The present invention relates generally to a portable power system and method for driving tools or other implements; and more particularly to a pressurized fluid drive system and method for power tools and the like, preferably utilizing carbon dioxide (CO2) or other fluid dispensed from a self-contained portable canister as the pressurized drive fluid.
Power tools and other implements are commonly used in various industrial, residential, automotive and other applications. For example, power nail-guns and staplers are commonly used in the construction trades, power impact wrenches and lifts are used in automotive repair and maintenance, and power paint sprayers and rollers are used in various paint and finish applications. Various other tasks are or can be performed with the assistance of power tools and implements.
Known power tools and implements commonly utilize pressurized air (pneumatic-drive) or pressurized liquid (hydraulic-drive) as their fluid power sources. In other known systems and methods, a controlled explosion of butane or other hydrocarbon fuel source is utilized as a power source for nail-guns and the like.
Such previously known systems and methods for driving power tools and implements have been found to have a number of disadvantages. For example, pneumatic and hydraulic drive systems generally require that the tool be connected, typically by a length of hose, to a stationary compressor or the like. This limits the applicability of such systems to applications requiring ease of portability, and presents safety risks and inconveniences resulting from the hoses being stretched through the workplace, often becoming entangled with other equipment and creating tripping hazards. Butane cartridges, compressors, and other equipment associated with previously known systems and methods also tend to be quite expensive, and/or to require frequent maintenance, adding further expense and inconvenience.
Thus it can be seen that needs exist for improved systems and methods for driving power tools and other implements. It is to the provision of improved systems and methods meeting these and other needs that the present invention is primarily directed.
In example forms, the present invention is an improved system and method for driving power tools and other implements. The system and method of the present invention preferably utilize self-contained tanks or canisters of pressurized fluid, most preferably carbon dioxide (CO2), as the power source to drive various power tools and implements. Such tanks and canisters are commercially available in various sizes, typically at a pressure of about 720-810 p.s.i. (nominal 800 p.s.i.).
In one aspect, the present invention is an inexpensive disposable tank or canister containing pressurized liquid CO2 or other pressurized drive fluid, for use as a power source to drive various power tools and implements. The tank or canister optionally comprises an attached or integral fitting and/or adapter for coupling to a regulator, a hose, a coupling element of a power tool or implement, a fill attachment, a pressure-relief safety valve, and/or a quick-release coupling for attachment to a tool or to a connection hose in communication with the tool.
In another aspect, the invention is a universal distribution block or adapter for connection to CO2 tanks or canisters of different sizes. For example, a common distribution block can be provided to couple both 20-ounce and 2-pound CO2 canisters to a tool or implement. In other embodiments, a common distribution block couples to two or more of a 20-ounce CO2 canister, a 2-pound CO2 canister, a 5-pound CO2 tank, a 20-pound CO2 tank, and/or a 50-pound CO2 tank. Optionally, the distribution block includes attachment couplings or integral mounts for a pressure regulator, a fill attachment, a pressure-relief safety valve, and/or a quick-release coupling for attachment to the tool or to a connection hose in communication with the tool. In still other embodiments, the distribution block may be fitted with an adaptor that allows recharging of a CO2 tank without removing the distribution valve or regulator.
In still another aspect, the invention is a system including a CO2 power source and one or more tools or implements driven by that source. For example, in one example system according to the present invention, a hand-portable canister or tank of pressurized liquid CO2 is connected via a flexible hose to a power tool such as a nail gun or stapler. In other embodiments, the flexible hose is fitted with an in-line pneumatic oiler to provide lubrication or antifreeze to the tool. In still other embodiments, the system utilizes CO2 as the drive source for one or more other tools or implements, such as for example a stapler, a paint gun or roller, an impact wrench, a jack or automotive lift, a pressurization fitting for leak-testing plumbing or other conduits or vessels, and/or a spray applicator for pesticides or other fluids.
In still another aspect, the invention is a method for driving a power tool or other implement using pressurized CO2 or another compressed fluid.
In another aspect, the invention is a system for driving a power tool or other implement using pressurized CO2 as the power source, which system also functions as a fire extinguishing or suppression system. For example, a canister or tank of CO2 can be connected via a first coupling of a distribution block to a power tool or implement such as an impact wrench and/or vehicle jack, and connected via a second coupling of the distribution block to a release mechanism for discharging CO2 through a hose or nozzle in the fashion of a CO2 fire extinguisher. This system is of particular advantage in automotive racing or other applications of potential fire risk.
In another aspect, the invention is a system including a CO2 power source and one or more tools or implements driven by that source including a system of one or more gauges and/or scales used to monitor the CO2 power source. For example, in one embodiment a gauge is used to measure the pressure inside both the regulator and the line, while a calibrated scale is used to determine the amount of CO2 remaining in the tank.
In another aspect, the invention is a CO2 powered system used to drive one or more tools or implements that utilizes ergonomically designed connections, regulator and gauge suitable for portable, hip-mounted use. For example, the regulator, gauge and line connector can be positioned at acute angles relative to the tank in order to minimize user interference and discomfort while using the CO2 powered system. A harness or belt can be provided, having mounting loops or other releasable fastening means, for carrying the fluid canister, the tool, and related implements, in a safe and convenient manner. The components of the tool and drive system can be provided as a kit, and/or as separate components.
In still another aspect, the invention is a business method for distributing, selling and exchanging replacement CO2 tanks for driving power tools and the like. For example, the CO2 tanks can be sold with both a distributor valve and a universal fitting for bottles and tools already affixed to the tank. In this manner, the tanks are ready to use as bought. Upon emptying the tank, the end user can exchange the empty tank for a full tank with a licensed retailer. In other embodiments, the user may return an empty tank to a retailer and have the tank refilled.
In another aspect, the invention is a portable tool drive system including at least one canister for containing a pressurized drive fluid, a distribution block attached to the canister, and a regulator for regulating a fluid delivery pressure. The distribution block preferably includes a refill port, and a discharge port for delivery of the drive fluid.
In another aspect, the invention is an integral distribution block and pressure regulator for a portable tool drive system. The integral distribution block and pressure regulator preferably include a first coupling for attachment to a portable container of pressurized fluid, and a second coupling for attachment to a fluid discharge conduit, and the first and second couplings are oriented at an oblique angle relative to one another.
In yet another aspect, the invention is a method of driving a power tool, the method including the steps of installing a distribution block and pressure regulator onto a canister; substantially filling the canister with a pressurized drive fluid via a fill port in the distribution block; and coupling a power tool to a discharge port in the distribution block to deliver the pressurized drive fluid to drive the power tool.
These and other aspects, features and advantages of the invention will be understood with reference to the drawing figures and detailed description herein, and will be realized by means of the various elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following brief description of the drawings and detailed description of the invention are exemplary and explanatory of preferred embodiments of the invention, and are not restrictive of the invention, as claimed.
The present invention may be understood more readily by reference to the following detailed description of the invention taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention. Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
With reference now to the drawing figures, example embodiments of various aspects of the present invention are shown and described.
In preferred form, the integral distribution block and pressure regulator 250 provides for connection of only a single indicator gauge, namely line pressure display gauge 258; and no gauge is provided for indicating the tank pressure or fill level of the canister. It has been found that a tank pressure gauge provides less accuracy than is generally desirable for indicating the level of fluid fill remaining in the canister. Also, providing a tank pressure gauge increases cost, decreases durability, and makes the overall device bulkier and more cumbersome to use. Accordingly, the system of the present invention preferably comprises a calibrated digital or spring-based scale (such as are commonly used by fishermen to weigh fish, for example), for measuring the weight of the CO2 tank to indicate how much CO2 remains in the tank. The scale may, for example, be mounted between the canister 220 and the canister bracket or carrier portion of the belt or harness worn by the user, to provide an accurate indication of the total weight of the canister and its contents. Also, the gauge 258 and line connector 234 preferably extend at acute angles relative to the housing of the integral distribution block and pressure regulator 250, in order to reduce the profile of the system and minimize user interference and discomfort.
In its various embodiments, the system of the present invention is compact and lightweight, and is particularly well-suited for hand-portable applications. For example, as described above, the system can be incorporated into a backpack or other user-wearable or hand-carried device. Alternatively, the replaceable CO2 tank may include a hook, clip or other feature(s) to permit a user to carry the tank on his or her belt, tool apron, or the like. Quick-release couplings are preferably provided to permit the user to quickly and easily replace spent CO2 cartridges, and/or to permit quick and easy interchangeability of tools. A convenient length of hose preferably couples the tank and the tool, to permit the user a full range of motion in use, but to prevent tangling and/or tripping hazards. Optionally, the hose is a self-coiling or self-retracting hose for easier handling and all hose connections are fitted with a swivel connector to prevent the hose from tangling.
In alternate embodiments of the invention, the system of the present invention comprises a kit for provision as original equipment or retrofit equipment for an automobile or other vehicle. For example, a portable carrying case houses one or more replaceable CO2 canisters or tanks; a hose, regulator and coupling assembly; an impact wrench and socket for removing lug nuts; and a CO2-powered jack adapted to raise the weight of the vehicle. To change a tire, the user places the jack under the vehicle, connects a CO2 tank to the jack, and actuates a valve to direct CO2 to the jack to raise the vehicle. A CO2 tank is then connected to drive the impact wrench, which is used to remove the lug nuts. The wheel is then removed and replaced with the spare, and the lug nuts are replaced using the impact wrench. The jack is then lowered by releasing the pressurized fluid.
In order to reduce the likelihood of freezing up of equipment due to temperature drop from expansion of the CO2 as the system is operated, it is preferred that the distribution block be formed of a heat-conductive material such as aluminum, copper, brass or other metal(s) or heat-conductive material(s), and have sufficient mass to promote heat transfer to the working fluid. It is further preferred that the hose extending between the CO2 tank and the tool be heat-conductive, and/or have a relatively high length to diameter ratio (for example on the order of 60:1 or more) to promote heat transfer to the working fluid. In addition, an in line oiler 225 may be positioned between the distribution block and the tool, as seen in
A further advantage to the system and method of the present invention is that the use of CO2 as the drive fluid permits the system to also serve dual purpose as a fire suppression device. For example, the distribution block mounted to the CO2 tank can include an emergency release mechanism to permit high-volume discharge of CO2 through a hose and nozzle coupled thereto, in similar fashion to the operation of a CO2 fire extinguisher.
The present invention also encompasses a method of distribution and use of a pressurized fluid drive system substantially as disclosed. In example form, the method of the present invention preferably comprises providing one or more refillable canisters for containing a pressurized fluid for driving a power tool, the canisters having a distribution block connected thereto. The distribution block preferably includes a refill coupling for attachment to an external source of pressurized fluid, for refilling the canister when spent; and a coupling for attachment of a power tool to receive the pressurized drive fluid from the canister, for example via a hose or other fluid delivery conduit. The canisters are preferably sold to users from various supply locations in a pre-charged state, filled with pressurized fluid and ready to use. In one embodiment, upon emptying the canister, the end user can return the spent canister to a licensed supplier, and exchange it for a full canister. The supplier then inspects, tests, cleans, repairs (if necessary), and refills the canister for resale and reuse. In alternate embodiments, the user may return an empty canister to a supplier and have the tank refilled for further use.
While the invention has been described with reference to preferred and example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims. For example, although the drive fluid has been described herein as utilizing CO2 as the drive fluid, it will be understood that the invention also includes systems, equipment and methods substantially as described, but utilizing compressed air, compressed nitrogen, other compressed gasses, and/or mixtures thereof, as the drive fluid(s).
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/525,097 filed Nov. 25, 2003, and U.S. Provisional Patent Application Ser. No. 60/560,422 filed Apr. 8, 2004, which applications are incorporated herein by reference in their entireties for all purposes.
Number | Date | Country | |
---|---|---|---|
60525097 | Nov 2003 | US | |
60560422 | Apr 2004 | US |