The present invention relates to a carbon fiber fabric with a sizing capable of achieving good mechanical properties and high resistance against thermal degradation.
Carbon Fiber Reinforced Plastics (CFRP) have superior mechanical properties such as high specific strength and high specific modulus; therefore, they are widely used for a wide variety of applications, e.g., aerospace, sports equipment, industrial goods, and the like. In particular, CFRP with a matrix consisting of a thermoplastic resin has a great advantage such as quick molding and superior impact strength. In recent years, research and development efforts in this area have been flourishing.
In general, polymer matrix composite materials tend to show reduced strength and modulus under high temperature conditions. Thereby, heat resistant matrix resins are necessary in order to maintain desired mechanical properties under high temperature conditions. Such heat resistant matrix resins include a thermosetting polyimide resin, a urea formaldehyde resin, a thermoplastic polyimide resin, a polyamideimide resin, a polyetherimide resin, a polysulfone resin, a polyethersulfone resin, a polyetheretherketone resin, a polyetherketoneketone resin, a polyamide, and a polyphenylenesulfide resin.
CFRP with heat resistant matrix resins are molded under high temperature conditions, so a sizing must withstand thermal degradation. If the sizing undergoes thermal degradation, voids and some other problems occur inside a composite, resulting in undesired composite mechanical properties. Accordingly, a heat resistant sizing is an essential part of CFRP for better handleability, superior interfacial adhesive capability, controlling fuzz development, etc.
A conventional heat resistant sizing has been developed and tried in the past. For instance, U.S. Pat. No. 4,394,467 and U.S. Pat. No. 5,401,779 have disclosed a polyamic acid oligomer as an intermediate agent generated from a reaction of an aromatic diamine, an aromatic dianhydride, and an aromatic tetracarboxylic acid diester. When the intermediate agent is applied to a carbon fiber at an amount of 0.3 to 5 weight % (or more desirably 0.5 to 1.3 weight %), it is possible to produce a polyimide coating. However, the sizing amount of 0.3 to 5 weight % does not seem efficient in terms of drape ability and spreadability for resin impregnation. The composite mechanical properties tend to be lower than a desirable level.
In U.S. Pat. No. 5,230,956, reinforcing fibers coated on the surface with a sizing composition comprising polyamide-amic acid, amide-imide polymer, amide-imide copolymer, amide-imide phthalamide copolymer or mixtures of these materials, which are dissolved with organic solvent, have been disclosed. Organic solvent based sizing has a significantly higher impact on environment, health, and safety as compared with an aqueous based sizing.
In U.S. Pat. No. 7,135,516, carbon fiber fabric sized with water-soluble thermoplastic resin and amphoteric surfactant has been disclosed. But the thermal stability of sizing has not been disclosed.
In view of the problems described above, an object of the present invention is to provide a carbon fiber fabric with a thermally stable sizing that enables enhanced adhesion to the thermoplastic matrix, good resin impregnation, and a lower propensity for generation of voids and harmful volatiles during processing owing to the inherent thermal stability as compared with less stable sizings.
Further objects and advantages of the invention will be apparent from the following description of the invention.
In order to attain the objects described above, according to the present invention, a carbon fiber fabric is made of a carbon fiber coated with a sizing being formed of a heat resistant polymer or a precursor of the heat resistant polymer.
Table 1 shows a relationship between strand tensile strength and sizing amount (KAPTON type polyimide, T800SC-24K);
Table 2 shows a relationship between drape value and sizing amount (KAPTON type polyimide, T800SC-24K);
Table 3 shows a relationship between rubbing fuzz and sizing amount (KAPTON type polyimide, T800SC-24K);
Table 4 shows a relationship between ILSS and sizing amount (KAPTON type polyimide, T800SC-24K);
Table 5 shows a relationship between strand tensile strength and sizing amount (ULTEM type, polyetherimide, T800SC-24K);
Table 6 shows a relationship between drape value and sizing amount (ULTEM type polyetherimide, T800SC-24K);
Table 7 shows a relationship between rubbing fuzz and sizing amount (ULTEM type polyetherimide, T800SC-24K);
Table 8 shows a relationship between ILSS and sizing amount (ULTEM type polyetherimide, T800SC-24K);
Table 9 shows a relationship between strand tensile strength and sizing amount (ULTEM type polyetherimide, T700SC-12K);
Table 10 shows a relationship between drape value and sizing amount (ULTEM type polyetherimide, T700SC-12K);
Table 11 shows a relationship between rubbing fuzz and sizing amount (ULTEM type polyetherimide, T700SC-12K);
Table 12 shows a relationship between ILSS and sizing amount (ULTEM type polyetherimide, T700SC-12K);
Table 13 shows a relationship between strand tensile strength and sizing amount (Methylated melamine-formaldehyde, T700SC-12K);
Table 14 shows a relationship between drape value and sizing amount (Methylated melamine-formaldehyde, T700SC-12K);
Table 15 shows a relationship between rubbing fuzz and sizing amount (Methylated melamine-formaldehyde, T700SC-12K);
Table 16 shows a relationship between ILSS and sizing amount (Methylated melamine-formaldehyde, T700SC-12K);
Table 17 shows a relationship between strand tensile strength and sizing amount (Epoxy cresol novolac, T700SC-12K);
Table 18 shows a relationship between drape value and sizing amount (Epoxy cresol novolac, T700SC-12K);
Table 19 shows a relationship between rubbing fuzz and sizing amount (Epoxy cresol novolac, T700SC-12K);
Table 20 shows a relationship between ILSS and sizing amount (Epoxy cresol novolac, T700SC-12K);
Table 21 shows adhesion strength between a T800S type fiber and polyetherimide resin; and
Table 22 shows adhesion strength between a T700S type fiber and polyetherimide resin.
Embodiments of the present invention will be explained with reference to the accompanying drawings.
In the embodiment, a fabric of this invention has plain weave, satin weave, or twill weave. And multiaxial fabric such as stitching can be also applicable to increase the out-of-plane strength. This invention is not limited to any particular weaves.
The carbon fiber fabric is made of commercially available carbon fiber (including graphite fiber). Specifically, a pitch type carbon fiber, a rayon type carbon fiber, or a PAN (polyacrylonitrile) type carbon fiber is used. Among these carbon fibers, the PAN type carbon fibers that have high tensile strength are the most desirable for the invention.
Among the carbon fibers, there are a twisted carbon fiber, an untwisted carbon fiber and a never twisted carbon fiber. The carbon fibers have preferably a yield of 0.06 to 4.0 g/m and a filament number of 1,000 to 48,000. In order to have high tensile strength and high tensile modulus in addition to low fuzz generation during the carbon fiber production, the single filament diameter should be 3 μm to 20 μm, more ideally, 4 μm to 10 μm.
Strand strength is desirably 3.0 GPa or above. 4.5 GPa or above is more desirable. 5.5 GPa or above is even more desirable. Tensile modulus is desirably 200 GPa or above. 220 GPa or above is more desirable. 240 GPa or above is even more desirable. If the strand strength and modulus of the carbon fiber are below 3.0 GPa and 200 GPa, respectively, it is difficult to obtain the desirable mechanical property when the carbon fiber is made into composite materials.
The desirable sizing amount on carbon fiber is 0.05 weight % or above. 0.1 weight % or above is more desirable. And 2.0 weight % or below is desirable. 1.0 weight % or below is more desirable. 0.7 weight % or below is more desirable. 0.3 weight % or below is even more desirable. If the sizing amount is less than 0.05 weight %, when carbon fiber is produced, fuzz generation makes the smooth production more difficult. On the other hand, if much sizing is coated on a carbon fiber, the carbon fiber is almost completely coated by the heat resistant polymer, resulting in low density of a carbon fiber strand, and poor spreadability. When this occurs, even resins with relatively low viscosity have undergone reduced impregnation; thereby leading to low mechanical properties. In addition from an environmental standpoint, the possibility that harmful volatiles are generated becomes higher during the sizing application process.
This invention is not limited to any particular method for manufacturing the fabric. Conventional methods such as a shuttle loom, or a rapier loom can be used.
The desirable relation B/A is greater than 1.05, and more desirable relation B/A is greater than 1.1, where A is the Interfacial Shear Strength (IFSS) of unsized fiber and B is IFSS of sized fiber in the present invention whose surface treatment must be same as the unsized fiber. IFSS can be measured by the Single Fiber Fragmentation Test (SFFT), and unsized fiber could be de-sized fiber. A SFFT procedure and a de-sizing method will be described later.
Carbonization, carbon fiber surface treatment, sizing application and winding are preferably in continuous process. Sizing application process as a part of carbon fiber manufacturing is preferable. Post application or “oversizing” of carbon fiber can be also used.
In order for the carbon fiber fabric to have superior resin impregnation, a drape value (measured by the procedures described below) of the fiber should be less than 15 cm, 12 cm or less is better, 10 cm or less is even more desirable, 8 cm or less is most desirable.
As to the matrix resin, either thermosetting or thermoplastic resins could be used. As for the thermosetting resins, the invention is not limited to any particular resins, and a thermosetting polyimide resin, an epoxy resin, a polyester resin, a polyurethane resin, a urea resin, a phenol resin, a melamine resin, a cyanate ester resin, and a bismaleimide resin may be used. As for the thermoplastic resin, resins, mostly heat resistant resins, that contain oligomer could be used. The invention is not limited to any particular heat resistant thermoplastic resins, and a thermoplastic polyimide resin, a polyamideimide resin, a polyetherimide resin, a polysulfone resin, a polyethersulfone resin, a polyetheretherketone resin, a polyetherketoneketone resin, a polyamide, and a polyphenylenesulfide resin may be used.
A heat resistant polymer is a desirable sizing agent to be used for coating a carbon fiber. The sizing agents are preferably a phenol resin, a urea resin, a melamine resin, a polyimide resin, a polyetherimide resin, or others, which can be an aqueous solution, an aqueous dispersion or an aqueous emulsion. These polymers can be also dissolved with organic solvent and applied to a carbon fiber. And organic solvent based sizing agents such as a polysulfone resin, a polyethersulfone resin, a polyetheretherketone resin, a polyetherketoneketone resin, a polyphenylenesulfide resin, a polyamide resin, or others can be also used. For some types of sizings, when the heat resistant polymer or polymer precursor is reacted chemically in order to obtain heat resistant polymer coating on a carbon fiber, water could be generated as a condensation product. For these sizings, it is desirable to complete the reaction in the process of the sizing application as much as possible. Otherwise, voids in a composite could become a problem due to water generation. An example of a heat resistant polymer will be shown as below.
A polyimide is made by heat reaction or chemical reaction of polyamic acid. During the imidization process, water is generated; therefore, it is important to complete imidization before composite fabrication. A water generation ratio W based on a carbon fiber during a composite fabrication process is preferably 0.05 weight % or less. 0.03 weight % or less is desirable. Ideally, 0.01 weight % or less is optimal. The water generation ratio W can be defined by the following equation:
W(weight %)=B/A×100
where the weight A of a sized fiber is measured after holding 2 hours at 110 degrees Celsius and the weight difference B between 130 degrees Celsius and 415 degrees Celsius of a sized fiber is measured under air atmosphere with TGA (holding 110 degrees Celsius for 2 hours, then heating up to 450 degrees Celsius at 10 degrees Celsius/min).
An imidization ratio X of 80% or higher is acceptable, and 90% or higher is desirable. Ideally, 95% or higher is optimal. The imidization ratio X is defined by the following equation:
X(%)=(1−D/C)×100
where the weight loss ratio C of a polyamic acid without being imidized and the weight loss ratio D of a polyimide are measured between 130 degrees Celsius and 415 degrees Celsius under air atmosphere with TGA (holding 110 degrees Celsius for 2 hours, then heating up to 450 degrees Celsius at 10 degrees Celsius/minute).
The heat resistant polymer is preferably used in a form of an organic solvent solution, an aqueous solution, an aqueous dispersion or an aqueous emulsion of the polymer itself or a polymer precursor. A polyamic acid which is the precursor to a polyimide is enabled to be water soluble by neutralization with alkali. It is preferred for the alkali to be water soluble. Chemicals such as ammonia, a monoalkyl amine, a dialkyl amine, a trialkyl amine, and tetraalkylammonium hydroxide could be used.
Organic solvents such as DMF (dimethylformamide), DMAc (dimethylacetamide), DMSO (dimethylsulfoxide), NMP (N-methylpyrrolidone), THF (tetrahydrofuran), etc. could be used. Naturally, low boiling point and safe solvents should be selected. It is desirable that the sizing agent is dried and sometimes reacted chemically in low oxygen concentration air or inert atmosphere such as nitrogen to avoid forming explosive mixed gas.
The sizing has a glass transition temperature above 100 degrees Celsius. Above 150 degrees Celsius is better. Even more preferably the glass transition temperature shall be above 200 degrees Celsius.
A glass transition temperature is measured according to ASTM E1640 Standard Test Method for “Assignment of the Glass Transition Temperature by Dynamic Mechanical Analysis” using a Differential Scanning calorimetry (DSC).
A thermal degradation onset temperature of a sized fiber is preferably above 300 degrees Celsius. 370 degrees Celsius or higher is more desirable, 450 degrees Celsius or higher is more desirable, and 500 degrees Celsius or higher is most desirable. When a thermal degradation onset temperature is measured, first, a sample with a weight of about 5 mg is dried in an oven at 110 degrees Celsius for 2 hours, and cooled down to room temperature. Then it is weighed and placed on a thermogravimetric analyzer (TGA) under air atmosphere. Then, the sample is analyzed under an air flow of 60 ml/minute at a heating ratio of 10 degrees Celsius/minute. A weight change is measured between room temperature and 600 degrees Celsius. The degradation onset temperature of a sized fiber is defined as a temperature at which an onset of a major weight loss occurs. From the TGA experimental data, the sample weight, expressed as a percentage of the initial weight, is plotted as a function of the temperature (abscissa). By drawing tangents on a curve, the thermal degradation onset temperature is defined as an intersection point where tangent at a steepest weight loss crosses a tangent at minimum gradient weight loss adjacent to the steepest weight loss on a lower temperature side.
The definition of a thermal degradation onset temperature applies to the state of a carbon fiber after the chemical reaction but before a resin impregnation. The heat resistant property is imparted to the sized fiber by a chemical reaction affected before fiber is impregnated with resin.
If it is difficult to measure a thermal degradation onset temperature of a sized fiber, the sizing can be used in place of a sized fiber.
A 30% weight reduction temperature of a sizing is preferably higher than 350 degrees Celsius. 420 degrees Celsius or higher is more desirable. 500 degrees Celsius or higher is most desirable. When a 30% weight reduction temperature is measured, first, a sample with a weight of about 5 mg is dried in an oven at 110 degrees Celsius for 2 hours, and cooled down to room temperature. Then it is weighed and placed on a thermogravimetric analyzer (TGA) under air atmosphere. Then, the sample is analyzed under an air flow of 60 ml/minute at a heating ratio of 10 degrees Celsius/minute. A weight change is measured between room temperature and 650 degrees Celsius. From the TGA experimental data, the sample weight, expressed as a percentage of the initial weight, is plotted as a function of the temperature (abscissa). The 30% weight reduction temperature of the sizing is defined as a temperature at which the weight of the sizing reduces by 30% with reference to the weight of the said sizing at 130 degrees Celsius.
A sizing agent application method includes a roller sizing method, a submerged roller sizing method and/or a spray sizing method. The submerged roller sizing method is desirable because it is possible to apply a sizing agent very evenly even to large filament count tow fibers. Sufficiently spread carbon fibers are submerged in the sizing agent. In this process, a number of factors become important such as a sizing agent concentration, temperature, fiber tension, etc. for the carbon fiber to attain the optimal sizing amount for the ultimate objective to be realized. Often, ultrasonic agitation is applied to vibrate carbon fiber during the sizing process for better end results.
After the sizing application process, the carbon fiber goes through the drying treatment process in which water and/or organic solvent will be dried, which are solvent or dispersion media. Normally an air dryer is used and the dryer is run for 6 seconds to 15 minutes. The dry temperature should be set at 200 degrees Celsius to 450 degrees Celsius, 240 degrees Celsius to 410 degrees Celsius would be more ideal, 260 degrees Celsius to 370 degrees Celsius would be even more ideal, and 280 degrees Celsius to 330 degrees Celsius would be most desirable.
In case of thermoplastic dispersion, it is desirable that it should be dried at over the formed or softened temperature. This could also serve a purpose of reacting to the desired polymer characteristics. For this invention, the heat treatment will possibly be used with a higher temperature than the temperature used for the drying treatment. The atmosphere to be used for the drying treatment should be air; however, when an organic solvent is used in the process, an inert atmosphere involving elements such as nitrogen could be used.
The carbon fiber tow, then, is wound onto a bobbin. The carbon fiber produced as described above is evenly sized. This helps make desired carbon fiber reinforced composite materials when mixed with the resin.
Examples of the carbon fiber will be explained next. The following methods are used for evaluating properties of the carbon fiber.
Sizing amount in this invention is defined as the higher of the values obtained by the following two methods outlined below, and is considered to represent a reasonably true estimate of the actual amount of sizing on the fiber.
Sizing amount (weight %) is measured by the following method.
(1) About 5 g carbon fiber is taken.
(2) The sample is placed in an oven at 110 degrees Celsius for 1 hour.
(3) It is then placed in a desiccator to be cooled down to the ambient temperature (room temperature).
(4) A weight W0 is weighed.
(5) For removing the sizing by alkaline degradation, it is put in 5% KOH solution at 80 degrees Celsius for 4 hours.
(6) The de-sized sample is rinsed with enough water and placed in an oven for 1 hour at 110 degrees Celsius.
(7) It is placed in a desiccator to be cooled down to ambient temperature (room temperature).
(8) A weight W1 is weighed.
The sizing amount (weight %) is calculated by the following formula.
Sizing amount(weight %)=(W0−W1)/(W0)×100
The sizing amount (weight %) is measured by the following method.
(1) About 2 g carbon fiber is taken.
(2) The sample is placed in an oven at 110 degrees Celsius for 1 hour.
(3) It is then placed in a desiccator to be cooled down to ambient temperature (room temperature).
(4) A weight W0 is weighed.
(5) For removing the sizing, it is placed in a furnace of nitrogen atmosphere at 450 degrees Celsius for 20 minutes, where the oxygen concentration is less than 7 weight %.
(6) The de-sized sample is placed in a nitrogen purged container for 1 hour.
(7) A weight W1 is weighed.
The sizing amount (weight %) is calculated by the following formula.
Sizing amount(weight %)=(W0−W1)/(W0)×100
Tensile strength of the strand specimen made of polymer coated carbon fiber and epoxy resin matrix is measured according to ASTM D4018 Standard Test Method for “Properties of Continuous Filament Carbon and Graphite Fiber Tows”.
A carbon fiber tow is cut from the bobbin to a length of about 50 cm without applying any tension. A weight is attached on one end of the specimen after removing any twists and/or bends. The weight is 30 g for 12,000 filaments and 60 g for 24,000 filaments, so that 1 g tension is applied per 400 filaments. The specimen is then hung in a vertical position for 30 minutes with the weighted end hanging freely. After the weight is released from the specimen, the specimen is placed on a rectangular table such that a portion of the specimen is extended by 25 cm from an edge of the table having 90 degrees angle as shown in
As shown in
ILSS of the composites consisting of the polymer coated carbon fiber and an epoxy resin matrix is measured according to ASTM D2344 Standard Test Method for “Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates”.
Specimens are prepared with the following procedure.
(1) Two aluminum plates (length: 250× width: 250× thickness: 6 (mm)), a KAPTON film (thickness: 0.1 (mm)), a KAPTON tape, a mold release agent, an ULTEM type polyetherimide resin sheet (thickness 0.26 (mm)), which must be dried in a vacuum oven at 110 degrees Celsius for at least 1 day, and carbon fiber strand are prepared.
(2) The KAPTON film (thickness: 0.1 (mm)) coated with a mold release agent is set on an aluminum plate.
(3) The ULTEM type polyetherimide resin sheet (length: 90× width: 150× thickness: 0.26 (mm)), whose grease on the surface is removed with acetone, is set on the KAPTON film.
(4) A single filament is picked up from the carbon fiber strand and set on the ULTEM type polyetherimide resin sheet.
(5) The filament is fixed at the both sides with a KAPTON tape to be kept straight.
(6) The filament (filaments) is overlapped with another ULTEM type polyetherimide resin sheet (length: 90× width: 150× thickness: 0.26 (mm)), and KAPTON film (thickness: 0.1 (mm)) coated with a mold release agent is overlapped on it.
(7) Spacers (thickness: 0.7 (mm)) are set between two aluminum plates.
(8) The aluminum plates including a sample are set on the pressing machine at 290 degrees Celsius.
(9) They are heated for 10 minutes contacting with the pressing machine at 0.1 MPa.
(10) They are pressed at 1 MPa and cooled at a speed of 15 degrees Celsius/minute being pressed at 1 MPa.
(11) They are taken out of the pressing machine when the temperature is below 180 degrees Celsius.
(12) A dumbbell shaped specimen, where a single filament is embedded in the center along the loading direction, has the center length 20 mm, the center width 5 mm and the thickness 0.5 mm as shown in
SFFT is performed at an instantaneous strain rate of approximately 4%/minute counting the fragmented fiber number in the center 20 mm of the specimen at every 0.64% strain with a polarized microscope until the saturation of fragmented fiber number. The preferable number of specimens is more than 2 and Interfacial Shear Strength (IFSS) is obtained from the average length of the fragmented fibers at the saturation point of fragmented fiber number.
IFSS can be calculated from the equation below, where of is the strand strength, d is the fiber diameter, Lc is the critical length (=4*Lb/3) and Lb is the average length of fragmented fibers.
De-sized fiber may be used for SFFT in place of unsized fiber. De-sizing process is as follows.
(1) Sized fiber is placed in a furnace of nitrogen atmosphere at 500 degrees Celsius, where the oxygen concentration is less than 7 weight %.
(2) The fiber is kept in the furnace for 20 minutes.
(3) The de-sized fiber is cooled down to room temperature in nitrogen atmosphere for 1 hour.
KAPTON type polyimide coated carbon fiber fabric can be obtained by weaving the following carbon fiber. Unsized 24K high tensile strength, intermediate modulus carbon fiber “Torayca” T800SC (Registered trademark by Toray Industries; strand strength 5.9 GPa, strand modulus 294 GPa) was used. The carbon fiber was continuously submerged in the sizing bath containing polyamic acid ammonium salt of 0.1 to 1.0 weight %. The polyamic acid is formed from the monomers pyromellitic dianyhydride and 4,4′-oxydiphenylene. After the submerging process, it was dried at 300 degrees Celsius for 1 minute in order to have poly(4,4′-oxydiphenylene-pyromellitimide) (KAPTON type polyimide) coating. The sizing amount was measured with an alkaline method.
The tensile strengths, drape value, rubbing fuzz and ILSS of both the sizing amount of 0.05 to 0.41 weight % (Examples 1-4) and unsized fiber (Comparative Example 1) were measured. The results are shown in Tables 1-4 and
Thermogravimetric analysis (TGA) was conducted under air atmosphere. (Example 5) The heat degradation onset temperature of the same carbon fiber as the above is 510 degrees Celsius as shown in
ULTEM type polyetherimide coated carbon fiber fabric can obtained by weaving the following carbon fiber. Unsized 24K high tensile strength, intermediate modulus carbon fiber “Torayca” T800SC (Registered trademark by Toray Industries; strand strength 5.9 GPa, strand modulus 294 GPa) was used. The carbon fiber was continuously submerged in the sizing bath containing polyamic acid dimethylaminoethanol salt of 0.1 to 2.0 weight %. The polyamic acid is formed from the monomers 2,2′-Bis(4-(3,4-dicarboxyphenol)phenyl)propane dianhydride and meta-phenylene diamine. After the submerging process, it was dried at 300 degrees Celsius for 1 minute in order to have 2,2-Bis(4-(3,4-dicarboxyphenol)phenyl)propane dianhydride-m-phenylene diamine copolymer (ULTEM type polyetherimide) coating. The imidization ratio was 98%. The sizing amount was measured with an alkaline method.
The tensile strengths, drape value, rubbing fuzz and ILSS of both the sizing amount of 0.05 to 0.70 weight % (Examples 6-9) and unsized fiber (Comparative Example 2) were measured. The results are shown in Tables 5-8 and
ULTEM type polyetherimide coated carbon fiber fabric can be obtained by weaving the following carbon fiber. Unsized 12K high tensile strength, standard modulus carbon fiber “Torayca” T700SC (Registered trademark by Toray Industries—strand strength 4.9 GPa, strand modulus 230 GPa) was used. The carbon fiber was continuously submerged in the sizing bath containing polyamic acid dimethylaminoethanol salt of 0.1 to 2.0 weight %. The polyamic acid is formed from the monomers 2,2′-Bis(4-(3,4-dicarboxyphenol)phenyl)propane dianhydride and meta-phenylene diamine. After the submerging process, it was dried at 300 degrees Celsius for 1 minute in order to have ULTEM type polyetherimide coating. The imidization ratio was 98%. The sizing amount was measured with an alkaline method.
The tensile strengths, drape value, rubbing fuzz and ILSS of both the sizing amount of 0.05 to 1.00 weight % (Examples 11-14) and unsized fiber (Comparative Example 3) were measured. The results are shown in Tables 9-12 and
Methylated melamine-formaldehyde coated carbon fiber fabric can be obtained by weaving the following carbon fiber. Unsized 12K high tensile strength, standard modulus carbon fiber “Torayca” T700SC (Registered trademark by Toray Industries—strand strength 4.9 GPa, strand modulus 230 GPa) was used. The carbon fiber was continuously submerged in the sizing bath containing 0.2 to 1.6 weight % of methylated melamine-formaldehyde resin. After the submerging process, it was dried at 220 degrees Celsius for 1 minute. The sizing amount was measured with a burn off method.
The tensile strengths, drape value, rubbing fuzz and ILSS of both the sizing amount of 0.05 to 0.62 weight % (Examples 15-18) and unsized fiber (Comparative Example 4) were measured. The results are shown in Tables 13-16 and
Thermogravimetric analysis (TGA) was conducted under air atmosphere. (Example 19) The heat degradation onset temperature of the same carbon fiber as the above is 390 degrees Celsius as shown in
Epoxy cresol novolac coated carbon fiber fabric can be obtained by weaving the following carbon fiber. Unsized 12K high tensile strength, standard modulus carbon fiber “Torayca” T700SC (Registered trademark by Toray Industries—strand strength 4.9 GPa, strand modulus 230 GPa) was used. The carbon fiber was continuously submerged in the sizing bath containing 0.1 to 2.0 weight % of epoxy cresol novolac resin. After the submerging process, it was dried at 220 degrees Celsius for 1 minute. The sizing amount was measured with a burn off method.
The tensile strengths, drape value, rubbing fuzz and ILSS of both the sizing amount of 0.05 to 0.80 weight % (Examples 20-23) and unsized fiber (Comparative Example 5) were measured. The results are shown in Tables 17-20 and
Thermogravimetric analysis (TGA) was conducted under air atmosphere. (Example 24) The heat degradation onset temperature of the same carbon fiber as the above is 423 degrees Celsius as shown in
As indicated in Examples 1 and 6, the carbon fiber with about 0.2 weight % heat resistant sizing (Examples 25, 26), and Unsized fiber T800SC-24K (Comparative Example 6) were used.
As indicated in Examples 11, 15 and 20, the carbon fiber with about 0.2 weight % heat resistant sizing (Examples 27, 28, 29) and Unsized fiber T700SC-12K (Comparative Example 7) were used.
While the invention has been explained with reference to the specific embodiments of the invention, the explanation is illustrative and the invention is limited only by the appended claims.