The invention generally concerns devices, systems, and methods related to systems and processes of carbon sequestration with magnesium hydroxide and for regeneration of magnesium hydroxide from magnesium halide.
Considerable domestic and international concern has been increasingly focused on the emission of CO2 into the air. In particular, attention has been focused on the effect of this gas on the retention of solar heat in the atmosphere, producing the “greenhouse effect.” Although there is some debate regarding the magnitude of the effect, all would agree there is a benefit to removing CO2 (and other chemicals) from point-emission sources, especially if the cost for doing so were sufficiently small.
Despite years of development, the task of creating a commercially-viable, environmentally-sensitive process for removing carbon dioxide from an emission source has proven to be a difficult. The methodologies to date have not been altogether satisfactory in this regard, and a significant need exists for the techniques described and claimed in this disclosure.
One aspect of the present disclosure is a system configured to regenerate Mg(OH)2 and reduce the amount of CO2 contained in a gas stream through consumption of the Mg(OH)2. In some embodiments, the system can comprise: a first decomposition reactor configured to react MgCl2 containing material with steam to form first reactor products comprising Mg(OH)Cl and HCl; a second decomposition reactor configured to react Mg(OH)Cl from the first decomposition reactor with steam to form HCl and magnesium-containing products comprising mostly Mg(OH)2; and a first absorption reactor configured to form an admixture comprising Mg(OH)2 from the second decomposition reactor, CO2, CaCl2, and steam to form products comprising MgCl2 and CaCO3. The MgCl2 containing material fed to the first decomposition reactor can comprise a molar ratio of water to MgCl2 of less than about 2.5:1. In some embodiments, the system can further comprise a gaseous feed line configured to pass a gaseous outflow from the second decomposition reactor to the first decomposition reactor, where the gaseous outflow comprises HCl and steam. In some embodiments, the system can further comprise a second absorption reactor, wherein the first absorption reactor is configured to admix Mg(OH)2 from the second decomposition reactor with CO2 contained in the gas stream and form MgCO3 and H2O and wherein the second absorption reactor is configured to admix the MgCO3 from the first absorption reactor with CaCl2 and form CaCO3 and MgCl2. In some embodiments, the first absorption reactor products are in a liquid phase and a solid phase, and the liquid phase is at least 50% by weight of MgCl2. In some embodiments, the first absorption reactor (or the second absorption reactor if present) contains a liquid phase comprising a ratio of water to MgCl2 of less than about 4.5:1 or about 4 to 1. In some embodiments, a major portion of MgCl2 in the liquid phase that exits an absorption reactor is in the form of MgCl2 tetrahydrate. In some embodiments, the system further comprises a solid liquid separator configured to separate at least a portion of the CaCO3 from the liquid phase. In some embodiments, the system a dryer configured to remove a portion of the water from the liquid phase so the ratio of water to MgCl2 is about 2 to 1. In some embodiments, a waste heat recovery and heat transfer system is utilized to provide the necessary heat to maintain reaction conditions for each system module.
Another aspect of the disclosure is a method of regenerating Mg(OH)2 in a process that reduces the amount of CO2 contained in a gas stream. In some embodiments, the method can comprise the following steps: (a) reacting MgCl2-containing material with steam in a first admixture to form step (a) products comprising Mg(OH)Cl and HCl, where the MgCl2 containing material comprises a water to MgCl2 ratio of less than about 2.5:1; (b) reacting Mg(OH)Cl from step (a) with steam in a second admixture to form step (b) products comprising HCl and magnesium-containing products comprising mostly Mg(OH)2; and (c) reacting Mg(OH)2 from step (b) with CO2, CaCl2, and steam to form step (c) products comprising MgCl2 and CaCO3. In some embodiments, the method further comprises passing a gaseous outflow from the second admixture to the first admixture, where the gaseous outflow comprises HCl and steam to react with the MgCl2 containing material. In some embodiments, step (c) can comprise a two stage process of admixing Mg(OH)2 from step (b) with CO2 contained in the gas stream in a third admixture to form first step (c) products comprising MgCO3 and H2O and admixing the MgCO3 from first step (c) products with CaCl2 in a fourth admixture to form a second step (c) products comprising CaCO3 and MgCl2. In some embodiments, the liquid phase of the first admixture is at least 50% by weight of MgCl2. The method can further comprise the step or steps of separating at least a portion of the CaCO3 and a portion of the water from the second step (c) products so that, in a remaining product, the ratio of water to MgCl2 is about 2 to 1. In some embodiments, the first step (a) product comprises greater than 90% by weight of Mg(OH)Cl. In some embodiments, the first step (b) product comprises greater than 90% by weight of Mg(OH)2. In some embodiments, the method can comprise recovering waste heat from a gas stream and transferring to the first admixture, the second admixture, and/or the remaining product comprising MgCl2 dihydrate. In recovering and transferring the waste heat, three or more heating loops can be used.
Another aspect of the present disclosure is a method for producing magnesium hydroxide from magnesium chloride-containing material comprising: a first stage comprising the steps of introducing said material into a first reactor, passing a steam mixture into the first reactor with the magnesium chloride-containing material at the approximate temperature of 250 to 400 C, to form magnesium hydroxychloride and HCl, a second stage of conveying the magnesium hydroxychloride into a second reactor, introducing therewith steam to form magnesium hydroxide and HCl, where the magnesium chloride-containing material comprises a water to magnesium chloride ratio of about 2:1. In some embodiments, a portion of a steam mixture exiting the second reactor is the steam mixture introduced into the first reactor. At least a portion of the HCl exits the second reactor in the steam mixture that then passes through the first reactor. In some embodiments, the magnesium chloride-containing material substantially comprises magnesium chloride dihydrate. In some embodiments, waste heat is utilized to provide the heat necessary to form the Mg(OH)2.
The terms “a” and “an” are defined as one or more unless this disclosure explicitly requires otherwise.
The terms “substantially,” “approximately” and “about” are defined as being largely but not necessarily wholly what is specified (and include wholly what is specified) as understood by one of ordinary skill in the art. In any disclosed embodiment, the term “substantially,” “approximately,” or “about” may be substituted with “within [a percentage] of” what is specified, where the percentage includes 0.1, 1, 5, and 10 percent.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, any of the present devices, systems, and methods that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a device, system, or method that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features. Additionally, terms such as “first” and “second” are used only to differentiate structures or features, and not to limit the different structures or features to a particular order.
Furthermore, a structure that is capable performing a function or that is configured in a certain way is capable or configured in at least that way, but may also be capable or configured in ways that are not listed.
The feature or features of one embodiment may be applied to other embodiments, even though not described or illustrated, unless expressly prohibited by this disclosure or the nature of the embodiments.
Any of the present devices, systems, and methods can consist of or consist essentially of—rather than comprise/include/contain/have-any of the described elements and/or features and/or steps. Thus, in any of the claims, the term “consisting of” or “consisting essentially of” can be substituted for any of the open-ended linking verbs recited above, in order to change the scope of a given claim from what it would otherwise be using the open-ended linking verb.
Details associated with the embodiments described above and others are presented below.
The following drawings illustrate by way of example and not limitation. For the sake of brevity and clarity, every feature of a given structure may not be labeled in every figure in which that structure appears. Identical reference numbers do not necessarily indicate an identical structure. Rather, the same reference number may be used to indicate a similar feature or a feature with similar functionality, as may non-identical reference numbers.
Referring to
Prior to treating the carbon dioxide containing gas stream 2, the temperature of gas stream 2 may be lowered. In the instance of a hot gas stream, (e.g., gas turbine exhaust), gas stream 2 can provide process heat that is transferred to different units in the system. In some embodiments, the process heat can be transferred to one or more of boilers, pre-heaters, reactors, or dryers 30 in the system. For example, in the embodiment shown, process heat can be transferred to a recycling heating fluid such as a hot oil system configured to provide indirect heating to the decomposition reactor. In some embodiments, process heat can be used to heat a boiler configured to generate superheated steam for direct steam injection into the decomposition reactor. In some embodiments, a second recycling heating fluid, such as a second hot oil system, is configured to provide indirect heating to dryer 30 to remove water from the MgCl2 containing starting material.
After heat has been removed from gas stream 2, gas stream 2 enters absorption reactor 10 configured to react the CO2 with CaCl2 and Mg(OH)2 via the following overall reactions:
CaCl2+Mg(OH)2+CO2→CaCO3+MgCl2+H2O (1)
Reactor 10 can be configured to receive CaCl2 feed 3, gas stream 2, and a Mg(OH)2 feed. In some embodiments, absorption reactor 10 is configured to operate at temperatures greater than 165° C., such as between about 170 to 250° C. In some embodiments, the operation temperature of reactor 10 can be at least 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, or 240° C. In some embodiments, the operation temperature of reactor 10 is between 175 and 185° C. To maintain a temperature above the operation temperature, reactor 10 can be configured similar to a distillation column, with a water reflux entering the top of the column and a heat input at the bottom of the column to maintain a bottom liquid product at the operation temperature, such as about 175° C.
In some embodiments, the reactants can be preheated to the operation temperature prior to introducing into absorption reactor 10. For example, a calcium chloride feed 3 is preheated in heater 60 prior to being added to absorption reactor 10. In some embodiments, a water feed 4 may also be preheated in heater 61. As the reaction of CO2 with hydroxide is exothermic, heat can be removed from reactor 10 to maintain operation temperature. In some embodiments, a circulating heating fluid loop (not shown) can be configured to transfer heat from reactor 10 to CaCl2 feed 5, such as through heater 60. Similarly, a separate circulating heating fluid loop (not shown) can be configured to transfer heat from reactor 10 to water feed 4, such as through heater 61. By way of example, approximately 63 MMBtu/hr of process heat (such as from reactor 10) can be needed to heat 1,679 lb*mol/hr of CaCl2*2H2O solids from 25° C. to 175° C. and melt the solids at its melting point of 175° C., and to heat 1,679 lb*mol/hr of water from 25° C. to 100° C., vaporize the water, and superheat the steam to 175° C.
Calcium chloride can be added to reactor 10 in one of three forms to absorption reactor 10: anhydrous CaCl2, CaCl2*2H2O, or CaCl2*4H2O. In some embodiments, a molar ratio of water to CaCl2 of about 3:1 or less can be added to the absorption column for every mole of CO2 that is captured. In some embodiments, CaCl2*2H2O and water are fed to absorption reactor 10 to create an equivalent mixture of CaCl2*3H2O (67.2 wt % aqueous CaCl2). In some embodiments, CaCl2 feed 3 in dihydrate form can be converted from a solid phase to a liquid phase prior to entering reactor 10.
Reactor 10 is configured to comprise an outlet for aqueous slurry of CaCO3 solids in aqueous MgCl2 and an outlet for gas stream 2 that contains a reduced amount of CO2 than that inputted into reactor 10. In some embodiments, gas stream 2 with the reduced CO2 concentration exits absorption reactor 10 and can then pass through gas cooler 72 where heat can be further recovered before gas stream 2 is exhausted to the atmosphere or further processed downstream. The heat can be used to pre-heat the reactants, such as CaCl2 and optionally water. As a result of the absorption column, the amount of CO2 in gas stream 2 can be reduced by at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, or 99%.
In some embodiments, at least 50 wt % aqueous MgCl2 exits absorption reactor 10 and enters solid-liquid separator 20, which separates the CaCO3 solids from the aqueous solution. In some embodiments, a weight percent of aqueous MgCl2 between 50 to 60% exits absorption reactor 10 and enters solid-liquid separator 20, such as 51%, 53%, 55%, 57%, or 59% wt MgCl2. In some embodiments, a ratio of water to MgCl2 in the aqueous solution is less than about 5 to 1, about 4.5 to 1, or about 4 to 1. In some embodiments, a major portion of MgCl2 in the aqueous solution is in the form of MgCl2 tetrahydrate.
In some embodiments, water may be added to solid-liquid separator 20 to facilitate the separation of the carbonate solids. In such embodiments, the amount of water to be added can dilute the solution by less than 30%, 25%, 20%, 15%, 10%, or 5%. Once separated, in some embodiments, the hot CaCO3 solids can be passed through a cooler 70 for energy recovery before being sent to storage.
After separating the carbonate solids from the aqueous MgCl2, the aqueous solution is transferred to dryer 30 to remove water from the solution. In some embodiments, a sufficient amount of water is evaporated from the solution so that the ratio of water to MgCl2 is less than about 3:1, about 2.5:1, or less than about 2 to 1. In some embodiments, a major portion of the water in the magnesium chloride-containing material exiting dryer 30 is in the form of MgCl2 dihydrate. For example, the magnesium chloride containing material comprises at least 55%, 60%, 65% 70%, 75% 80%, 85% 90%, 95%, or 98% of MgCl2*2H2O (s). The primary reaction in dryer 30 is provided below:
MgCl2*4H2O(l)→MgCl2*2H2O(s)+2H2O(g) (2)
In some embodiments, to supply the needed energy to remove a portion of the water, heat can be supplied to the vessel to keep the operation temperature at between 150 to 250° C., such as 160, 170, 180, 190, 200, 210, 220, 230, or 240° C. In some embodiments, the temperature can be kept between 195 and 205° C. or 198 and 202° C. Dryer 30 is configured such that superheated steam (and potentially some HCl) exits the top of the vessel, while magnesium chloride containing material comprising dihydrate salts moves to first decomposition reactor 40. In some embodiments, operation pressures are at atmospheric pressure. In some embodiments, the superheated steam produced from dryer 30 can supply at least a portion of the steam required for decomposition reactors 40 and/or 45.
In some embodiments, the aqueous MgCl2 solution is pumped through a heater 62 before entering dryer 30 to raise the temperature of the solution to substantially equal to the operation temperatures of dryer 30. In some embodiments, heat can be transferred to the solution at heater 62 by a circulating heating fluid loop 83 configured to transfer heat from gas stream 2 to the aqueous solution.
In some embodiments, system 100 comprises an evaporator 30 that is configured to reduce the water content so that MgCl2 turns to solid and the solid material can be transferred to first decomposition reactor 40. For example, evaporator 30 can comprise a flash drum having a scraper or other agitator configured to facilitate conveyance to solid material. In some embodiments, in evaporator 30, a pressurized MgCl2 solution at the operation temperature is flashed to atmospheric pressure to remove water from the aqueous solution and produce MgCl2*2H2O solids. In some embodiments, a portion of the heating fluid in circulating loop 83 may be directed to evaporator 30 to maintain the operation temperatures of evaporator 30.
In some embodiments, system 100 comprises a dryer 30 that is configured to reduce the water content so that aqueous MgCl2 turns to solid and the solid material can be transferred to first decomposition reactor 40. Dryer 30 can be configured to apply indirect contact heating or direct contact heating using a medium such as air to maintain operation temperatures. For example, dryer 30 can be a rotary dryer, a flash dryer, or a spray dryer. In some embodiments, a portion of the heating fluid in circulating loop 83 may be directed to dryer 30 to maintain the operation temperatures of dryer 30 and may also be directed to blower to heat the drying medium such as air. Other embodiments, in lieu of dryer 30, system 100 can comprise a flaker, a crystallizer, or a priller configured to reduce the water content so that the molar ratio is about 2:1 and/or the MgCl2 is mostly in a dihydrate form and can be transferred to first decomposition reactor 40.
By way of example, the heat input needed to raise the temperature of the aqueous solution to an operation temperature of 200° C. is approximately 7 MMBtu/hr. Further, also by way of example, the heat input needed to reduce the water content of an aqueous solution where the molar ratio of water is 4:1 is approximately 71 MMBtu/hr. For circulating heating fluid loop 83, the fluid return temperature can be about 5 to 15° C. above the operation temperature, e.g., 210° C., for the fluid leaving dryer 30 or heater 62. In addition, the fluid supply temperature (e.g., the temperature of the fluid approaching dryer 30 or heater 62) can be about 20 to 30° C. above the operation temperature or 10 to 20° C. above the return temperature, e.g., 225° C. At the intercept of loop 83 with gas stream 2, the temperature of gas stream 2 can be a temperature that is at least 30 to 40 above the operation temperature of decomposition reactor 40. In some embodiments, the temperature of gas stream 2 after transferring heat to loop 83 can be at least 235° C.
System 100 comprises reactors configured for a two stage, counter-current flow decomposition reactor to convert MgCl2 to Mg(OH)2. Within the first stage, reactor 40 is configured for the following reaction to occur:
MgCl2*2H2O(s)+Mg(OH)Cl(s)+HCl(g)+H2O(g) (3)
Within the second stage, reactor 45 is configured for the following reaction to occur:
Mg(OH)Cl(s)+H2O(g)+Mg(OH)2(s)+HCl(g) (4)
In second reactor 45, steam can be counter-currently contacted with MgOHCl solids fed from first reactor 40. In some embodiments, steam can be generated by a boiler 90 that is heated by gas stream 2. Also, steam recycled from the exhaust of reactors 40 and 45 can be mixed with the steam from boiler 90 to feed reactor 45. Recycled steam may be heated by a heater 65 to obtain the desired final steam temperature to feed reactor 45. Steam is introduced into reactor 45 at a temperature that is substantially the same as the operation temperature of reactor 45 as described below. For example, steam can be introduced into reactor 45 at a temperature between 385° C. and 395° C., such as about 390° C.
The Mg(OH)2 solids exiting reactor 45 are in equilibrium with the vapor leaving reactor 45. In some embodiments, the exiting vapor leaving reactor 45 will comprise at least 0.8 mole of HCl for every mole of Mg(OH)2 produced. For example, the exiting vapor leaving reactor 45 can comprise 0.85 mole of HCl, 0.9 mole of HCl, 0.95 mole of HCl, 0.98 mole HCl for ever mole of Mg(OH)2 produced. The rate of counter-flow through reactor 45 is sufficient to keep the partial pressure of HCl low enough so that reaction (5) equilibrium is shifted to the right. In some embodiments, the counter flow is 100% superheated steam. In other embodiments, the counter flow comprises superheated steam and an inert carrier gas. In some embodiment, the partial pressure of HCl can be maintained at a sufficiently low amount by operating the decomposition reaction 45 under vacuum conditions.
In reactor 40, the vapor mixture of superheated steam and HCl leaving reactor 45 is counter-currently contacted with the magnesium chloride material fed from dryer or evaporator 30 comprising MgCl2*2H2O solids. In some embodiments, only a portion of the steam exiting reactor 45 is fed to reactor 40. For example, a majority of the vapor exiting reactor 45 can bypass reactor 40 so that additional heat can be recovered in the HCl condenser 76. In some embodiments, the Mg(OH)Cl solids exiting reactor 40 are in equilibrium with the vapor leaving reactor 40. In some embodiments, the exiting vapor leaving reactor 40 will comprise at least an additional 0.8 mole of HCl for every mole of MgOHCl produced. For example, the exiting vapor leaving reactor 40 can comprise an additional 0.85 mole of HCl, 0.9 mole of HCl, 0.95 mole of HCl, 0.98 mole HCl for ever mole of MgOHCl produced. The rate of counter-flow through reactor 40 is sufficient to keep the partial pressure of HCl low enough to maintain a shift of reaction (4) to the right.
The operation temperature for reactor 45 can be between 380° C. and 500° C., such as about 390, 400, 410, 420, 430, 440, 450, 460, 470, or 490° C. In some embodiments, the operation temperature for reactor 45 is between about 385° C. and 395° C., such as about 390° C. The operation temperature for reactor 40 can be between 250° C. and 400° C., such as 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, or 390° C. In some embodiments, the operation temperature of reactor 40 is between about 275° C. and 285° C., such as about 280° C. By way of example, the steam requirements for the two-stage counter-current configuration can be approximately 8.6 lb/hr of steam per lb/hr HCl at 390° C. for second reactor 45 and 280° C. for first reactor 40.
An output of reactor 40 comprises solid MgOHCl. In some embodiments, the solid phase output of reactor 40 is at least 55%, 60%, 65% 70%, 75% 80%, 85% 90%, 95%, 98%, or 99% of MgOHCl. An output of reactor 45 comprises solid Mg(OH)2. In some embodiments, the solid phase output of reactor 45 is at least 55%, 60%, 65% 70%, 75% 80%, 85% 90%, 95%, 98%, or 99% of Mg(OH)2.
In some embodiments, to maintain operation temperatures of reactors 40 and 45, heat can be supplied to the decomposition reactors 40, 45 indirectly through a circulating heating fluid loop to keep the decomposition reactor at the desired temperature. For example, heating fluid jackets about each reactor 40 and 45 can facilitate maintenance of the operation temperature. In the embodiment shown, circulating heating fluid loop 84 is configured to transfer heat from gas stream 2 to reactor 40 and circulating heating fluid loop 85 is configured to transfer heat from gas stream 2 to reactor 45.
In some embodiments, the MgCl2 containing material exiting dryer 30 can be conveyed through a heater 64 before entering reactor 40 to raise the temperature of the solution to substantially equal to the operation temperatures of reactor 40. In some embodiments, while not shown in the one illustrated, a portion of the heating fluid in circulating loop 84 may be directed to heater 64 to heat the MgCl2 containing material fed to reactor 40.
In some embodiments, for circulating heating fluid loop 85, the fluid return temperature (e.g., for the heating fluid leaving reactor 45 and heater 65) can be about 5 to 15° C. above the operation temperature of reactor 40; e.g., the fluid return temperature can be about 400° C. In addition, the fluid supply temperature (e.g., the temperature of the fluid approaching reactor 45 and heater 65) can be about 10 to 45° C. above the operation temperature or 5 to 25° C. above the return temperature; e.g., the fluid supply temperature can be about 415° C. At the intercept of loop 85 with gas stream 2, the temperature of gas stream 2 can be greater than 500° C. or greater than 600° C., e.g., the temperature of a flue gas exhaust stream. In some embodiments, the temperature of gas stream 2 after transferring heat to loop 85 can be at least 10° C. higher than the temperature of the heating fluid approaching reactor 45.
In some embodiments, for circulating heating fluid loop 84, the fluid return temperature (e.g., the temperature of the heating fluid leaving reactor 40 or heater 64) can be about 5 to 15° C. above the operation temperature of reactor 45; e.g., the fluid return temperature can be about 290° C. In addition, the fluid supply temperature (e.g., the temperature of the fluid approaching reactor 40 or heater 64) can be about 5 to 20° C. above the operation temperature or 60 to 100° C. above the return temperature; e.g., the fluid supply temperature can be about 355° C. At the intercept of loop 84 with gas stream 2, the temperature of gas stream 2 can be greater than 500° C. or greater than 600° C., e.g., the temperature of a flue gas exhaust stream. In some embodiments, the temperature of gas stream 2 after transferring heat to loop 85 can be at least 10 degrees higher than the temperature of the heating fluid approaching reactor 40.
The hot Mg(OH)2 solids exiting reactor 45 can be passed through a solids product cooler 74 before entering absorption reactor 10, while the vapor product exiting reactor 40 is combined with the vapor bypass 6 around reactor 40. The combined vapor stream passes through HCl condenser 76 before being pumped to an HCl product tank.
As evident from the operation temperatures of the decomposition reactor, there are significant enthalpy requirements for the decomposition reactor, namely, the reaction enthalpy for the decomposition of MgCl2*2H2O to Mg(OH)2 and HCl and the superheated steam requirements for direct steam injection into the decomposition reactor. In some embodiments, system 100 can comprise a gas turbine or be configured to receive gas stream 2 produced from a gas turbine, such as a 60 MW gas turbine 95 in the embodiment shown. In some embodiments, the overall CO2 capture rate can be greater than 70%, 80%, 90%, 95%, or greater than 99%.
In addition to a first gas turbine, system 100 can comprise a furnace (not shown) to burn supplemental natural gas, and use heat recovered from the flue gas at the flame temperature to provide additional heat for steam generation within system 100. In some embodiments, for a two-stage counter-current reactor, the total enthalpy requirement for the process can be about 175 MMBtu/hr. The heat available from 60 MW turbine exhaust gas is about 146 MMBtu/hr, leaving an overall deficiency of about 29 MMBtu/hr that would be required to achieve 100% CO2 capture. Burning 1.4 MMSCFD of supplemental natural gas in a furnace can provide heat recovery from the flue gas of 44.9 MMBtu/hr. In some embodiments, an additional 16-17 MMBtu/hr of enthalpy would be required within system 100 to capture this additional CO2. This results in a net enthalpy surplus that could be used to achieve 100% CO2 capture. If this 1.4 MMSCFD of natural gas were instead fired in a turbine, 5.6 MW of additional electricity could be produced (relative to the 60 MW of electricity produced in the existing turbine).
Referring now to
Referring now to
Mg(OH)2(s)+CO2(g)→MgCO3(aq)+H2O(l) (5)
Within the second stage, reactor 14 is configured for the following reaction to occur:
CaCl2(aq)+MgCO3(aq)→CaCO3(s)+MgCl2(aq) (6)
In some embodiments, in reactor 12, the molar ratio of water to MgCO3 can be about 3.5:1 or about 3:1. In some embodiments, in reactor 14, the molar ratio of water to MgCl2 can be about 5.5:1 or about 5:1.
The above specification and examples provide a complete description of the structure and use of exemplary embodiments. Although certain embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this invention. As such, the illustrative embodiments of the present systems and processes for removing carbon dioxide from a gaseous stream and regenerating magnesium hydroxide are not intended to be limiting. Rather, the present devices, systems, and methods include all modifications and alternatives falling within the scope of the claims, and embodiments other than those shown may include some or all of the features of the depicted embodiments. For example, components may be combined as a unitary structure and/or connections may be substituted. Further, where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and addressing the same or different problems. Similarly, it will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments.
The claims are not to be interpreted as including means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
This application is a continuation application of U.S. Ser. No. 16/813,160, filed Mar. 9, 2020, which is a divisional of U.S. Ser. No. 15/552,873 (now U.S. Pat. No. 10,583,394), filed Aug. 23, 2017, which is a national phase under 35 U.S.C. § 371 of International Application No. PCT/US2016/019164, filed Feb. 23, 2016, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 62/119,633, filed Feb. 23, 2015, the entire contents of each of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2357130 | Pike | Aug 1944 | A |
2383674 | Osborne | Aug 1945 | A |
2962350 | Trubey | Nov 1960 | A |
3801698 | Lowrance et al. | Apr 1974 | A |
3855398 | Hoffman et al. | Dec 1974 | A |
4032616 | Artur et al. | Jun 1977 | A |
4069117 | Cooper | Jan 1978 | A |
4128701 | Maricle | Dec 1978 | A |
4147599 | O'Leary et al. | Apr 1979 | A |
4620969 | Wilkinson | Nov 1986 | A |
4720375 | Ainscow et al. | Jan 1988 | A |
4749453 | Harris | Jun 1988 | A |
4764286 | Bon et al. | Aug 1988 | A |
5080799 | Yan | Jan 1992 | A |
5888256 | Morrison | Mar 1999 | A |
6238628 | Matsutani | May 2001 | B1 |
6340736 | Coenen et al. | Jan 2002 | B1 |
6488740 | Patel et al. | Dec 2002 | B1 |
6592829 | Chakravarti et al. | Jul 2003 | B2 |
6676824 | Urquhart et al. | Jan 2004 | B2 |
6846584 | Dutil et al. | Jan 2005 | B2 |
6890497 | Rau et al. | May 2005 | B2 |
6908570 | Green | Jun 2005 | B2 |
6958136 | Chandran et al. | Oct 2005 | B2 |
7361279 | Hernandez et al. | Apr 2008 | B2 |
7427449 | Delaney et al. | Sep 2008 | B2 |
7517435 | Guth et al. | Apr 2009 | B2 |
7527770 | Monzyk et al. | May 2009 | B2 |
7655069 | Wright et al. | Feb 2010 | B2 |
7655193 | Rau et al. | Feb 2010 | B1 |
7699909 | Lackner et al. | Apr 2010 | B2 |
7708806 | Wright et al. | May 2010 | B2 |
7727374 | Jones | Jun 2010 | B2 |
7735274 | Constantz et al. | Jun 2010 | B2 |
7744761 | Constantz et al. | Jun 2010 | B2 |
7749476 | Constantz et al. | Jul 2010 | B2 |
7754169 | Constantz et al. | Jul 2010 | B2 |
7833328 | Lackner et al. | Nov 2010 | B2 |
7846406 | Furnary et al. | Dec 2010 | B2 |
7875163 | Gilliam et al. | Jan 2011 | B2 |
7887694 | Constantz et al. | Feb 2011 | B2 |
7909911 | Lackner et al. | Mar 2011 | B2 |
7931809 | Constantz et al. | Apr 2011 | B2 |
7993432 | Wright et al. | Aug 2011 | B2 |
7993500 | Gilliam et al. | Aug 2011 | B2 |
8062418 | Constantz et al. | Nov 2011 | B2 |
8105558 | Comrie | Jan 2012 | B2 |
8114214 | Constantz et al. | Feb 2012 | B2 |
8114374 | Blencoe et al. | Feb 2012 | B2 |
8137444 | Farsad et al. | Mar 2012 | B2 |
8137455 | Constantz et al. | Mar 2012 | B1 |
8177909 | Constantz et al. | May 2012 | B2 |
8202659 | Coustry et al. | Jun 2012 | B2 |
8470276 | Siriwardane et al. | Jun 2013 | B1 |
8673256 | Blencoe et al. | Mar 2014 | B2 |
8741244 | Jones | Jun 2014 | B2 |
9968883 | Yablonsky et al. | May 2018 | B2 |
20020129450 | Kim | Sep 2002 | A1 |
20040051080 | Ernst et al. | Mar 2004 | A1 |
20040089841 | Green | May 2004 | A1 |
20040096384 | Echigo et al. | May 2004 | A1 |
20040178149 | Hernandez et al. | Sep 2004 | A1 |
20040213705 | Blencoe et al. | Oct 2004 | A1 |
20040219090 | Dziedzic et al. | Nov 2004 | A1 |
20040265202 | Chandran et al. | Dec 2004 | A1 |
20050002847 | Maroto-Valer et al. | Jan 2005 | A1 |
20050011770 | Katsuyoshi et al. | Jan 2005 | A1 |
20050013750 | Monykz et al. | Jan 2005 | A1 |
20050031522 | Delaney et al. | Feb 2005 | A1 |
20050180910 | Park et al. | Aug 2005 | A1 |
20060051274 | Wright et al. | Mar 2006 | A1 |
20060076228 | Guth et al. | Apr 2006 | A1 |
20060185985 | Jones | Aug 2006 | A1 |
20060186562 | Wright et al. | Aug 2006 | A1 |
20060289003 | Lackner et al. | Dec 2006 | A1 |
20070187247 | Lackner et al. | Aug 2007 | A1 |
20080031801 | Lackner et al. | Feb 2008 | A1 |
20080087165 | Wright et al. | Apr 2008 | A1 |
20080138265 | Lackner et al. | Jun 2008 | A1 |
20080245660 | Little et al. | Oct 2008 | A1 |
20080245672 | Little et al. | Oct 2008 | A1 |
20080248350 | Little et al. | Oct 2008 | A1 |
20090001020 | Constantz et al. | Jan 2009 | A1 |
20090010827 | Geerlings et al. | Jan 2009 | A1 |
20090020044 | Constantz et al. | Jan 2009 | A1 |
20090074656 | Billings | Mar 2009 | A1 |
20090081096 | Pellegrin | Mar 2009 | A1 |
20090101008 | Lackner et al. | Apr 2009 | A1 |
20090101050 | Lackner et al. | Apr 2009 | A1 |
20090120288 | Lackner et al. | May 2009 | A1 |
20090127127 | Jones | May 2009 | A1 |
20090169452 | Constantz et al. | Jul 2009 | A1 |
20090202413 | Saxena | Aug 2009 | A1 |
20090232861 | Wright et al. | Sep 2009 | A1 |
20090294366 | Wright et al. | Dec 2009 | A1 |
20090320688 | Lackner et al. | Dec 2009 | A1 |
20100051859 | House et al. | Mar 2010 | A1 |
20100092368 | Neumann et al. | Apr 2010 | A1 |
20100095842 | Lackner et al. | Apr 2010 | A1 |
20100105126 | Wright et al. | Apr 2010 | A1 |
20100116137 | Wright et al. | May 2010 | A1 |
20100155258 | Kirk et al. | Jun 2010 | A1 |
20100202937 | Lackner et al. | Aug 2010 | A1 |
20110027142 | Wright et al. | Feb 2011 | A1 |
20110027143 | Wright et al. | Feb 2011 | A1 |
20110027157 | Wright et al. | Feb 2011 | A1 |
20110033357 | Wright et al. | Feb 2011 | A1 |
20110033358 | Wright et al. | Feb 2011 | A1 |
20110056382 | Lackner et al. | Mar 2011 | A1 |
20110079144 | Wright et al. | Apr 2011 | A1 |
20110079146 | Wright et al. | Apr 2011 | A1 |
20110079147 | Wright et al. | Apr 2011 | A1 |
20110079149 | Wright et al. | Apr 2011 | A1 |
20110079150 | Wright et al. | Apr 2011 | A1 |
20110081709 | Wright et al. | Apr 2011 | A1 |
20110081710 | Wright et al. | Apr 2011 | A1 |
20110081712 | Wright et al. | Apr 2011 | A1 |
20110083554 | Wright et al. | Apr 2011 | A1 |
20110091955 | Constantz et al. | Apr 2011 | A1 |
20110135551 | House et al. | Jun 2011 | A1 |
20120291675 | Camire et al. | Nov 2012 | A1 |
20130202516 | Jones et al. | Aug 2013 | A1 |
20140147371 | Blencoe et al. | May 2014 | A1 |
20140328743 | Jones | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
102245279 | Nov 2011 | CN |
19631794 | Aug 1997 | DE |
2070578 | Jun 2009 | EP |
2460910 | Jun 2010 | GB |
1999-1612 | Apr 1999 | GE |
2001-2514 | Aug 2001 | GE |
2004-3357 | Oct 2004 | GE |
49-023797 | Mar 1974 | JP |
51-023499 | Feb 1976 | JP |
52-085997 | Jul 1977 | JP |
55-056015 | Apr 1980 | JP |
61-048587 | Mar 1986 | JP |
10-001307 | Jan 1998 | JP |
2002-273163 | Sep 2002 | JP |
2004-174369 | Jun 2004 | JP |
2006-137620 | Jun 2006 | JP |
2010-125354 | Jun 2010 | JP |
2011-521879 | Jul 2011 | JP |
2012-504043 | Feb 2012 | JP |
2 019 271 | Sep 1994 | RU |
2 031 695 | Mar 1995 | RU |
2 054 959 | Feb 1996 | RU |
2 199 374 | Feb 2003 | RU |
2 334 547 | Aug 2005 | RU |
WO 9824725 | Jun 1998 | WO |
WO 2004037391 | May 2004 | WO |
WO 2004098740 | Nov 2004 | WO |
WO 2005108291 | Nov 2005 | WO |
WO 2005108297 | Nov 2005 | WO |
WO 2006009600 | Jan 2006 | WO |
WO 2006023743 | Mar 2006 | WO |
WO 2006034339 | Mar 2006 | WO |
WO 2006036396 | Apr 2006 | WO |
WO 2006084008 | Aug 2006 | WO |
WO 2006113673 | Oct 2006 | WO |
WO 2006113997 | Nov 2006 | WO |
WO 2007003013 | Jan 2007 | WO |
WO 2007016271 | Feb 2007 | WO |
WO 2007018558 | Feb 2007 | WO |
WO 2007078017 | Jul 2007 | WO |
WO 2008018928 | Feb 2008 | WO |
WO 2008042919 | Apr 2008 | WO |
WO 2008061210 | May 2008 | WO |
WO 2008124538 | Oct 2008 | WO |
WO 2008131132 | Oct 2008 | WO |
WO 2008148055 | Dec 2008 | WO |
WO 2009039445 | Mar 2009 | WO |
WO 2009061836 | May 2009 | WO |
WO 2009086460 | Jul 2009 | WO |
WO 2009102816 | Aug 2009 | WO |
WO 2009105566 | Aug 2009 | WO |
WO 2009149292 | Dec 2009 | WO |
WO 2010019600 | Feb 2010 | WO |
WO 2010022399 | Feb 2010 | WO |
WO 2010132395 | Nov 2010 | WO |
WO 2011011740 | Jan 2011 | WO |
WO 2011075680 | Jun 2011 | WO |
WO 2012006601 | Jan 2012 | WO |
WO 2012028535 | Sep 2012 | WO |
WO 2013106730 | Jul 2013 | WO |
WO 2015109190 | Jul 2015 | WO |
WO 2016064918 | Apr 2016 | WO |
Entry |
---|
“Skyonic Corporation presents the SkyMine Process—A proprietary technology that removes carbon dioxide (CO2) and other flue gas pollutants—converting same into non-toxic, commercial chemicals,” Presentation given to President's Council of Advisors on Science and Technology by Joe Jones and Steve Goldstein, on Sep. 20, 2005. |
Air and Gas Duct Structural Design Committee of the Energy Division of the Air and Gas Structural Design Committee. The Structural Design of Air and Gas Ducts for Power Stations and Industrial Boiler Applications. Ronald L. Schneider, chmn. New York, NY: ASCE Publications, Aug. 1, 1995. pp. 11-15. |
Baris, et al., “The Assessment for CO2 Sequestration Potential by Magnesium Silicate Minerals in Turkey,; Cases of Orhaneli-Bursa and Divrigi-Sivas Regions,” Energy Exploration & Exploitation, 26(5); 293-309, 2008. |
Cadmium Chloride, Material Safety Data Sheet, CAS No. 7790-78-5, ESPI Metals, available on the internet at http://www.espimetals.com/index.php/msds/460-cadmium-chloride. Revised/Verified Sep. 2005. Accessed Dec. 28, 2011. |
Calcium Nitrate Tetrahydrate, Material Safety Data Sheet, CAS No. 13477-34-4, available on the internet at http://avogadro.chem.iastate.edu/MSDS/Ca%28NO3%292-4H2O.htm. MSDS Creation Date: Jan. 21, 1998. Revision #4 Date: Oct. 3, 2005. Accessed Dec. 28, 2011. |
Cobalt Iodide, Material Safety Data Sheet, CAS No. 45238-00-3, ESPI Metals, available on the internet at http://www.espimetals.com/index.php/msds/527-cobalt-iodide. Revised/Verified Dec. 2004. Accessed Dec. 28, 2011. |
Cobalt(II) Sulfate Heptahydrate, Material Safety Data Sheet, CAS No. 10026-24-1, Chemical Book, available on the internet at http://www.chemicalbook.com/ProductMSDSDetailCB0323842_EN.htm. Copyright 2008. Accessed Dec. 28, 2011. |
European Search Report Issued in Corresponding European Application No. 16756203.2, dated Nov. 9, 2018. |
Goldberg et al., “CO2 mineral sequestration studies in US,” Proceedings of First National Conference on Carbon Sequestration, May 14-17, 2001, Washington, DC., section 6c, United States Department of Energy, National Energy Technology Laboratory, available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/6d.pdf. |
Haywood, et al. “Carbon Dioxide Sequestration as Stable Carbonate Minerals—Environmental Barriers.” Environmental Geology 41:11-16 (2001). |
Huijgen & Comans, “Carbon dioxide sequestration by mineral carbonation” Literature Review, 2003. |
International Search Report and Written Opinion issued in Application No. PCT/US2016/019164, dated May 6, 2016. |
Kelley, “Energy requirements and equilibria in the dehydration, hydrolysis, and decomposition of magnesium chloride”, Technical Paper 676, United States Government Printing Office, pp. 1-26, 1945. |
Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed. vol. 15 p. 343, 1998, New York: John Wiley and Sons. |
Kirsh et al., “Kinetic analysis of thermal dehydration and hydrolysis of MgCl12.6H2O by DTA and TG,” Journal of Thermal Analysis, 32:393-408, 1987. |
Lackner et al., “Magnesite disposal of carbon dioxide,” submitted to 22nd International Technical Conference on Coal Utilization and Fuel System, Clearwater, Florida, Mar. 16-19, 1997. |
Lackner, et al., “Carbon Dioxide Disposal in Carbonate Minerals,” Energy vol. 20, No. 11, pp. 1153-1170 (1995). |
Lithium Bromide, Material Safety Data Sheet, CAS No. 7550-35-8, ChemCas, available on the internet at http://www.chemcas.com/material/cas/archive/7550-35-8_v1.asp. Material Safety Data Sheet Creation Date: Jun. 29, 1999. Revision #3 Date: Mar. 18, 2003. Accessed Dec. 28, 2011. |
Magnesium Nitrate Hexahydrate, Material Safety Data Sheet, CAS No. 13446-18-9, available on the internet at http://avogadro.chem.iastate.edu/MSDS/MgNO3-6H2O.htm. Material Safety Data Sheet Creation Date: Sep. 2, 1997. Revision #6 Date: Aug. 11, 2004. Accessed Dec. 28, 2011. |
Manganese (II) Chloride Tetrahydrate, Material Safety Data Sheet, CAS No. 13446-34-9, available on the internet at http://avogadro.chem.iastate.edu/MSDS/MnCl2.htm. Material Safety Data Sheet Creation Date: Dec. 12, 1997. Revision #2 Date: Mar. 18, 2003. Accessed Dec. 28, 2011. |
Office Action dated Jul. 24, 2019 in corresponding Chinese Patent Application No. 201680021584.8. (17 pages with translations). |
Office Communication issued in Australian Patent Application No. 2005286729, dated Mar. 5, 2010. |
Office Communication issued in Australian Patent Application No. 2005286729, dated Sep. 27, 2010. |
Office Communication issued in Australian Patent Application No. 2010212414, dated Mar. 28, 2011. |
Office Communication issued in Australian Patent Application No. 2010212413, dated Mar. 25, 2011. |
Office Communication issued in Chinese Patent Application No. 20050038754.5, dated Jun. 2, 2010. (English translation). |
Office Communication issued in Chinese Patent Application No. 20050038754.5, dated Nov. 21, 2008. (English translation). |
Office Communication issued in Chinese Patent Application No. 20050038754.5, dated Oct. 30, 2009. (English translation). |
Office Communication issued in Chinese Patent Application No. 200580038754.5 dated May 4, 2011. (English translation). |
Office Communication issued in European Patent Application No. 05799708.2, dated Jan. 20, 2011. |
Office Communication issued in European Patent Application No. 08831664.1-2113, dated Sep. 10, 2009. |
Office Communication issued in Georgian Patent Application AP 2008 011762, dated Sep. 30, 2011 (English translation included). |
Office Communication issued in Georgian Patent Application No. AP 2005 009999, dated Jul. 26, 2010. (English translation). |
Office Communication issued in Georgian Patent Application No. AP 2005 009999, dated Jan. 8, 2009. (English translation). |
Office Communication issued in Georgian Patent Application No. AP 2005 009999, dated Sep. 28, 2011. (English translation). |
Office Communication issued in Japanese Patent Application No. 2007533607, dated Oct. 6, 2010. (English translation). |
Office Communication issued in Korean Patent Application No. 10-2007-7009233, dated Nov. 1, 2010. (English Translation). |
Office Communication issued in Russian Patent Application No. 2007115051, dated Sep. 18, 2009. (English translation). |
Office Communication issued in Russian Patent Application No. 2007115051, dated Apr. 1, 2010. (English translation). |
Office Communication issued in Taiwanese Patent Application No. 09413312, dated Dec. 15, 2010 (English translation). |
Office Communication issued in U.S. Appl. No. 12/235,482, dated Sep. 3, 2010. |
Office Communication issued in U.S. Appl. No. 12/235,482, dated Mar. 31, 2011. |
Office Communication issued in U.S. Appl. No. 12/790,121, dated Oct. 28, 2010. |
Office Communication issued in U.S. Appl. No. 12/790,121, dated Sep. 2, 2011. |
Office Communication issued in U.S. Appl. No. 11/233,509, dated Oct. 2, 2009. |
Office Communication issued in U.S. Appl. No. 11/233,509, dated May 27, 2009. |
Office Communication issued in U.S. Appl. No. 11/233,509, dated Sep. 4, 2008. |
Office Communication issued in U.S. Appl. No. 11/233,509, dated Dec. 24, 2008. |
Ohta, Tokio. Solar-Hydrogen Energy Systems, Pergamon Press, 1979, p. 104. |
PCT International Preliminary Report on Patentability issued in International Application No. PCT/US2008/077122, dated Apr. 1, 2010. |
PCT International Search Report and Written Opinion issued in International Application No. PCT/US2005/033814, dated Feb. 15, 2006. |
PCT International Search Report and Written Opinion issued in International Application No. PCT/US2010/061111, dated Feb. 18, 2011. |
PCT International Search Report and Written Opinion issued in International Application No. PCT/US11/43470, dated Dec. 6, 2011. |
PCT International Search Report and Written Opinion issued in International Application No. PCT/US2008/077122, dated Oct. 30, 2009. |
Proceedings of First National Conference on Carbon Sequestration, May 14-17, 2001, Washington, DC. United States Department of Energy, National Energy Technology Laboratory. CD-ROM USDOE/NETL-2001/1144; also available at http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/carbon_seq01.html. |
Pulvirenti et al., “Acid generation upon thermal concentration of natural water: The critical ate content and the effects of ionic composition,” Journal of Contaminant Hydrology, 109:62-81, 2009. |
Search Report, issued by Georgian National Center of Intellectual Property “SAK:ATENT”, issued in Georgian Application No. AP 2005 009999, dated Jan. 8, 2010. (English Translation). |
Shore et al., “V.F.1—Platinum Group Metal Recycling Technology Development,” Department of Energy Hydrogen Program, United States. Department of Energy Fiscal Year 2008 Annual Progress Report, pp. 35-938. Published Nov. 2008. Available on the internet at http://www.hydrogen.energy.gov/pdfs/progress08/v_f_1_shore.pdf. Accessed Dec. 28, 2011. |
Sodium Iodide, Material Safety Data Sheet, CAS No. 7681-82-5, Chemical Book, available on the internet at http://www.chemicalbook.com/ProductMSDSDetailCB6170714_EN.htm. Copyright 2008. Accessed Dec. 28, 2011. |
Solar-Hydrogen Energy System: Chapter 5—Thermochemical Hydrogen Production, Published by Pergamon, Dec. 31, 1979, pp. 81-114. |
U.S. Appl. No. 60/612,355 entitled “Removing Carbon Dioxide From Waste Streams Through Co-Generation of Synthetic Carbonate Minerals ,” by Joe David Jones, filed Sep. 23, 2004. |
U.S. Appl. No. 60/642,698 entitled “Removing Carbon Dioxide From Waste Streams Through Co-Generation of Synthetic Carbonate Minerals ,” by Joe David Jones, Jan. 10, 2005. |
U.S. Appl. No. 60/718,906 entitled “Removing Carbon Dioxide From Waste Streams Through Co-Generation of Synthetic Carbonate Minerals ,” by Joe David Jones, filed Sep. 20, 2005. |
U.S. Appl. No. 60/973,948 entitled “Removing Carbon Dioxide From Waste Streams Through Co-Generation of Carbonate and/or Bicarbonate Minerals,” by Joe David Jones, filed Sep. 20, 2007. |
U.S. Appl. No. 61/032,802 entitled “Removing Carbon Dioxide From Waste Streams Through Co-Generation of Carbonate and/or Bicarbonate Minerals ,” by Joe David Jones, filed Feb. 29, 2008. |
U.S. Appl. No. 61/033,298 entitled “Removing Carbon Dioxide From Waste Streams Through Co-Generation of Carbonate and/or Bicarbonate Minerals,” by Joe David Jones, filed Mar. 3, 2008. |
U.S. Appl. No. 61/288,242 entitled “Carbon Dioxide Sequestration Through Formation of Group-2 Carbonates and Silicon Dioxide”, by Joe David Jones, filed Dec. 18, 2009. |
U.S. Appl. No. 61/362,607 entitled “Carbon Dioxide Sequestration Involving Energy-Efficient Conversion of Group 2 Chlorides to Group 2 Hydroxides,” by Joe David Jones, filed Jul. 8, 2010. |
U.S. Appl. No. 61/370,030 entitled “Carbon Dioxide Sequestration Involving Energy-Efficient Conversion of Group 2 Chlorides to Group 2 Hydroxides,” by Joe David Jones and Al Yablonsky, filed Aug. 2, 2010. |
U.S. Appl. No. 61/406,536 entitled “Carbon Dioxide Sequestration Involving Energy-Efficient Conversion of Group 2 Chlorides to Group 2 Hydroxides,” by Joe David Jones and Al Yablonsky, filed Oct. 25, 2010. |
U.S. Appl. No. 61/451,078 entitled “Carbon Dioxide Sequestration Involving Energy-Efficient Conversion of Group 2 Chlorides to Group 2 Hydroxides,” by Joe David Jones and Al Yablonsky, filed Mar. 9, 2011. |
Wei, Xinchao, “Technological evaluation of mineral sequestration of CO2 by carbonation,” Thesis submitted to College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mining Engineering, 2003. |
Zhang, et al. “A Novel Indirect Wollastonite Carbonation Route for CO2 Sequestration” Chemical Engineering Technology vol. 33, No. 7, 1177-1183. |
Hearing Notice in corresponding India Application No. 201717033007, dated Nov. 25, 2022. |
Kondakov, D. F. et al., “Manufacturing of Magnesium Hydroxide from Natural Magnesium Chloride Sources”, Theoretical Foundations of Chemical Engineering, 41(5), 572-576, 2007. |
Number | Date | Country | |
---|---|---|---|
20230211289 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
62119633 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15552873 | US | |
Child | 16813160 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16813160 | Mar 2020 | US |
Child | 18054473 | US |