The present invention relates in general to cold cathodes, and in particular to cold cathodes utilizing carbon nanotubes.
A number of companies and institutions are researching carbon nanotubes (CNTs) because of their excellent physical, chemical, electrical, and mechanical properties (see Walt A. de Heer, “Nanotubes and the Pursuit of Applications,” MRS Bulletin 29(4), 281-285 (2004)). They can be used as excellent cold electron sources for many applications such as displays, microwave sources, x-ray tubes, etc. because of their high aspect ratio and chemical inertness for very stable and low voltage operation with long lifetime (see Zvi Yaniv, “The Status of the Carbon Electron Emitting Films for Display and Microelectronic Applications,” The International Display Manufacturing Conference, Jan. 29-31, 2002, Seoul, Korea). Aligned carbon nanotubes have been demonstrated to have excellent field emission properties, which can be made by chemical vapor deposition (CVD) on catalyst-supported substrate at over 500° C. (see Z. F. Ren, Z. P. Huang, J. W. Xu et al., “Synthesis of Large Arrays of Well-Aligned Carbon Nanotube On Glass,” Science 282, 1105-1107 (1998)). But the CVD process is not a good way to grow CNTs over large areas because it is very difficult to achieve high uniformity required for display applications. CVD growth of CNTs also requires a high process temperature (over 500° C.), eliminating the use of low-cost substrates such as soda-lime glass.
An easier way is to collect the CNT powders and deposit them uniformly onto a selected area of the substrate. CNTs can be printed through a mesh screen if mixed with a binder, epoxy, etc. (see D. S. Chung, W. B. Choi, J. H. Kang et al., “Field Emission from 4.5 in. Single-Walled and Multiwalled Carbon Nanotube Films,” J. Vac. Sci. Technol. B18(2), 1054-1058 (2000)). They can be sprayed onto the substrate if they are mixed with a solvent such as IPA, acetone, or water (see D. S. Mao, R. L. Fink, G Monty et al., “New CNT Composites for Feds That Do Not Require Activation,” to be presented and included in the proceedings of the Ninth International Display Workshops, Hiroshima, Japan, p. 1415, Dec. 4-6, 2002). Other ways, such as brushing, dispersing, dispensing, screen-printing, dipping, immersing, spin-coating, electrophoretic deposition, ink jet printing, and dry coating processes can also be utilized to deposit a layer of CNTs onto a substrate.
But a significant problem is that the carbon nanotube powders possess very strong van der Waals forces, and as a result, for single wall carbon nanotubes (SWNTs), they form ropes that can include a number of carbon nanotubes sticking together along the width and length, generally forming ropes with diameters up to 30 nm and lengths generally in the range of 2 to 20 micrometers or more. Furthermore, the ropes can form bundles (many ropes clumped together). For multiwall carbon nanotubes (MWNTs), diameters can be varying from several nanometers to hundreds of nanometers and lengths can be from several microns to 1 mm range.
After the CNTs are deposited onto the substrate, an activation process is employed to vertically align the CNTs in order to improve the field emission properties of the carbon nanotubes (see Yu-Yang Chang, Jyh-Rong Sheu, Cheng-Chung Lee, “Method of Improving Field Emission Efficiency for Fabricating Carbon Nanotube Field Emitters,” U.S. Pat. No. 6,436,221 B1). When a negative voltage is applied to the CNT cathode, the electric field lines are concentrated near the top of the CNTs, greatly enhancing the strength of the electric field in the vicinity of the top. The enhancement of the field is dependant on the diameter of the nanotube, the length of the nanotube exposed to the field, and the ratio of the diameter to the length. Having clusters of a large range of sizes and having a very broad distribution of diameters and lengths of CNTs and CNT ropes and bundles may greatly affect the field emission uniformity of the CNT cathodes.
For a more complete understanding of the present invention, the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In order to make a CNT cathode with good uniformity, CNT powders should be used in which the nanotubes are of equal length and diameter or having both a length and diameter very closer to each other. The variation of the lengths and diameters should be less than 20% for at least 90% of the total quantity of the CNT powders. For example, for an average length of 10 micron CNT powders, at least 90% of the CNTs should be in a range from 8-12 microns. A variation of 10% in the distribution of both length and diameter for 95% of the nanotubes in the CNT powder is desired—the narrower the distribution, the better for field emission properties.
In order to make a good CNT ink, many types of grinding methods are used to open the rope (debundle or deagglomerate the ropes) and shorten the length. There are many types of dispersions, both organic or non-organic, that work very well with carbon nanotubes. To prepare the ink, one needs to disperse the bundles and ropes and break the big clusters in the powders by various ways such as grinding or mechanical agitations. The resulting ink would then be smooth and homogenous, with the right viscosity compatible with the deposition process.
Another solution is to shorten the average length of the CNTs with a variation of less than 20% (for example, an average length of less than 5 microns of the CNTs are used). The flatness variation of the CNT coating on the substrate will be narrower if the shorter CNTs are used. Shorter nanotubes may lead to a more uniform coating, both before and after activation of the CNT film as described below.
The section below describes the improvement of the field emission uniformity of the CNTs by dispersing and shortening processes. Also, excellent field emission uniformity is obtained by choosing very close diameters and lengths of CNTs and depositing them smoothly onto the substrate.
Source of Carbon Nanotubes
Both MWNTs and SWNTs may be used.
MWNTs from Nikkiso Co., Japan may be obtained. The average diameter of this material is 15 nm and the lengths range from 5 to 100 microns.
Single wall carbon nanotubes (SWNTs) may be obtained from CarboLex, Inc., Lexington, Ky. These SWNTs were about 1.4 nm in diameter and about 5-10 microns in length. It can be seen that this material has much narrower diameter and length distributions than Nikkiso MWNTs.
Other kinds of CNTs, both purified and unpurified MWNTs, double-wall CNTs (DWNTs), and SWNTs with different diameters and lengths may be used. Those CNTs can be metallic, semiconducting, insulating, or metallized.
CNT Solution Preparation for Depositing a Layer of CNT Coating onto the Substrate by Spray Technique
A spray process may be employed to deposit a CNT-IPA solution onto a substrate using airbrush equipment.
Nikkiso MWNTs were used. Because there are a lot of big clusters in this raw material, an ultrasonication process was employed to disperse these clusters. 0.05 g of CNTs as well as 25 ml IPA were put in the container. An ultrasonic horn was inserted into the container in order to disperse these big clusters into smaller clusters or individual CNTs. An ultrasonic bath may also work to ultrasonicate the solution. Better uniformity and dispersion of the CNT coating may be obtained by adjusting the concentration of the CNT in IPA solution.
The CNT-IPA solution was sprayed onto ITO/glass with an area of 2×2 cm2 using a shadow mask sitting on the surface of the substrate in order to prevent the solution being deposited onto unwanted areas. In order to evaporate the IPA solution quickly, the substrate was heated up to −70° C. both on front side and back side. The substrate was sprayed back and forth and up and down several to tens of times until the entire surface was coated with the CNT coating. It was roughly measured that the thickness of the CNT coating was 5-10 micron using optical microscope. The sample was dried in air naturally. But it could also be cure or baked in an oven at a higher temperature. The solution may also be sprayed onto various other substrates such as metal, ceramic, glass, semiconductors and plastics.
In order to compare the above sample, another sample was prepared by spraying the solution that contained more dispersed and shortened CNTs. 0.05 g of Nikkiso MWNTs as well as 25 ml IPA were placed into ajar. Also, 20-30 stainless steel balls (4 mm in diameter) were added into the solution. It was ground by a ball mill for 240 hours with a rate of 50-60 revolutions per minute.
After the solution was ground, the stainless steel balls were removed. It was sprayed onto the ITO/glass using the same process as the above sample.
Activation of the CNT Samples
When the CNTs were deposited onto the surface of the substrate, a process was utilized of “activating” the CNT film by applying an adhesive tape material to the film and then pealing the adhesive tape away (see Yang Chang, Jyh-Rong Sheu, Cheng-Chung Lee, Industrial Technology Research Institute, Hsinchu, T W, “Method of Improving Field Emission Efficiency for Fabrication Carbon Nanotube Field Emitters,” U.S. Pat. No. 6,436,221 B1.). After the carbon nanotubes were sprayed on the substrates, an adhesive tape process was used to remove the top layer of the materials on the surface. Clear tape (Catalog number #336, 3M) was used for this process. The tape was adhered on the coating using a laminator. Care may be taken to ensure that there is no air between the tape and the CNT coating. If a bubble exists, the mixture at that area may not be removed or treated as the other areas are. A rubber roll may be used to further press the tape in order to prevent air in the intersection between the tape and the mixture coating. Finally, the tape was removed.
Field Emission Test of the Above Samples
Referring to
Preparation of the Sample Using CarboLex SWNTs
As was mentioned above, the CarboLex SWNTs had a much narrower diameter and length distributions than the Nikkiso MWNTs. The same quantity of SWNTs and IPA was used to ground the solution for 240 hours by the ball mill. The CNT coating on ITO/glass was made by the same spray process.
Its field emission properties were tested after the activation process.
As a result, an object of the present invention is to prepare a carbon nanotube layer for a field emission cathode wherein individual carbon nanotubes or small groups of carbon nanotubes that stick out from the surface more than the rest of the layer are avoided. Electron fields will concentrate on these sharp points, creating an enhanced image on the phosphor, resulting in a more luminous spot than the surroundings. Activation processes actually further free such carbon nanotubes or groups of carbon nanotubes sticking out from the surface, exasperating the problem.
This is a continuation application of U.S. patent application Ser. No. 11/270,274 filed Nov. 9, 2005, claiming priority based on U.S. Patent Application No. 60/626,273 filed Nov. 9, 2004, the contents of all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60626273 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11270274 | Nov 2005 | US |
Child | 13794557 | US |