It is important for support members in support structures, such as x-ray window support structures, to be strong but also small in size. Support structures in x-ray windows can support a film. X-ray windows can be used for enclosing an x-ray source or detection device. X-ray windows can be used to separate a pressure differential, such as ambient air pressure on one side of the window and a vacuum on an opposing side, while allowing passage of x-rays through the window.
X-ray windows can include a thin film supported by the support structure, typically comprised of ribs supported by a frame. The support structure can be used to minimize sagging or breaking of the thin film. The support structure can interfere with the passage of x-rays and thus it can be desirable for ribs to be as thin or narrow as possible while still maintaining sufficient strength to support the thin film. The support structure and film are normally expected to be strong enough to withstand a differential pressure of around 1 atmosphere without sagging or breaking.
Materials comprising Silicon have been use as support structures. A wafer of such material can be etched to form the support structure.
Information relevant to x-ray windows can be found in U.S. Pat. Nos. 4,933,557, 7,737,424, 7,709,820, 7,756,251 and U.S. patent application Ser. Nos. 11/756,962, 12/783,707, 12/899,750, 13/018,667, 61/408,472 61/445,878, 61/408,472 all incorporated herein by reference. Information relevant to x-ray windows can also be found in “Trial use of carbon-fiber-reinforced plastic as a non-Bragg window material of x-ray transmission” by Nakajima et al., Rev. Sci. Instrum 60(7), pp. 2432-2435, July 1989.
It has been recognized that it would be advantageous to provide a support structure that is strong. For x-ray windows, it has been recognized that it would be advantageous to provide a support structure that minimizes attenuation of x-rays. The present invention is directed to support structures, and methods of making support structures, that satisfy these needs.
In one embodiment, the apparatus comprises a support frame defining a perimeter and an aperture and a plurality of ribs comprising a carbon composite material extending across the aperture of the support frame and carried by the support frame. Openings exist between the plurality of ribs. A film can be disposed over, carried by, and span the plurality of ribs and can be disposed over and span the openings. The film can be configured to pass radiation therethrough.
In another embodiment, a method of making a carbon composite support structure comprises pressing at least one sheet of carbon composite between non-stick surfaces of pressure plates and heating the sheet(s) to at least 50° C. to cure the sheet(s) into a carbon composite wafer. Each sheet can have a thickness of between 20 to 350 micrometers (μm). The wafer can then be removed and a plurality of openings can be laser cut in the wafer, forming ribs.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
As illustrated in
The carbon composite material can comprise carbon fibers embedded in a matrix. The carbon fibers can comprise a carbon mass fraction of at least 85% in one embodiment, at least 88% in another embodiment, at least 92% in another embodiment, or 100% in another embodiment. The carbon fibers can comprise carbon atoms connected to other carbon atoms by sp2 bonding. The carbon fibers can have a diameter of at least 1 micrometer in one embodiment, at least 3 micrometers in another embodiment, or at least 5 micrometers in another embodiment. Most, substantially all, or all of the carbon fibers can have a length of at least 1 micrometer in one embodiment, at least 10 micrometers in another embodiment, at least 100 micrometers in another embodiment, at least 1 millimeter in another embodiment, or at least 5 millimeters in another embodiment. Most, at least 80%, substantially all, or all of the carbon fibers can be aligned with a rib. Most, at least 80%, substantially all, or all of the carbon fibers can have a length that is at least half the length of the rib with which it is aligned in one embodiment, or at least as long as the rib with which it is aligned in another embodiment. The carbon fibers can be substantially straight.
In one embodiment, such as if the support structure is used as an x-ray window, a film 13 can be disposed over, carried by, and span the plurality of ribs 11 and can be disposed over and span the openings 14. The film 13 can be configured to pass radiation therethrough. For example, the film 13 can be made of a material that has a low atomic number and can be thin, such as for example about 5 to 500 micrometers (μm). The film 13 can have sufficient strength to allow differential pressure of at least one atmosphere without breaking. The film 13 can be hermetic or air-tight. The film 13 can combine with one of the support structures described herein and a shell to form a hermetic enclosure.
The film 13 can comprise highly ordered pyrolytic graphite, silicon nitride, polymer, polyimide, beryllium, carbon nanotubes, carbon nanotubes embedded in a polymer, diamond, diamond-like carbon, graphene, graphene embedded in a polymer, boron hydride, aluminum, or combinations of these various materials. The film 13 can include a stack of layers, and different layers in the stack can comprise different materials.
In one embodiment, the film 13 comprises a plurality of layers stacked together, including an aluminum layer disposed over a thin film layer comprising a material selected from the group consisting of highly ordered pyrolytic graphite, silicon nitride, polymer, polyimide, beryllium, carbon nanotubes, carbon nanotubes embedded in a polymer, diamond, diamond-like carbon, graphene, graphene embedded in a polymer, boron hydride, and combinations thereof. Aluminum can be a gas barrier in order to provide a hermetic film. Aluminum can be used to prevent visible light from passing through the window. In one embodiment, the aluminum layer can have a thickness of between 10 to 60 nanometers.
The film 13 can include a protective layer over the aluminum layer. The protective layer can provide corrosion protection for the aluminum. The protective layer can comprise amino phosphonate, silicon nitride, silicon dioxide, borophosphosilicate glass, fluorinated hydrocarbon, polymer, bismaleimide, silane, fluorine, or combinations thereof. The protective layer can be applied by chemical vapor deposition, atomic layer deposition, sputter, immersion, or spray. A polymer protective layer can comprise polyimide. Use of amino phosphonate as a protective layer is described in U.S. Pat. No. 6,785,050, incorporated herein by reference.
In some applications, such as analysis of x-ray fluorescence, it can be desirable for the film 13 to comprise elements having low atomic numbers such as hydrogen (1), beryllium (4), boron (5), and carbon (6). The following materials consist of, or include a large percent of, the low atomic number elements hydrogen, beryllium, boron, and carbon: highly ordered pyrolytic graphite, polymer, beryllium, carbon nanotubes, carbon nanotubes embedded in a polymer, diamond, diamond-like carbon, graphene, graphene embedded in a polymer, and boron hydride.
In one embodiment, the support frame 12 comprises a carbon composite material. The support frame 12 and the plurality of ribs 11 can be integrally formed together from at least one layer of carbon composite material. As shown in
As shown in
in another embodiment, a thickness t3 of the support frame 12 can be at least 20% thicker than a thickness t2 of the ribs
In another embodiment, a thickness t3 of the support frame 12 can be at least 50% thicker than a thickness t2 of the ribs
For simplicity of manufacture, it can be desirable to form the ribs 11 and the support frame 12 in a single step from a single wafer of carbon composite, as shown in
In one embodiment, the ribs 11 and/or support frame 12 can have a thickness t of between 20 to 350 micrometers (μm) and/or a width of between 20 to 100 micrometers (μm). In another embodiment, the ribs 11 and/or support frame 12 can have a thickness t of between 10 to 300 micrometers (μm) and/or a width w of between 10-200 micrometers (μm). In one embodiment, a spacing S between adjacent ribs 11 can be between 100 to 700 micrometers (μm). In another embodiment, a spacing S between adjacent ribs can be between 700 micrometers (μm) and 1 millimeter (mm). In another embodiment, a spacing S between adjacent ribs can be between 1 millimeter and 10 millimeters. A larger spacing S allows x-rays to more easily pass through the window but also provides less support for the film 13. A smaller spacing S may result in increased, undesirable attenuation of x-rays but also provides greater support for the film 13.
Use of carbon composite material, which can have high strength, in a support structure, can allow a high percentage of open area within the support frame 12 and/or reduce the overall height of ribs 11, both of which are desirable characteristics because both increase the ability of the window to pass radiation. The openings 14 can occupy more area within the perimeter P of the support frame 12 than the plurality of ribs 11 in one embodiment. In various embodiments, the openings 14 can occupy greater than 70%, greater than 90%, between 70% to 90%, between 85% to 95%, between 90% to 99%, or between 99% to 99.9% of the area within the perimeter P of the support frame 12 than the plurality of ribs 11.
Embodiments with openings occupying a very large percent of the area within the perimeter P of the support frame 12 may be used in an application in which a strong film is used and only needs minimal support. Such embodiments may also be used in an application in which at least one additional support structure, such as an additional polymer support structure, is disposed between the carbon composite support structure and the film 13.
As shown in
In various figures and embodiments, the carbon fibers 31 in the carbon composite material can be directionally aligned with a longitudinal axis of the plurality of ribs 11. In one embodiment, all of the carbon fibers 31 can be directionally aligned with a longitudinal axis of the plurality of ribs 11. In another embodiment, substantially all of the carbon fibers 31 can be directionally aligned with a longitudinal axis of the plurality of ribs 11. In another embodiment, at least 80% of the carbon fibers 31 can be directionally aligned with a longitudinal axis of the plurality of ribs 11. In another embodiment, at least 60% of the carbon fibers 31 can be directionally aligned with a longitudinal axis of the plurality of ribs 11.
The carbon fibers 31 can comprise solid structures having a length that is at least 5 times greater than a diameter of the carbon fibers in one embodiment, a length that is at least 10 times greater than a diameter of the carbon fibers in another embodiment, a length that is at least 100 times greater than a diameter of the carbon fibers in another embodiment, or a length that is at least 1000 times greater than a diameter of the carbon fibers in another embodiment.
In one embodiment, carbon composite material in a support structure can comprise a stack of at least two carbon composite sheets. Carbon fibers 31 in at least one sheet in the stack can be directionally aligned in a different direction from carbon fibers 31 in at least one other sheet in the stack. For example, support structure 50 shown in
In one embodiment, an angle between sheets having carbon fibers 31 aligned in different directions is at least ten degrees (|A2−A1|>10 degrees). In another embodiment, an angle between sheets having carbon fibers 31 aligned in different directions is at least thirty degrees (|A2−A1|>30 degrees). In another embodiment, an angle between sheets having carbon fibers 31 aligned in different directions is at least forty five degrees (|A2−A1|>45 degrees). In another embodiment, an angle between sheets having carbon fibers 31 aligned in different directions is at least sixty degrees (|A2−A1|>60 degrees).
In another embodiment, carbon fibers in the carbon composite material can be randomly aligned. For example, an initial sheet with randomly aligned carbon fibers may be used. Alternatively, many sheets can be stacked and randomly aligned. The sheets can be pressed together and cut to form the desired support structure.
As shown in
In one embodiment, the plurality of ribs have at least two different cross-sectional sizes including at least one larger sized rib with a cross-sectional area that is at least 5% larger than a cross-sectional area of at least one smaller sized rib. In another embodiment, a difference in cross-sectional area between different ribs can be at least 10%. In another embodiment, a difference in cross-sectional area between different ribs can be at least 20%. In another embodiment, a difference in cross-sectional area between different ribs can be at least 50%. Different rib cross-sectional sizes is described in U.S. patent application Ser. No. 13/312,531, filed on Dec. 6, 2011, which claims priority to provisional U.S. Patent Application No. 61/445,878, filed on Feb. 23, 2011, both incorporated herein by reference.
As shown in
As shown in
Shown in
Shown in
Choice of arrangement of ribs, whether all in parallel, in hexagonal shape, in triangular shape, or other shape, can be made depending on needed strength, distance the ribs must span, type of film supported by the ribs, and manufacturability.
As shown in
Shown in
A secondary support structure 128 can be stacked on top of the primary support structure 127, and thus between the primary support structure 127 and the film 13, as shown in
The secondary support structure 128 can comprise a secondary support frame 122 defining a perimeter P and an aperture 125 and a plurality of secondary ribs 121 extending across the aperture 125. The secondary ribs 121 can be carried by the secondary support frame 122. Openings 124 can exist between the secondary ribs 121. The secondary support structure 128 can be disposed at least partly between the first support structure 127 and a film 13 or the secondary support structure 128 can be disposed completely between the first support structure 127 and the film 13. Tops of the secondary ribs 121 can terminate substantially in a single plane 126.
In one embodiment, the secondary support frame 122 and secondary support ribs 121 are integrally formed and can be made of the same material. In another embodiment, the secondary support frame 122 and secondary support ribs 121 are not integrally formed, are separately made then attached together, and can be made of different materials.
In another embodiment, the primary support frame 12 and the secondary support frame 122 are a single support frame and support both the primary ribs 11 and the secondary ribs 121. The primary support frame 12 and the secondary support frame 122 can be integrally formed and can be made of the same material. The primary support frame 12, the primary ribs 11, and the secondary support frame 122 can be integrally formed and can be made of the same material. The secondary ribs 121 can thus be supported by the primary ribs 11, the primary support frame 12, and/or the secondary support frame 122.
In one embodiment, primary ribs 11 comprise the support frame 122 for the secondary ribs 121. For example, a primary support structure 127 can be formed, secondary ribs 121 can be formed, then the secondary ribs 121 can be placed on top of or attached to the primary support structure 127. An adhesive can be sprayed onto the primary or secondary support structure or both and the two support structures can be pressed and adhered together by the adhesive.
In one embodiment, the secondary support structure 128 comprises a polymer. In another embodiment, the secondary support structure comprises photosensitive polyimide. Use of photosensitive polymers for support structures is described in U.S. Pat. No. 5,578,360, incorporated herein by reference.
Shown in
A secondary support structure 158 can be disposed at least partly on top of the primary support structure 157. The secondary support structure 158 can comprise a secondary support frame 152 defining a perimeter P and an aperture 155 and a plurality of secondary ribs 151 extending across the aperture 155. The secondary ribs 151 can be carried by the secondary support frame 158 and/or the primary ribs 11. Openings 154 can exist between the secondary ribs 151. The secondary support structure 158 can be disposed at least partly between the first support structure 157 and a film 13. Tops of the secondary ribs 151 can terminate substantially in a single plane 156.
Some secondary ribs 151b can be disposed between primary ribs 11 or the primary support structure 12 and the film. Other ribs 151a can extend down and be disposed partly between primary ribs 11. This embodiment can be made by first creating a primary support structure 157, then pouring a liquid photosensitive polymer on top of the primary support structure 157. The photosensitive polymer can be patterned and developed to form ribs 151 and to harden the polymer.
Stacked support structures may be useful for spanning large distances. For example, it can be impractical to use a polymer support structure to span large distances. Use of an underlying carbon composite support structure can allow the polymer support structure to span the needed large distance.
Most of the figures herein show circular support frames. Although it may be more convenient to use circular support frames, other support frame shapes may be used with the various embodiments described herein. Shown in
Most of the figures herein show support frames which totally surround and enclose ribs. A support frame with an enclosed perimeter can provide greater strength and support for ribs and thus is a preferred embodiment, however, the various embodiments described herein are not limited to fully enclosed support frames. Shown in
As shown in
As shown in
The thin film 203, the support structure 201, or both can be hermetically sealed to a mount 202, defining a sealed joint 204. The outer layer 205 can extend beyond a perimeter of the thin film layer 203 and can cover the sealed joint 204. The outer layer 205 can provide corrosion protection to the sealed joint.
Shown in
As shown in
Having the ribs 11 between the film 13 and the interior space 232, as shown in
One way of solving the problem of carbon composite material components outgassing into the interior space 232 is to dispose the film 13 between the ribs 11 and the interior space 232. A difficulty of this design is that gas pressure 233 outside of the window 230 and mount 231 can press the film 13 away from the support structure 12 and/or ribs 11. Thus, a stronger bond between the film 13 and the ribs 11 and/or support structure 12 may be needed for the embodiment of
This stronger bond between the film 13 and the ribs 11 and/or support structure 12 can be achieved by use of polyimide or other high strength adhesive. The adhesive may need to be selected to achieve desired temperatures to which the window will be subjected. An adhesive which will not outgas may also need to be selected. The bond between the film 13 and the ribs 11 and/or support structure 12 may be improved by treating the surface of the ribs 11, support structure 12, and/or film 13 prior to joining the surfaces. The surface treatment can include use of a potassium hydroxide solution or an oxygen plasma.
Another method of solving the problem of carbon composite material outgassing into the interior space 232 is to select carbon composite materials that will not outgas, or will have minimal outgassing. A carbon composite material including carbon fibers embedded in a matrix comprising polyimide and/or bismaleimide may be preferable due to low outgassing. Polyimide and bismaleimide are also suitable due to their ability to withstand high temperatures and their structural strength.
As shown on x-ray windows 250 and 260 in
The cross-braces 251 can be laterally off-set with respect to adjacent cross-braces 251 of adjacent openings so that the cross-braces 251 are segmented and discontinuous with respect to one another. For example, in
The cross-braces 251 can be disposed at approximately one third of a distance in a straight line parallel with the ribs from the support frame across the aperture. The cross-braces 251 can be laterally off-set with respect to adjacent cross-braces 251 of adjacent openings so that the cross-braces 251 can be segmented and discontinuous with respect to one another. For example, in
Carbon composite sheets (or a single sheet) can be used to make a carbon composite wafer. Due to the toughness of carbon composite material, it can be difficult to cut the small ribs required for an x-ray window. Ribs can be cut into the wafer, in a desired pattern, by laser mill (also called laser ablation or laser cutting).
The optimal matrix material can be selected based on the application. A carbon composite material including carbon fibers embedded in a matrix comprising polyimide and/or bismaleimide may be preferable due to low outgassing, ability to withstand high temperatures, and high structural strength.
A composite with carbon fibers with sufficient length can be selected to improve structural strength. Carbon fibers that extend across the entire aperture of the window may be preferred for some applications.
Carbon composite sheet(s) can comprise carbon fibers embedded in a matrix. The matrix can comprise a polymer, such as polyimide. The matrix can comprise bismaleimide. The matrix can comprise amorphous carbon or hydrogenated amorphous carbon. The matrix can comprise a ceramic. The ceramic can comprise silicon nitride, boron nitride, boron carbide, or aluminum nitride.
In one embodiment, carbon fibers can comprise 10-40 volumetric percent of the total volume of the carbon composite material and the matrix can comprise the remaining volumetric percent. In another embodiment, carbon fibers can comprise 40-60 volumetric percent of the total volume of the carbon composite material and the matrix can comprise the remaining volumetric percent. In another embodiment, carbon fibers can comprise 60-80 volumetric percent of the total volume of the carbon composite material and the matrix can comprise the remaining volumetric percent. Carbon fibers in the carbon composite can be substantially straight.
A carbon wafer can be formed by pressing, at an elevated temperature, such as in an oven for example, at least one carbon composite sheet between pressure plates. Alternatively, rollers can be used to press the sheets. The pressure plates or rollers can be heated in order to heat the sheets. The sheets can be heated to at least 50° C. A single sheet or multiple sheets may be used. Carbon fibers in the carbon composite sheet(s) can be randomly aligned, can be aligned in a single direction, can be aligned in two different directions, can be aligned in three different directions, or can be aligned in more than three different directions.
A layer of polyimide can be bonded (such as with pressure) to one surface of the carbon composite sheet(s) prior to pressing the sheets. The polyimide layer can be placed between carbon composite sheets, or on an outer face of a stack of carbon composite sheets. The polyimide layer can be cut along with the carbon composite sheet(s) into ribs and can remain as a permanent part of the final support structure. The layer of polyimide film can be between 5 and 20 micrometers thick in one embodiment. One purpose of the polyimide layer is to make one side of the carbon composite sheet(s) smooth and flat, allowing for easier bonding of the x-ray window film. Another purpose is to improve final rib strength. The layer of polyimide can be replaced by another suitable polymer. High temperature resistance and high strength are two desirable characteristics of the polymer.
In one embodiment, carbon fibers of a single sheet, or carbon fibers of all sheets in a stack, are aligned in a single direction. A first group of ribs, or a single rib, can be cut such that a longitudinal axis of the rib(s) is aligned in the direction of the carbon fibers.
In another embodiment, at least two carbon composite sheets are stacked and pressed into the wafer. Carbon fibers of at least one sheet are aligned in a first direction and carbon fibers of at least one other sheet are aligned in a second direction. A first group of ribs, or a single rib, can be cut having a longitudinal axis in the first direction to align with the carbon fibers aligned in the first direction and a second group of ribs, or a single rib, can be cut having a longitudinal axis in the second direction to align with the carbon fibers aligned in the second direction. In one embodiment, an angle between the two different directions is least 10 degrees. In another embodiment, an angle between the two different directions is least 60 degrees. In another embodiment, an angle between the two different directions is about 90 degrees.
In another embodiment, at least three carbon composite sheets are stacked and pressed into the wafer. Carbon fibers of at least one sheet are aligned in a first direction, carbon fibers of at least one sheet are aligned in a second direction, and carbon fibers of at least one sheet are aligned in a third direction. A first group of ribs, or a single rib, can be cut having a longitudinal axis in the first direction to align with the carbon fibers aligned in the first direction, a second group of ribs, or a single rib, can be cut having a longitudinal axis in the second direction to align with the carbon fibers aligned in the second direction, and a third group of ribs, or a single rib, can be cut having a longitudinal axis in the third direction to align with the carbon fibers aligned in the third direction. An angle between any two directions can be about 120 degrees. The structure can form hexagonal-shaped or triangular-shaped openings.
In one embodiment, each carbon composite sheet in a stack can have a thickness of between 20 to 350 micrometers (μm).
The plates used for pressing the carbon composite sheets into a wafer can have non-stick surfaces facing the sheet(s) of carbon composite. The plates can have fluorinated flat silicon surfaces facing the sheets. For example,
Pressure P can be applied to the carbon composite sheet(s) 212 and the carbon composite sheet(s) (and optionally a layer of polymer, such as polyimide) can be heated to a temperature of at least 50° C. to cure the sheet(s) of carbon composite into a carbon composite wafer. Temperature, pressure, and time can be adjusted based on thicknesses of the sheets, the number of sheets, matrix material, and desired final characteristics of the wafer. For example, carbon composite sheets comprising carbon fibers in a polyimide matrix have been made into wafers at pressures of 200-3000 psi, temperatures of 120-200° C., and initial sheet thickness of 180 micrometer (μm).
The wafer can be removed from the press and the wafer can be cut to form ribs and/or support frame. The wafer may be cut by laser milling or laser ablation. A high power laser can use short pulses of laser to ablate the material to form the openings by ultrafast laser ablation. A femtosecond laser may be used. Ablating wafer material in short pulses of high power laser can be used in order to avoid overheating the polymer material in the carbon composite. Alternatively, a non-pulsing laser can be used and the wafer can be cooled by other methods, such as conductive or convective heat removal. The wafer can be cooled by water flow or air across the wafer. The above mentioned cooling methods can also be used with laser pulses, such as a femtosecond laser, if additional cooling is needed.
The ribs, formed by the laser, can be formed of a single original layer of carbon composite material or multiple layers of carbon composite material and can include at least one layer of polyimide. If a polyimide layer is used in the stack, then the ribs can comprise carbon composite and polyimide and thus polyimide ribs will be attached to and aligned with the carbon composite ribs.
As shown in support structure 220 in
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.
Priority is claimed to U.S. Provisional Patent Application Nos. 61/486,547, filed on May 16, 2011; 61/495,616, filed on Jun. 10, 2011; and 61/511,793, filed on Jul. 26, 2011; which are herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61486547 | May 2011 | US | |
61495616 | Jun 2011 | US | |
61511793 | Jul 2011 | US |