be referred to as densification, because the open spaces in the carbonized preform are eventually filled with a carbon matrix until generally solid carbon parts are formed. U.S. Patent Application Publication No. 2006/0046059 (Arico et al.), the entire disclosure of which is incorporated herein by reference, provides an overview of example CVD/CVI processing that can be used with the techniques described herein. Although other processing techniques can also be used in other examples to densify substrate 52.
Disc 50 also includes antioxidant coating 58 (not shown in
Any suitable antioxidant material may be used to form the individual layers that combine to form antioxidant coating 58. For example, phosphorus based antioxidation compounds may be applied in a liquid form via a print head of a 3D printing system. Examples of such compounds may be based on phosphoric acid with addition of various metal phosphates, such as, e.g., aluminum phosphate, potassium phosphate, and the like. In some examples, these liquid antioxidation materials may be calcined substantially immediately after application by the print head, e.g., using a high powered spatially concentrated laser beam or another noncontact spatially concentrated heating technique. This process and antioxidant coating may form a penetrant type antioxidant coating 58, e.g., in that the liquid penetrates into the porosity of substrate 52 rather than on the outer surface of substrate 52 as with, e.g., an antioxidant barrier type coating. A penetrant type antioxidant coating deposited via a print head of a 3D device may be considered as defining an antioxidant layer on a surface region of substrate 52. In some examples, antioxidant coating 58 may be formed by depositing a penetrate liquid, allowing the liquid to penetrate the pores of substrate 52, e.g., via capillary action, and then calcined, via a laser or other suitable heating technique. The overall barrier coating 58 may be formed by a single depositing, penetration, and calcination cycle or may be formed from multiple antioxidant layers, e.g., deposited by repeating such a process.
In another example, a liquid containing a mixture of ceramic precursors, such as, e.g., silicon and carbon black, may be deposited by the print head and locally heat treated substantially immediately after deposition, e.g., using a high powered spatially concentrated laser beam or another noncontact spatially concentrated heating technique, to convert silicon and carbon black to silicon carbide. This process may result in a barrier type antioxidation coating, e.g., in that coating 58 is formed on the outer surface of substrate 52 rather than by penetrating into the pores of substrate 52. Again, the overall antioxidant coating 58 may be formed of an individual layer of antioxidant material deposited via the print head and then cured, or by a plurality of individual antioxidant coating over the surface of substrate 52 formed on a layer by layer basis, which may or may not include curing in between the deposition of sequential layers.
As shown, system 60 includes antioxidant material 62 that is fed in liquid form to moveable print head 68, which may take the form of an inkjet print head. Print head 68 may include one or more apertures through which the antioxidant liquid is forced out of during the 3D printing process (e.g., by applying a high pressure). The antioxidant material may be deposited out of print head 68 as a substantially continuous or discontinuous stream on a substantially continuous or discontinuous basis.
The antioxidant material flowing out of printer head 68 may be directed towards work surface 66, where composite substrate 52 may be secured during the deposition process. Antioxidant material 62 flowing out of print head 52 may be directed to a desired position on the surface of substrate 52 to form a layer of antioxidant material from the deposited antioxidant material. The antioxidant material may be deposited directly on the surface of substrate 12 or may be deposited indirectly on the surface, e.g., on a previously formed layer of antioxidant material on the surface of substrate 12. The deposited antioxidant material may be calcined or heat cured (depending on the type of antioxidant material 62) to form a solid layer of composite material, and the process may be repeated by adjusting the position of print head 68 in three-dimensions above work surface 66, which may support substrate 52 throughout the 3D printing process.
In the example illustrated in
In some examples, controller 70 may control the formation of the individual layers of antioxidant material such that combination of all the individual layers forms an antioxidant coating that exhibits a desirable three-dimensional geometry and/or covers the desired surface regions (e.g., non-friction surface regions) of substrate 52. In some examples, stepper motors, servo motors, or other suitable devices may be employed to move print head 68 and adjust the flow of antioxidant material 62 out of print head 68.
Additionally, controller 70 may control one or more other parameters of the additive deposition process. Example parameters that may be controlled during the 3D printing process, e.g., via controller 70, may include the location of the deposited liquid on substrate 52, liquid antioxidant material 62 and substrate temperature at the time of deposition, the amount of deposited liquid antioxidant 62, speed of print head 68 motion in 3D, the location on substrate 52 at which a laser or similar heating device heats the antioxidant material 62, and/or temperature of antioxidant material 62 heated by laser or other heating device. In the case of a penetrant type coating, for example, controller 70 may control the metering of antioxidant material 62 so that the proper amount of antioxidant to be absorbed by the porosity is delivered. For example, smaller amounts of antioxidant 62 may be deposited and drawn in by capillary action and cured. In some examples, additional antioxidant 62 may then be deposited over substantially the same surface region (e.g., identical surface area or nearly identical surface area), drawn into the porosity, and cured. A similar process may be used to form a barrier type coating but without substantial penetration of antioxidant 62 into the porosity, e.g., based on the type of antioxidant material 62 employed.
In some examples, controller 70 may include a microprocessor or multiple microprocessors capable of executing and/or outputting command signals in response to received and/or stored data. Controller 70 may include one or more processors, including one or more microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components. The term “processor” or “processing circuitry” may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, or any other equivalent circuitry. Controller 70 may include computer-readable storage, such as read-only memories (ROM), random-access memories (RAM), and/or flash memories, or any other components for running an application and processing data for controlling operations associated with system 60. Thus, in some examples, controller 70 may include instructions and/or data stored as hardware, software, and/or firmware within the one or more memories, storage devices, and/or microprocessors. In some examples, controller 70 may control print head 68 using a computer-aided manufacturing (CAM) software package running on a microcontroller. Controller 60 may include multiple controllers or only a single controller.
For ease of illustration, the examples of
As described herein, each individual layer of antioxidant material defining antioxidant coating 58, including first layer 88 and second layer 90, may be formed by depositing antioxidant material via a print head of a 3D printing system, such as, e.g., print head 68 of 3D printing system 60. In the example shown in
As another configuration, in
First layer 88, second layer 90, and any additional individual layers of antioxidant material deposited via a print head of a 3D printing device (e.g., print head 68 of device 60) on substrate 52 may combine to form antioxidant coating 58 on non-friction surface with any desirable 3D geometry. In general, antioxidant coating 58 may be formed in a manner that protects non-friction surface 54 from oxidation (e.g., during high temperature operation of component 50). Although
Antioxidant coating 58 may have any desired thickness, as defined by the plurality of individual layers of antioxidant material deposited via print head 86, on non-friction surface 54. For example, in the example of
Additionally, the thickness of antioxidant coating 58 may be defined by any suitable number of individual layers of antioxidant material deposited via 3D print head 68. For example, as shown in
Although non-friction surface 54 is shown in
Of course, as described above, not all types of antioxidant coatings form layers of measurable thickness on the outer surface 58 of substrate. For example, penetrant type coatings, e.g., phosphorus based coatings, may be formed that penetrate a relatively considerable depth into the porosity of substrate 52 and end up chemically bound to the carbon molecules. Thus, while such a coating may include one or a plurality of individual layers, the individual layers and overall antioxidant coating 58 may not exhibit a thickness extending above the outer surface of substrate 52.
As shown, print head 68 deposits antioxidant material 62 on a first portion of non-friction surface 54 to define first layer of antioxidant material 88 on substrate 52 (82). Controller 70 may control the position of print head 68, flow rate of the antioxidant material and/or other desired parameter throughout the process, e.g., to provide for a desired layer geometry and/or position over surface region of substrate 52. Controller 70 may control print head 68 to deposit antioxidant material 62 on a substantially continuous or discontinuous basis.
While or after the antioxidant material of first layer 88 has been heat cured, calcined or otherwise solidified, print head 68 may deposit antioxidant material 62 on a portion of non-friction surface 54 to define second layer of antioxidant material 90 on substrate 52 (84). Again, controller 70 may control the position of print head 68, flow rate, and/or other desired parameter of the antioxidant material throughout the process to provide for a desired layer of antioxidant material on substrate 52, and may control print head 68 to deposit the antioxidant material on a substantially continuous or discontinuous basis. Such a process may continue until a plurality of individual layers of antioxidant material are formed such that the combination of individual layers defines antioxidant coating 58 having the desired configuration (e.g., geometry and/or shape) as desired on non-friction surface 54 of substrate 52 (86). For example, in the case of a penetrant type antioxidant coating 58, coating 58 may substantially completely cover the carbon surface of substrate 52 to a certain penetration depth and then chemically bind with the carbon while a barrier type of antioxidant coating 58 form a substantially continuous layer over surface of substrate 52 with substantially no cracks (e.g., no cracks or nearly no cracks, such that the structural integrity of substrate 52 is maintained). These properties may be controlled by proper formulation of the antioxidant system and by tuning the 3D printing parameters to each type of antioxidant system.
In some cases, it may be beneficial to vary the composition of the antioxidant material during application. For example, a first layer (or the first several layers) may be a penetrant type antioxidant material, followed by a layer or multiple layers of barrier type antioxidant material for relatively high protection. Or, alternatively, several layers of barrier type AO may be deposited, followed by several layers of penetrant type to seal any potential cracks in the barrier coat.
In some examples, antioxidant coating 58 may undergo post application heat treatment. Such application may be done in a furnace after the antioxidant coating is formed is through 3D printing or it could be done in-situ immediately after the liquid antioxidant is deposited by the printing head.
Examples of different techniques for forming antioxidant coatings on, e.g., carbon-carbon composite materials have been described. In different examples, techniques of the disclosure may be implemented in different hardware, software, firmware or any combination thereof. In some examples, techniques of the disclosure may be implemented within one or more processors, including one or more microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components. In some examples, techniques of the disclosure may also be embodied or encoded in a computer-readable medium, such as a computer-readable storage medium, containing instructions. Instructions embedded or encoded in a computer-readable storage medium may cause a programmable processor, or other processor, to perform the method, e.g., when the instructions are executed. Computer readable storage media may include random access memory (RAM), read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electronically erasable programmable read only memory (EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, a cassette, magnetic media, optical media, or other computer readable media.
Various examples have been described. These and other examples are within the scope of the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/161,109, by Rowe et al., and filed May 13, 2015, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3028284 | Reeves | Apr 1962 | A |
3596314 | Krugler | Aug 1971 | A |
3703255 | Wade | Nov 1972 | A |
3975128 | Schluter | Aug 1976 | A |
3982877 | Wyeth et al. | Sep 1976 | A |
4264556 | Kumar et al. | Apr 1981 | A |
4428906 | Rozmus | Jan 1984 | A |
4756680 | Ishii | Jul 1988 | A |
4837073 | McAllister et al. | Jun 1989 | A |
4957585 | Semff | Sep 1990 | A |
5009823 | Kromrey | Apr 1991 | A |
5137663 | Conaway | Aug 1992 | A |
5137755 | Fujikawa et al. | Aug 1992 | A |
5147588 | Okura et al. | Sep 1992 | A |
5178705 | Kimbara et al. | Jan 1993 | A |
5187001 | Brew | Feb 1993 | A |
5242746 | Bommier et al. | Sep 1993 | A |
5283109 | Kaplan et al. | Feb 1994 | A |
5306448 | Kromrey | Apr 1994 | A |
5382392 | Prevorsek et al. | Jan 1995 | A |
5516271 | Swenor et al. | May 1996 | A |
5518385 | Graff | May 1996 | A |
5576358 | Lem et al. | Nov 1996 | A |
5686144 | Thebault et al. | Nov 1997 | A |
5728345 | Hlavaty et al. | Mar 1998 | A |
5759622 | Stover | Jun 1998 | A |
5962135 | Walker et al. | Oct 1999 | A |
6054082 | Heide et al. | Apr 2000 | A |
6093482 | Park et al. | Jul 2000 | A |
6110268 | Gross et al. | Aug 2000 | A |
6214279 | Yang et al. | Apr 2001 | B1 |
6221475 | Domergue et al. | Apr 2001 | B1 |
6245424 | Lau et al. | Jun 2001 | B1 |
6261486 | Sulzbach et al. | Jul 2001 | B1 |
6267920 | Arakawa et al. | Jul 2001 | B1 |
6305925 | Cassani | Oct 2001 | B1 |
6325608 | Shivakumar et al. | Dec 2001 | B1 |
6358565 | Krenkel et al. | Mar 2002 | B1 |
6372166 | Cassani | Apr 2002 | B1 |
6455159 | Walker et al. | Sep 2002 | B1 |
6471800 | Jang et al. | Oct 2002 | B2 |
6508970 | Chandra | Jan 2003 | B2 |
6521152 | Wood et al. | Feb 2003 | B1 |
6537470 | Wood et al. | Mar 2003 | B1 |
6555173 | Forsythe et al. | Apr 2003 | B1 |
6578474 | Sasaki | Jun 2003 | B1 |
6726753 | Kouchouthakis et al. | Apr 2004 | B2 |
6749937 | Gray | Jun 2004 | B2 |
6756121 | Forsythe et al. | Jun 2004 | B2 |
6884467 | Walker et al. | Apr 2005 | B2 |
6886668 | Kouchouthakis et al. | May 2005 | B2 |
6896968 | Golecki | May 2005 | B2 |
6939490 | La Forest et al. | Sep 2005 | B2 |
7025913 | La Forest et al. | Apr 2006 | B2 |
7052632 | Lavasserie et al. | May 2006 | B2 |
7063870 | La Forest et al. | Jun 2006 | B2 |
7118805 | Walker et al. | Oct 2006 | B2 |
7141207 | Jandeska, Jr. et al. | Nov 2006 | B2 |
7172408 | Wood et al. | Feb 2007 | B2 |
7198739 | La Forest et al. | Apr 2007 | B2 |
7252499 | La Forest et al. | Aug 2007 | B2 |
7258896 | Deckard et al. | Aug 2007 | B2 |
7318717 | Wood et al. | Jan 2008 | B2 |
7332112 | Shivakumar et al. | Feb 2008 | B1 |
7332195 | Arico et al. | Feb 2008 | B2 |
7370738 | Vollweiter | May 2008 | B2 |
7393370 | Peterman, Jr. et al. | Jul 2008 | B2 |
7423072 | Lee et al. | Sep 2008 | B2 |
7442024 | La Forest et al. | Oct 2008 | B2 |
7556490 | Wicker et al. | Jul 2009 | B2 |
7589868 | Velde et al. | Sep 2009 | B2 |
7632435 | Simpson et al. | Dec 2009 | B2 |
7681627 | Schmitz et al. | Mar 2010 | B2 |
7698817 | Khambete et al. | Apr 2010 | B2 |
7700014 | Simpson et al. | Apr 2010 | B2 |
7727448 | Boutefeu et al. | Jun 2010 | B2 |
7867566 | Blanton et al. | Jan 2011 | B2 |
7972129 | O'Donoghue | Jul 2011 | B2 |
8002919 | Johnson et al. | Aug 2011 | B2 |
8492466 | Abe et al. | Jul 2013 | B2 |
8501033 | Southwell et al. | Aug 2013 | B2 |
8592519 | Martinoni | Nov 2013 | B2 |
8597772 | La Forest et al. | Dec 2013 | B2 |
8742014 | Hongo | Jun 2014 | B2 |
20010019798 | Kajiura et al. | Sep 2001 | A1 |
20010030094 | Pareti | Oct 2001 | A1 |
20020022570 | Reynolds, III et al. | Feb 2002 | A1 |
20020047227 | Matsumoto | Apr 2002 | A1 |
20030003286 | Gruber et al. | Jan 2003 | A1 |
20030021901 | Gasse | Jan 2003 | A1 |
20030030188 | Spengler | Feb 2003 | A1 |
20030111752 | Wood et al. | Jun 2003 | A1 |
20030143436 | Forsythe et al. | Jul 2003 | A1 |
20030214064 | Shin et al. | Nov 2003 | A1 |
20040020728 | Koucouthakis et al. | Feb 2004 | A1 |
20040113302 | La Forest et al. | Jun 2004 | A1 |
20040168612 | Saver | Sep 2004 | A1 |
20040202896 | Gray | Oct 2004 | A1 |
20040219510 | Lowery et al. | Nov 2004 | A1 |
20060046059 | Arico et al. | Mar 2006 | A1 |
20060069176 | Bowman et al. | Mar 2006 | A1 |
20060127599 | Wojak | Jun 2006 | A1 |
20060197244 | Simpson et al. | Sep 2006 | A1 |
20060232392 | Emmett et al. | Oct 2006 | A1 |
20060267252 | Steinmann et al. | Nov 2006 | A1 |
20060279012 | Simpson et al. | Dec 2006 | A1 |
20070063378 | O'Donoghue | Mar 2007 | A1 |
20070132126 | Shao et al. | Jun 2007 | A1 |
20070154712 | Mazany et al. | Jul 2007 | A1 |
20070218208 | Walker et al. | Sep 2007 | A1 |
20080318010 | Wozniak et al. | Dec 2008 | A1 |
20090145314 | Botrie | Jun 2009 | A1 |
20090169825 | Farmer et al. | Jul 2009 | A1 |
20090176034 | Ruuttu et al. | Jul 2009 | A1 |
20090229926 | Schaefer | Sep 2009 | A1 |
20090298962 | Studer et al. | Dec 2009 | A1 |
20090321979 | Hiraide | Dec 2009 | A1 |
20100000070 | La Forest et al. | Jan 2010 | A1 |
20110030940 | Takeda | Feb 2011 | A1 |
20120082559 | Guglielmin | Apr 2012 | A1 |
20120104659 | La Forest et al. | May 2012 | A1 |
20120251829 | Xu et al. | Oct 2012 | A1 |
20120304449 | Jackson et al. | Dec 2012 | A1 |
20130157826 | Preckel et al. | Jun 2013 | A1 |
20130174969 | Karb et al. | Jul 2013 | A1 |
20130237636 | Strauss | Sep 2013 | A1 |
20130244039 | Peters et al. | Sep 2013 | A1 |
20130248304 | Lee et al. | Sep 2013 | A1 |
20130284548 | Guether et al. | Oct 2013 | A1 |
20130323473 | Dietsch et al. | Dec 2013 | A1 |
20140134335 | Pridoehl et al. | May 2014 | A1 |
20140194328 | Alessi | Jul 2014 | A1 |
20140298728 | Keshavan | Oct 2014 | A1 |
20140356612 | Sano et al. | Dec 2014 | A1 |
20140361460 | Mark | Dec 2014 | A1 |
20150018136 | Goldstein et al. | Jan 2015 | A1 |
20150093506 | Bucci et al. | Apr 2015 | A1 |
20150321187 | Dias et al. | Nov 2015 | A1 |
20160046803 | Boday et al. | Feb 2016 | A1 |
20160082695 | Swartz et al. | Mar 2016 | A1 |
20160151982 | Sand | Jun 2016 | A1 |
20160346997 | Lewis et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
101511569 | Aug 2009 | CN |
103939509 | Jul 2014 | CN |
104451606 | Mar 2015 | CN |
104496508 | Apr 2015 | CN |
102007057450 | Jun 2009 | DE |
102014006432 | Nov 2015 | DE |
1165191 | Jan 2002 | EP |
1724245 | Nov 2006 | EP |
1731292 | Dec 2006 | EP |
2295227 | Mar 2011 | EP |
2450170 | Sep 2012 | EP |
3095593 | Nov 2016 | EP |
2386951 | Jan 2003 | GB |
2470098 | Nov 2010 | GB |
2013088196 | May 2013 | JP |
5352893 | Nov 2013 | JP |
9908980 | Feb 1999 | WO |
0054852 | Sep 2000 | WO |
2004050319 | Jun 2004 | WO |
2004052629 | Jun 2004 | WO |
2004106766 | Dec 2004 | WO |
2006033373 | Mar 2006 | WO |
2006086167 | Aug 2006 | WO |
2013126981 | Sep 2013 | WO |
2014035382 | Mar 2014 | WO |
2014060430 | Apr 2014 | WO |
2014134224 | Sep 2014 | WO |
2014153535 | Sep 2014 | WO |
2014174540 | Oct 2014 | WO |
2014175625 | Oct 2014 | WO |
2015006697 | Jan 2015 | WO |
2015038260 | Mar 2015 | WO |
2015053658 | Apr 2015 | WO |
Entry |
---|
Examination Report from counterpart European Application No. 16167174.8, dated Mar. 23, 2018, 6 pp. |
Response to Extended Search Report dated Sep. 29, 2016, from counterpart European Application No. 16167174.8, filed Jan. 13, 2017, 10 pp. |
Extended Search Report from counterpart European Application No. 16167174.8-1371, dated Sep. 29, 2016, 9 pp. |
Senese, “MarkForged Lets you 3D Print with Carbon Fiber and Kevlar on a Budget,” Makezine, retrieved from URL: http: //makez ine.com/ 2015/01/ 15/3d-printed-carbon-fiber-markforged and accessed Nov. 11, 2016, Jan. 15, 2015, 6 pp. |
A. Fatz, et al., “Manufacture of Functionally Gradient Carbon-Carbon Composites,” Proceedings of the 17 th Technical Conference of the American Society of Composites, Oct. 21-23, 2002, Purdue University, West Lafayette, Ind., 9 pp. |
Tekinalp et al., “Highly oriented carbon fiber-polymer composites via additive manufacturing,” Composites Science and Technology, ElSevier, Oct. 9, 2014, 7 pp. |
“Application of nanoparticles could improve ALM components,” technical trends ALM, MPR, Elsevier Ltd., Nov.-Dec. 2012, 3 pp. |
“Arevo Labs introduces carbon fiber reinforced polymers to 3D print ultra-strong parts,” 3D printer and 3D printing news, www.3ders.org, Mar. 24, 2014, 9 pp. |
“Carbon-fiber filled Nylon—A Material Alternative,” Northwest Rapid Manufacturing, Jun. 25, 2012, 3 pp. |
“Mark One, the world's first carbon fiber 3D printer now available for pre-order,” 3D printer and 3D printing news, www.3ders.org, Feb. 18, 2014, 11 pp. |
Black, “3D Printing continuous carbon fiber composites?,” Composites World, Gardner Business Media, Inc., May 1, 2014, 8 pp. |
Crandall, “Where Will Additive Manufacturing Take Us?,” APICS Magazine, Jan./Feb. 2013, 3 pp. |
Divyashree et al., “Design, Implement and Develop CNT-Metal Composite PCB Wiring Using a Metal 3D Printer,” International Journal of Scientific & Engineering Research, vol. 5, No. 5, May 2014, 5 pp. |
Krassenstein, “3DXTech's Carbon Nanotube 3D Printer Filament is Here: Exclusive images and details,” 3DXTECH, May 13, 2014, 2 pp. |
Thryft, “3D Printing High-Strength Carbon Composites Using PEEK, PAEK,” Design News, Engineering Materials, Apr. 14, 2014, 5 pp. |
Vie et al., “Inkjet printing of 200 nm monodisperse carbon nanoparaticles: from nanoparticles synthesis to smart ink formulation,” NSTI—Nanotech, vol. 2, May 2013, pp. 243-246. |
U.S. Appl. No. 14/711,508, by Honeywell International Inc. (Inventors: Slawomir T. Fryska et al.), filed May 13, 2015. |
U.S. Appl. No. 14/711,550, by Honeywell International Inc. (Inventors: Slawomir T. Fryska et al.), filed May 13, 2015. |
U.S. Appl. No. 14/711,590, by Honeywell International Inc. (Inventors: Jeffrey Troester et al.), filed May 13, 2015. |
U.S. Appl. No. 14/788,217, by Honeywell International Inc. (Inventors: Mark L. La Forest et al.), filed Jun. 30, 2015. |
U.S. Appl. No. 14/854,993, by Honeywell International Inc. (Inventors: Mark L. La Forest et al.), filed Sep. 15, 2015. |
U.S. Appl. No. 14/954,783, by Honeywell International Inc. (Inventors: Mark L. La Forest et al.), filed Nov. 30, 2015. |
U.S. Appl. No. 14/711,426, by Honeywell International Inc. (Inventors: Jeffrey Troester et al.), filed May 13, 2015. |
Windhorst et al., “Carbon-carbon composites: a summary of recent developments and applications,” Materials and Design, vol. 18, Issue 1, 1997, 5 pp. (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication,1997, is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Response to Extended Search Report dated Mar. 23, 2018, from counterpart European Application No. 16167174.8, filed Jul. 11, 2018, 12 pp. |
Callister, “Chapter 16: Composites,” Mateirals Science and Engineering, John Wiley & Sons, Inc., Seventh Edition, Chapter 16: pp. 577-620, 2007, (Applicant points out, in accordance with MPEP 609.04(a), that the year of publication, 2007, is sufficiently earlier than the effective U.S. filing date, so that the particular month of publication is not in issue.). |
Number | Date | Country | |
---|---|---|---|
20160333955 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62161109 | May 2015 | US |