The invention generally relates to a cross member for an automotive chassis structure.
An automotive chassis structure may include a cross member that extends laterally between two longitudinal frame rails. Often, the cross member is used to support a transmission, as well as provide lateral support to the longitudinal frame rails. The cross member must provide the required tensile and flexure strength, at a minimal weight, in order to improve fuel efficiency of the vehicle.
A cross member for an automotive chassis structure is provided. The cross member includes a first portion and a second portion. The first portion extends along a longitudinal axis, and includes a generally U-shaped cross section perpendicular to the longitudinal axis. The second portion extends along the longitudinal axis, and includes a generally inverted U-shaped cross section perpendicular to the longitudinal axis. The first portion and the second portion are attached together to define a tubular structure that extends along the longitudinal axis, and defines a hollow interior region. The first portion and the second portion each include and are manufactured from a thermoplastic resin material reinforced with carbon fiber.
Because the cross member is manufactured from the thermoplastic resin material that is reinforced with the carbon fiber, the cross member is lighter than similarly sized and shaped members manufactured from steel or other metals, while still providing the required tensile and flexural strength. Furthermore, because the cross member is manufactured from the thermoplastic resin material that is reinforced with carbon fiber, the shape of the cross member may vary to optimize the required stiffness and/or strength in various regions of the cross member.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Those having ordinary skill in the art will recognize that terms such as “above,” “below,” “upward,” “downward,” “top,” “bottom,” etc., are used descriptively for the figures, and do not represent limitations on the scope of the invention, as defined by the appended claims. Furthermore, the invention may be described herein in terms of functional and/or logical block components and/or various processing steps. It should be realized that such block components may be realized by any number of hardware, software, and/or firmware components configured to perform the specified functions.
Referring to the Figures, wherein like numerals indicate like parts throughout the several views, a cross member is generally shown at 20. The cross member 20 is for an automotive chassis structure. The cross member 20 is attached at each axial end thereof to a frame rail (not shown) of the chassis structure.
Referring to
The first portion 24 and the second portion 26 each include and are manufactured from a thermoplastic resin reinforced with carbon fiber, often referred to as a carbon fiber material. Preferably, the carbon fiber includes a length of between 3.0 and 100 mm. The carbon fiber may be configured as a highly planar oriented random mat. Additionally, a uni-directional oriented fiber layer may also be included. Preferably, the first portion 24 and the second portion 26 are each individually manufactured from a compression molding process. The thermoplastic resin reinforced with the carbon fiber includes a tensile strength of at least 200 MPa, and a flexural strength of at least 300 MPa.
The type of carbon fiber may include short length fibers (0.1-10 mm), long length fibers (10-100 mm), or continuous fibers (>100 mm), and may include a combination thereof. Preferably long length fibers are used due to their good balance of mold-ability/productivity/mechanical performance. The carbon fibers may be configured in a random-oriented or specific-direction-oriented manner. In addition, the fiber mat may be highly planar oriented or uni-directional oriented or the combination thereof. Preferably, the fiber mat is random-oriented fiber due to the good balance of mold-ability/productivity/mechanical performance. In addition, a uni-directional oriented carbon fiber layer may be included in order to enhance local stiffness & strength at certain area.
The carbon fiber reinforced plastic material may be a lamination of a fiber reinforced layer and a resin layer. The thermoplastic resin may include any suitable kind of thermoplastic resin. For example, the thermoplastic resin may include but is not limited to: vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile styrene resin, acrylonitrile butadiene styrene resin, acrylic resin, metacrylate resin, polyethylene resin, polypropylene resin, polyamide resin (PA6, PA11, PA12, PA46, PA66, PA610), polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polybutylene terephthalate resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polylactic resin, or a compound of more than 2 types of the above noted resins. The carbon fiber reinforced plastic may further include functional filler or additive agents like organic/inorganic filler, fire-retardant, anti-UV agent, colorant, mold release agent, softener, plasticizing agent, surface acting agent etc.
The first portion 24 and the second portion 26 may be attached together in any suitable manner capable of attaching carbon fiber components together. For example, the first portion 24 and the second portion 26 may be attached together by one of an ultrasonic welding process, an adhesive bonding process, a mechanical fastening process, a vibration welding process, a heat welding process, a solvent welding process, or a combination thereof.
Referring to
The first portion 24 includes a first corner 42 that is disposed at the intersection of the bottom wall 32 and the first side wall 34. The first corner 42 defines a first interior radius 44 that is disposed within the interior region 30 of the tubular structure 28, and a first exterior radius 46 that is disposed along an exterior surface 48 of the first portion 24. The first portion 24 includes a second corner 50 that is disposed at the intersection of the bottom wall 32 and the second side wall 36. The second corner 50 defines a second interior radius 52 that is disposed within the interior region 30 of the tubular structure 28, and a second exterior radius 54 that is disposed along the exterior surface 48 of the first portion 24. Because the first portion 24 is manufactured from the compression molded carbon fiber plastic, the first interior radius 44 and the first exterior radius 46 may vary independently of each other. Accordingly, the value of the first interior radius 44 is not dependent upon the value of the first exterior radius 46, nor is the value of the first exterior radius 46 dependent upon the value of the first interior radius 44. Similarly, the second interior radius 52 and the second exterior radius 54 may vary independently of each other as well.
The first portion 24 defines a first angle 56 that is formed within the interior region 30 between the bottom wall 32 and the first side wall 34 of the first portion 24. The value of the first angle 56 is greater than ninety degrees (90°). Preferably, the value of the first angle 56 is between the range of ninety degrees (90°) and one hundred thirty five degrees (135°), and more preferably is between the range of ninety degrees (90°) and ninety five degrees (95°). The first portion 24 further defines a second angle 58 that is formed within the interior region 30 between the bottom wall 32 and the second side wall 36 of the first portion 24. The value of the second angle 58 is greater than ninety degrees (90°). Preferably, the value of the second angle 58 is between the range of ninety degrees (90°) and one hundred thirty five degrees (135°), and more preferably is between the range of ninety degrees (90°) and ninety five degrees (95°). While the first angle 56 and the second angle 58 are shown as having identical values in the Figures, it should be appreciated that the value of the first angle 56 may differ from the value of the second angle 58, i.e., the value of the first angle 56 and the second angle 58 of the first portion 24 may each include a non equal value.
The second portion 26 includes a top wall 60, a third side wall 62, and a fourth side wall 64. The third side wall 62 and the fourth side wall 64 of the second portion 26 extend from opposing lateral edges of the top wall 60 to distal edges thereof respectively. The second portion 26 includes a third side flange 66 that extends from the distal edge of the third side wall 62 of the second portion 26. The third side flange 66 extends outward and away from the interior region 30 of the tubular structure 28. The second portion 26 includes a fourth side flange 68 that extends from the distal edge of the fourth side wall 64 of the second portion 26. The fourth side flange 68 extends outward and away from the interior region 30 of the tubular structure 28.
The first side flange 38 of the first portion 24 and the third side flange 66 of the second portion 26 are disposed in abutting engagement to define a first flange joint 70. Similarly, the second side flange 40 of the first portion 24 and the fourth side flange 68 of the second portion 26 are disposed in abutting engagement to define a second flange joint 72. The first portion 24 and the second portion 26 are attached to each other along the first flange joint 70 and the second flange joint 72. As such, the first flange joint 70 and the second flange joint 72 provide the required surface area contact for attaching the carbon fiber first portion 24 and the carbon fiber second portion 26 together.
The first side flange 38 and the second side flange 40 of the first portion 24 may include at least one ridge 74 for engaging the third side flange 66 and the fourth side flange 68 of the second portion 26 respectively. Alternatively, the third side flange 66 and the fourth side flange 68 of the second portion 26 may include at least one ridge 74 for engaging the first side flange 38 and the second side flange 40 of the first portion 24 respectively. It should be appreciated that all of the first side flange 38, the second side flange 40, the third side flange 66 and the fourth side flange 68 may include one or more ridges 74. The ridges 74 on the side flanges strengthen the attachment between the first portion 24 and the second portion 26 along the first flange joint 70 and the second flange joint 72. The ridges 74 may function as a spacer to keep an appropriate gap for an adhesive. Additionally, if a welding process, such as but not limited to a vibration welding process or an ultrasonic welding process is used to attach the side flanges, then the ridges 74 may function as an energy director, and may be partially melted away to form the connection between the first portion 24 and the second portion 26. As used herein, the term “energy director” is defined as a feature that limits initial contact to a small area, which focuses welding energy to get a more stable and constant melting of the material, or a feature that operates as a dimension adjuster to change a dimension of an object by melting.
The second portion 26 includes a third corner 76 that is disposed at the intersection of the top wall 60 and the third side wall 62. The third corner 76 defines a third interior radius 78 disposed within the interior region 30 of the tubular structure 28, and a third exterior radius 80 disposed along an exterior surface 82 of the second portion 26. The second portion 26 further includes a fourth corner 84 that is disposed at the intersection of the top wall 60 and the fourth side wall 64. The fourth corner 84 defines a fourth interior radius 86 disposed within the interior region 30 of the tubular structure 28, and a fourth exterior radius 88 that is disposed along the exterior surface 82 of the second portion 26. Because the second portion 26 is manufactured from the compression molded carbon fiber material, the third interior radius 78 and the third exterior radius 80 may vary independently of each other. Accordingly, the value of the third interior radius 78 is not dependent upon the value of the third exterior radius 80, nor is the value of the third exterior radius 80 dependent upon the value of the third interior radius 78. Similarly, the fourth interior radius 86 and the fourth exterior radius 88 may vary independently of each other as well.
The second portion 26 defines a third angle 90 that is formed within the interior region 30 between the top wall 60 and the third side wall 62 of the second portion 26. The value of the third angle 90 is greater than ninety degrees (90°). Preferably, the value of the third angle 90 is between the range of ninety degrees (90°) and one hundred thirty five degrees (135°), and more preferably is between the range of ninety degrees (90°) and ninety five degrees (95°). The second portion 26 further defines a fourth angle 92 that is formed within the interior region 30 between the top wall 60 and the fourth side wall 64 of the second portion 26. The value of the fourth angle 92 is greater than ninety degrees (90°). Preferably, the value of the fourth angle 92 is between the range of ninety degrees (90°) and one hundred thirty five degrees (135°), and more preferably is between the range of ninety degrees (90°) and ninety five degrees (95°). While the third angle 90 and the fourth angle 92 are shown as having identical values in the Figures, it should be appreciated that the value of the third angle 90 may differ from the value of the fourth angle 92, i.e., the value of the third angle 90 and the fourth angle 92 of the second portion 26 may each include a non equal value.
Because both the first portion 24 and the second portion 26 are manufactured from the compression molded carbon fiber material, at least one of the first portion 24 and the second portion 26 may include a wall thickness that may vary in either an axial direction along the longitudinal axis 22, or a transverse direction perpendicular to the longitudinal axis, or may vary simultaneously in both the axial direction along the longitudinal axis 22, and the transverse direction perpendicular to the longitudinal axis 22. Referring to
Referring to
Referring to
Referring to
The cross member 20 may be used to support a transmission or other structure of the vehicle. Accordingly, as best shown in
Referring to
The detailed description and the drawings or figures are supportive and descriptive of the invention, but the scope of the invention is defined solely by the claims. While some of the best modes and other embodiments for carrying out the claimed invention have been described in detail, various alternative designs and embodiments exist for practicing the invention defined in the appended claims.