The present invention relates to a diesel particulate trap. More specifically, the present invention relates to a method and apparatus for regenerating a diesel particulate trap using microwave radiation.
Increased regulation has reduced the allowable levels of particulates generated by diesel engines. The particulates can generally be characterized as a soot that is captured and reduced by particulate filters or traps. Present particulate filters or traps contain a separation medium with tiny pores that capture particles. As trapped material accumulates in the particulate trap, resistance to flow in the particulate trap increases, generating backpressure. The particulate trap must then be regenerated to burn off the particulates/soot in the particulate trap to eliminate the backpressure and allow air flow through the particulate trap. Past practices of regenerating a particulate trap utilized an energy source such as a burner or electric heater to generate combustion in the particulates. Particulate combustion in a diesel particulate trap by these past practices has been found to be difficult to control and may result in an excessive temperature rise.
The present invention is a method and apparatus for regenerating a particulate trap using microwave energy. The present invention in the preferred embodiment uses concentrated particulate matter ignited by microwave radiation to initiate the burn off of particles/soot in a particulate trap. The particulates are concentrated in desired areas in the particulate trap using structures such as tabs or walls.
The present invention includes a particulate trap placed in the exhaust flow of a diesel engine. A microwave source may be operatively coupled to a wave guide, and a focus ring may be used to direct the microwaves to particulate matter or microwave absorbing materials. The concentrated particulate matter or microwave-absorbing material generates heat in response to incident microwaves to burn off particulates. Materials transparent to microwaves are preferably used for the basic construction of the particulate trap housing and other areas in the particulate trap where it would be inefficient to absorb microwave energy. By strategically locating structures to accumulate particulate matter and/or microwave absorbing materials, microwaves may be used efficiently at the locations they are most needed to initiate the burn off of particulates and heat catalyst materials.
Concentrated particulate deposits generate heat in response to incident microwaves to initiate the burn off of particulates in the particulate trap 10. Materials such as chordierite that are transparent to microwaves are preferably used for the basic construction of the particulate trap 10 housing and other areas in the particulate trap 10 where it would be inefficient to absorb microwave energy. As the chordierite does not absorb microwave energy, the microwaves will “bounce” around until they are incident upon the particulate deposits. The temperature of the particulate trap 10 may be regulated by the timed build up of particulates and by controlling the application of the microwave energy. A metallic honeycomb 32 may be fitted to the particulate trap 10 to block microwaves exiting the particulate trap 10.
The preferred structures 40 used to generate the build up of particulate matter have been show as walls in the present invention, but any structure that may generate a concentration of particulate matter in a particulate trap is considered within the scope of the present invention. The structures include, but are not limited walls, tabs, points, arrays of prominences, and other similar structures.
It is to be understood that the invention is not limited to the exact construction illustrated and described above, but that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5087272 | Nixdorf | Feb 1992 | A |
5194078 | Yonemura et al. | Mar 1993 | A |
6712884 | Bruck et al. | Mar 2004 | B2 |
20010017026 | Peters et al. | Aug 2001 | A1 |
Number | Date | Country |
---|---|---|
WO 0200326 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040099139 A1 | May 2004 | US |