The present invention belongs to the technical field of imaging markers, and more specifically, relates to a carbon-iodine conjugated polymer and preparation thereof, and a use thereof for preparing a localization marker.
Cancer is the major cause of morbidity and mortality worldwide. There are approximately 14 million new cancer patients and eight million people dying from cancer-related diseases every year. In consideration of the high risk and high mortality rate of cancer, researchers in the world are making an ongoing effort to develop more precise and rapid diagnosis and treatment methods to fight cancer. In clinical cancer treatment, most cancer treatment methods (such as chemotherapy, radiotherapy and surgery) are partially successful but have certain limitations. Moreover, these cancer treatment methods tend to damage surrounding healthy tissues, ultimately affecting the survival time of patients. Hence, precise treatment of tumors is considered an important direction for future development. Although there are many reports of targeted drugs in chemotherapy, the issues of systemic toxicity and multi-drug resistance in patients are still unavoidable problems. Therefore, people place their hopes on precise localization of tumors during radiotherapy and precise resection of tumors during surgery. The key to achieving such goals lies in precise marking and real-time tracking of tumor contours under the precise guidance of medical imaging.
CT images of tumors are one of the most important references in the processes of tumor diagnosis and treatment planning. CT image analysis can precisely show the three-dimensional shape and relative position of a tumor in the body of a patient. However, during actual surgery or radiotherapy, tumor position determination requirements are extremely high, and it is difficult to maintain the relative stillness between the tumor and the patient's appearance due to normal respiratory movement of the human body or the impact of surgical procedures. To achieve precise tumor localization during surgery or radiotherapy, it is necessary to additionally introduce CT markers for real-time tracking of the status and relative position of the tumor as well as surrounding tissues and organs, thereby ultimately achieving precise tumor treatment. Based on clinical needs, the requirements for CT markers mainly focus on high CT imaging quality, easy identification with the naked eye, stable nature and stable relative position during treatment, good biocompatibility, and applicability to different tumor treatment scenarios.
The present invention solves the technical problems of poor imaging quality, unstable relative position, and poor biocompatibility of imaging markers in the prior art. Provided in the present invention are a conjugated polymer containing a polydiacetylene (PDA) backbone but with only iodine atom substituents, a synthesis method thereof, and a use thereof for precise in-vivo marker-guided surgical resection and radiotherapy. The marker provided by the present invention has high iodine content and ultra-high X-ray absorption efficiency, contains nanofibers which tend to self-assemble to form clusters so as to easily maintain stability and prevent diffusion at specific sites, and provides good biocompatibility.
According to a first aspect of the present invention, a carbon-iodine conjugated polymer is provided. The structural formula of the carbon-iodine conjugated polymer comprises the structure shown in formula II, formula II being:
Preferably, the structural formula of the carbon-iodine conjugated polymer is as shown in formula I or formula II:
According to another aspect of the present invention, a synthesis method of a carbon-iodine conjugated polymer having the structure shown in formula I is provided. A reaction formula is as follows:
the synthesis method comprises the following steps:
According to another aspect of the present invention, a synthesis method of a carbon-iodine conjugated polymer having the structure shown in formula II is provided. A reaction formula is as follows:
the synthesis method comprises the following steps:
According to another aspect of the present invention, a method for preparing an aqueous dispersion containing a carbon-iodine conjugated polymer having the structure shown in formula II is provided, and comprises: causing a carbon-iodine conjugated polymer having the structure shown in formula II and an amphiphilic polymer to undergo ultrasonic stripping in water, a hydrophobic end of the amphiphilic polymer being an alkyl chain having a carbon atomic number greater than or equal to 10, and a hydrophilic end thereof being polyethylene glycol; and causing the carbon-iodine conjugated polymer having the structure shown in formula II to be linked to the amphiphilic polymer through an intermolecular force to form an aqueous dispersion containing the carbon-iodine conjugated polymer having the structure shown in formula II, the carbon-iodine conjugated polymer having the structure shown in formula II being as follows:
According to another aspect of the present invention, provided is an aqueous dispersion containing a carbon-iodine conjugated polymer having the structure shown in formula II prepared by the method.
According to another aspect of the present invention, provided is a use of the carbon-iodine conjugated polymer or the aqueous dispersion containing a carbon-iodine conjugated polymer having the structure shown in formula II, the use being specifically for preparing a localization marker.
Preferably, the localization marker is an imaging marker.
Preferably, the imaging marker is an X-ray marker.
Preferably, the X-ray marker is a CT imaging marker.
According to another aspect of the present invention, provided is a use of the carbon-iodine conjugated polymer, the use being specifically for preparing a body surface auxiliary marker patch.
In general, compared with the prior art, the above technical solutions conceived by the present invention have the following technical advantages:
To make the purpose, technical solution, and advantages of the present invention clearer, the present invention is further described in detail below in connection with the accompanying drawings and examples. It should be appreciated that the specific examples described here are used merely to explain the present invention and are not used to define the present invention. In addition, the technical features involved in various embodiments of the present invention described below can be combined with each other as long as a conflict is not constituted therebetween.
According to a ligand-receptor cocrystal polymerization synthesis method, in the present invention, single crystals of a PIDA monomer and a ligand E3 were cultured in methanol, so that topochemical polymerization could be achieved at room temperature to obtain a PIDA-E3 cocrystal (a in
In order to adjust the cocrystal morphology and physical properties of PIDA for subsequent use, an amphiphilic polymer C18-PMH-PEG was introduced in the present invention. A substituent at one end of the polymer was a hydrophobic long alkyl chain, while a substituent at the other end of the polymer was a hydrophilic PEG long chain, so that a good dispersion effect was achieved on carbon nanotubes. A blue dispersion could be obtained by performing ultrasonic stripping on the PIDA cocrystal and C18-PEM-PEG in a mass ratio of 1:1 in pure water, and the small molecule ligand dissolved in water was removed by dialysis to obtain a blue aqueous dispersion of the PIDA polymer (c in
Due to the large polarizability and highly-conjugated plane of a polydiacetylene backbone, the PIDA cocrystal had a very strong Raman scattering intensity, and three main Raman characteristic peaks 967 cm−1, 1396 cm−1, and 2064 cm−1 corresponded to stretching vibrations of C—C, C═C, and C≡C respectively. The locations of three main Raman characteristic peaks of the PIDA dispersion were 966 cm−1, 1417 cm−1, and 2075 cm−1, which, in comparison, were closer to PIDA fiber than the PIDA cocrystal (d in
The blue PIDA aqueous dispersion corresponded to an ultraviolet-visible absorbance peak at 652 nm (e in
An X-ray attenuation number is positively correlated with the atomic number and the density. Heavy atom iodine with an atomic number of 53 has a very strong X-ray attenuation ability. Currently, clinically used CT contrast agents are all small molecules using triiodobenzene as a core. Improving effective iodine loading is one of the important development directions of the CT contrast agents. However, the iodine content of current clinical CT contrast agents (for example, iohexol being 46.4%, iopromide being 48.1%, and iodixanol being 49.1%) does not exceed 50%. The iodine content (84.1%) of PIDA makes it an excellent CT contrast agent. By comparing PIDA of different concentrations with iohexol, the most commonly used medical CT contrast agent at present, it was found that the CT contrast ability gradually increased with the increase of the sample concentration. Even at very low concentrations, CT intensity maintained a good linear relationship with the PIDA concentration. In addition, since the X-ray attenuation ability of iodine is independent of the molecular structure environment thereof, the iodine content of PIDA was 1.81 times that of iohexol, and the measured imaging efficiency was 1.76 times that of iohexol (h in
PIDA was applied to CT imaging of in-vitro tissues to explore the use of PIDA aggregation-induced CT enhancement in the in-vitro tissues. The PIDA dispersion and iohexol with the same iodine content were subcutaneously injected into pigs. In a contrast test of CT enhancement detection, it was found that with the same iodine content, after injection of iohexol into a fat layer and a muscle layer of pork, there were significant diffusing phenomena, resulting in weak CT imaging signals. After injection of PIDA, bright spots were formed locally, and CT signals were strong. The CT signal intensity of PIDA in the muscle layer (87.8 HU) was 4 times that of the corresponding iohexol CT signal intensity (21.7 HU). While in a relatively denser muscle layer, the CT signal intensity of PIDA in the muscle layer (251.7 HU) was 17 times that of the corresponding iohexol CT signal intensity (14.5 HU) (
To verify the stability of PIDA under different radiation conditions, in the present invention, PIDA in different states was placed at an X-ray machine. The testing conditions of the X-ray machine were 90 kV, and 4 mAs. A total of 50 tests were carried out, and a cumulative radiation dose was 1198.1 uGym2. Changes in the absorbance peak of PIDA in the PIDA dispersion were verified by UV-visible absorption, and the concentration of iodine ions that might be precipitated was verified by introducing TMB and H2O2 reagents. Both tests showed that PIDA remained stable during testing (a, b, and c in
In order to verify whether the super-strong CT imaging effect of PIDA is practically applicable, the PIDA dispersion and iohexol with the same iodine content were injected locally into leg muscles of a rat respectively under CT guidance in the present invention. For effective CT marking, the CT signal intensity thereof should be 2 times or more that of background tissues. A background CT signal of rat muscle tissues is about 50 HU, so the CT marking signal intensity exceeding 100 HU can be regarded as effective CT marking. The result showed that the intramuscular injection site in the PIDA group showed a significant CT enhancement effect. Considering the overall effective time of clinical preoperative and intraoperative procedures, it was found that PIDA maintained a strong CT enhancement effect within 6 hours (a in
To further verify the high efficiency and location stability of PIDA CT imaging, in the present invention, iohexol with the iodine content being increased by 25 times was injected into a corresponding leg muscle site of a rat. The result showed that the injection site and a large circle around the injection site initially showed a strong CT imaging effect, but such enhancement effect quickly diminished and gradually diffused towards the periphery of the injection site, and completely disappeared within 6 hours (c in
After confirming that PIDA has a good CT marking effect in both solutions and muscle tissues, the present invention explored the feasibility of using PIDA for tumor marking to guide surgical resection. In the present invention, PIDA was injected around a tumor in a rat under CT guidance. On the one hand, the CT imaging capability of PIDA was utilized to realize real-time CT guidance during surgical tumor resection (a in
In addition to delineating the margins of large tumors, it is also an important problem to determine the relative position of small tumors such as lymph node metastatic tumors in the body during surgery. It is difficult to find the specific locations of small tumors confirmed by CT images during surgery. For such a usage scenario, in the present invention, the PIDA dispersion was directly injected into the tumor under CT guidance, so as to directly perform CT marking and naked-eye visible color marking on the tumor itself. CT imaging results at different times and the final anatomical observation from experiments also conformed to the expectations of the present invention. PIDA inside the tumor maintained effective CT marking (a in
In addition to surgical resection of tumors, radiation is also an important means for tumor treatment. The most cutting-edge precise radiotherapy, that is, cyberknife treatment, relies on accurate CT localization of implanted markers (a in
In order to get closer to an actual clinical application scenario, an original human body cyberknife treatment model accompanied with a clinical cyberknife instrument was used in the present invention (
When confirming the radiation dose distribution of subsequent cyberknife treatment according to CT imaging distribution, the artifact-free CT marking of PIDA was closer to original actual requirements, while the artifact of the gold marker had a significant impact on peripheral dose distribution (e, f, and g in
In order to further verify the performance of PIDA in actual cyberknife treatment, PIDA was implanted into a rat and a beagle respectively, and respiratory movement tracking and subsequent cyberknife treatment were performed on the rat and the beagle respectively according to clinical cyberknife patient treatment specifications. The entire process satisfied cyberknife tracking requirements, and final tracking of the rat.
One of the significant challenges for radiotherapy is to compensate for tumor movement caused by patient respiration. The International Commission on Radiation Units and Measurements (ICRU) recommends adding markers at a tumor location to compensate for the geometric uncertainty caused by this movement and tumor rotation. Based on current needs, stereotactic body radiotherapy (SBRT) based on advances in image-guided radiotherapy (IGRT) and movement management technology has been widely used. A cyberknife stereotaxic radiotherapy device (CNNC ACCURAY) introduces a fiducial tracking system that requires the use of fiducial markers (radio-opaque markers implanted around or inside tumors) and synchronized respiration tracking. The cyberknife could be adjusted in time as the location of a moving target changes. (a in
The fiducial tracking system can quickly, accurately, objectively measure the location of a trackable fiducial, thereby facilitating accurate localization and targeting for a patient. Thus, the accuracy of fiducial-based IGRT can be improved, while maintaining fast, direct, and objective alignment. To verify the performance of PIDA markers in clinical cyberknife radiotherapy tracking, in the invention, cyberknife tracking radiotherapy was performed by using different model animals according to a cyberknife manual.
According to the shape of a standard Au marker, the PIDA marker was prepared as a cylinder with a diameter of 1 mm and a length of 3 mm (b in
The PIDA marker was implanted into the liver of a beagle according to the normal operation standard for cyberknife-implanted gold marker patients, and the surgery was performed by a professional surgeon. In order to ensure the consistency between preoperative CT modeling and the posture of the beagle during the cyberknife treatment, a memory air cushion designed for the posture of the cyberknife treatment patient was adopted here. The memory air cushion was soft in the initial state, and could be molded into a particular shape depending on the shape of the body lying inside. The memory air cushion became a substrate having a particular shape after gas is discharged (
The PIDA marker in the liver of the beagle was tracked in real time during respiratory movement and matched with a constructed 3D model (i in
When a material is applied in the biomedical field, in addition to the special imaging/treatment effect of the material, the biocompatibility of the material itself is the topic that people are most concerned about. At the cell level, PIDA dispersions of different concentrations were mixed with rat erythrocytes in the present invention. A negative control PBS group showed no hemolysis, while a positive control Triton group showed complete hemolysis, so that the latter was set as a 100% hemolysis control. The hemolysis rates were all lower than 5% in PIDA groups of different concentrations, indicating that the corresponding PIDA did not cause breakage of red blood cells and did not cause hemolysis (d in
At the animal level, after a 5 mg/ml PIDA dispersion was injected into the leg muscles of the rat, the weight of the rat increased normally, and the observed physiological state had no significant difference from that of the control group. At the same time, it was observed that CT signals of PIDA in muscles and tumors disappeared after seven days, indicating that a good CT imaging effect could be achieved during treatment, and PIDA degraded and disappeared after the treatment without causing any trouble or hidden danger to subsequent imaging treatment or even daily life (a, b, and c in
PIDA was fixed to the body surface of the rat with a medical tape. The CT result showed that PIDA was clearly visible inside the body, and the location thereof was relatively fixed relative to various organs inside the body. PIDA moved on the body surface along with skin movement, and could reflect the respiratory movement of the rat itself to a certain extent, thereby providing tracking and identification functions for corresponding cyberknife treatment.
It should be easily understood by those skilled in the art that the foregoing description is only preferred embodiments of the present invention and is not intended to limit the present invention. All the modifications, identical replacements and improvements within the spirit and principle of the present invention should be in the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
202111441503.9 | Nov 2021 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2022/079639 | 3/8/2022 | WO |