The present invention relates generally to filters and more particularly to macroscopic nanotube structures useful for filtering fluids.
The ability to fabricate robust membrane-like structures with carbon nanotubes (CNTs) can lead to a range of applications in separation technologies, particularly given the selective adsorption properties of nanotube surfaces. See Casavant, M. J. et al., Neat macroscopic membranes of aligned carbon nanotubes, J. Appl. Phys. 93, 2153-2156 (2003); Miller, S. A. et al., Electroosmotic flow in template-prepared carbon nanotube membranes, J. Am. Chem. Soc. 123, 12335-12342 (2001); Long, R. Q. & Yang, R. T. Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123, 2058-2059 (2001); Yan-Hui, L. et al., Adsorption of fluorine from water by aligned carbon nanotubes, Mater. Res. Soc. Bull. 38, 469-476 (2003). But in order to perform various separation applications with nanoscale structures in a practical way, appropriate large-scale structures need to be designed and built with nanoscale units.
Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapor (CVD) deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. See Dresselhaus, M. S. et al., Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Topics in Applied Physics Series, Springer, Heidelberg, 2001); Li, W. Z. et al., Large scale synthesis of aligned carbon nanotubes, Science 274, 1701-1703 (1996); Ren, Z. F. et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105-1107 (1998); Huang, S. M. et al., Controlled fabrication of large-scale aligned carbon nanofiber/nanotube patterns by photolithography, Adv. Mater. 14, 1140-1143 (2002); Wei, B. Q. et al., Organized assembly of carbon nanotubes, Nature 416, 495-496 (2002).
In conventional cellulose nitrate/acetate membrane filters used in water filtration, strong bacterial adsorption on the membrane surface affects their physical properties preventing their reusability as efficient filters. Furthermore, most of the typical filters used for virus filtration are also not reusable.
Accordingly, there is currently a need in the art for reusable filters that have controlled porosity at the nanoscale, and, at the same time, can be formed into macroscopic structures with controlled geometric shapes, density, and dimensions.
One embodiment of the invention provides a monolithic, macroscopic, nanoporous nanotube filter, wherein the filter comprises at least one of a hollow or a self-supporting filter.
Another embodiment of the invention provides a method of filtering a fluid comprising passing the fluid through a monolithic, macroscopic, nanoporous nanotube filter.
Another embodiment of the invention provides a method of making a carbon nanotube filter, comprising: (a) providing a carbon nanotube source gas and a catalyst gas onto a heated surface; (b) forming a carbon nanotube filter comprising an array of aligned nanotubes containing nanopores between the nanotubes on the surface; and (c) removing the carbon nanotube filter from the surface.
FIGS. 3A-C are plots of measured stress versus strain, load versus displacement, and pressure versus time, respectively, of carbon nanotube filters according to an embodiment of the present invention.
FIGS. 4C-D, 5A-B, and 6A-B are measured gas chromatographic spectra of fluids before and after passing through carbon nanotube filters according to embodiments of the present invention.
FIGS. 7A-B and 7D-E are photographs of fluids before and after passing through the carbon nanotube filter according to one embodiment of the present invention.
The specific examples of nanotube filters of the present invention are illustrated in the Figures. However, the present invention should not be considered limited by the structures and methods of the specific examples, which are provided for illustration of the present invention.
The present inventors have developed a method of making monolithic, macroscopic, nanoporous nanotube structures that are useful for the filtration of fluids, such as liquids. In one embodiment, the invention provides a method of making a carbon nanotube filter, comprising: (a) providing a carbon nanotube source gas and a catalyst gas onto a heated surface; (b) forming a carbon nanotube filter comprising an array of aligned nanotubes containing nanopores between the nanotubes on the surface; and (c) removing the carbon nanotube filter from the surface.
Preferably, the method of making comprises using a continuous spray pyrolysis method by providing the source gas and the catalyst gas to the surface through a nozzle.
The specific surface area and the nanoporous nature of the nanotube filters were examined using nitrogen adsorption and desorption isotherm measurements preformed at liquid nitrogen temperature (77 K).
In another embodiment, the method of making the filter comprises moving the nozzle 5 and the surface of the removable template relative to each other to deposit the filter material in selected locations on the surface. The gas flow from the nozzle may be selectively turned on and off to form discontinuous nanotube patterns on the surface. The nozzle may provide the gases for different periods of time over different surface locations to allow the method of selective deposition to make a filter with arbitrary patterns of varying thicknesses or to intentionally create macroscopic holes in the filter. The surface need not be a hollow interior surface, and may comprise a flat surface.
In another embodiment, the method of making the filter comprises providing a mask which masks at least a first portion of the surface. The mask may comprise a photoresist mask or another selectively removable material, having one or more patterns on the surface. The filter is then formed on at least one second portion of the surface that is not covered by the mask. The nanotubes may be formed on the mask as well, depending on the mask material. The mask is then removed, along with any nanotubes that formed on the mask. This method may be used to make a filter with arbitrary patterns of varying thicknesses or to intentionally create macroscopic holes in the filter. The surface also need not be a hollow surface and may comprise a flat surface.
In one embodiment, the invention provides a monolithic, macroscopic, nanoporous nanotube filter, wherein the filter comprises at least one of a hollow or a self-supporting filter. While carbon nanotubes have received the most research interest of the all nanotube materials, it is envisaged that other nanotubes, such as boron nitride nanotubes, may be used in the present invention. Indeed, boron nitride nanotubes have comparable, if not superior, properties (e.g., electrical, mechanical, thermal, chemical) to those of carbon nanotubes and are, therefore, attractive candidates for filtration and separation technologies. See M. Ishigami et al., Properties of Boron Nitride Nanotubes, AIP Conference Proceedings 696, 94-99 (2003).
In another embodiment, the filter consists essentially of a self-supporting array of carbon nanotubes. In other words, the nanotube array is preferably free-standing (i.e., not necessarily supported by the original growth surface, and includes only nanotubes and unavoidable impurities introduced during information). In another embodiment, the filter comprises a hollow filter. Preferably, the filter comprises a self-supporting cylindrical array of radially aligned multi-walled carbon nanotubes having at least one open end, as shown in
In another embodiment, the filter comprises chemically functionalized nanotubes to allow selective chemical filtration of an analyte fluid through the filter. For instance, it is known that different functional groups can be readily introduced onto carbon nanotubes when the nanotubes are treated with different oxidants. J. Zhang et al., Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes, J. Phys. Chem. B, 107, 3712 (2003). The presence of functional groups on the outer surfaces of the nanotubes also decreases the inter-nanotube distance and thereby physically constricts the passage of analytes between the nanotubes. In addition to blocking analytes in a fluid that are too large to pass between the nanotubes, a chemically-functionalized nanotube filter provides additional filtration by chemical means (e.g., binding with reactive groups, enhanced absorption by the nanotubes, or hydrophobic/hydrophilic interactions between the analyte and functionalized nanotube).
In another embodiment, the filter is located inside a microcapillary and the nanotubes of the filter comprise an array of radially aligned nanotubes located on the inner wall of the microcapillary. A microcapillary may comprise a portion of a liquid chromatography or other similar liquid separation and testing device and may comprise a porous microcapillary.
In one embodiment, the invention provides a method of filtering a fluid comprising passing the fluid through a monolithic, macroscopic, nanoporous nanotube filter. For example, the potential use of the nanotube filter was explored in the filtration of heavier hydrocarbon species, CmHn (m>12), from hydrocarboneus oil, such as for example, petroleum CmHn (n=2m+2, m=1 to 12), and in the removal of bacteria and viruses from drinking water. However, it should be understood that any fluid containing more than one component may be filtered through the filter, such that one or more solid components are filtered.
Breaking large hydrocarbons into smaller ones or separating heavier hydrocarbons from crude oil is an important step in gasoline production and improvement of octane quality. Octane number, which depends on the type of hydrocarbon present, also determines the antiknock ability of a fuel. In one embodiment of the invention, the efficient filtration of petroleum (CmHn) was demonstrated by separating multiple components of heavier hydrocarbons from it using the above described bulk nanotube-based filters.
Samples of petroleum were analyzed by standard gas chromatography (GC; Nucon-5800C and Varian-1800) and flame-ionization detection techniques before and after passing through the filter of the present embodiment of the invention. The sample to be separated was introduced into a fused silica capillary column, having a length of 10 m and inner diameter of 530 μm, through an injection port and was swept down the column by nitrogen. The loop volume used for injection was 50 μl. The temperature of the column was controlled in such a way that the substances being separated had a suitable vapor pressure and could move through the column at a rate proportional to their respective vapor pressures. The temperature of the column was set at 50° C. for two minutes and thereafter was raised to 240° C. at a rate of 20° C. per minute. The detector temperature was fixed at 260° C. The presence of various peaks in the spectra represents specific CmHn components of petroleum.
Another example illustrates the separation of a mixture of naphthalene and benzene and further demonstrates the selectivity of the free-standing nanotube filter. The detection conditions were as follows. The GC setup (Saturn GC/MS) contained a Chrompack capillary column (CP-Sil PONA CD) with a length of 100 m, an inner diameter of 250 μm, and a loop volume for injection of 10 μl. The GC was used with flame ionization detector in the filtration experiments. The temperature of the column oven was set at 50° C. for 1 minute then raised to 200° C. at the rate of 10° C./mm. The detector was fixed at 220° C. The flow/pressure is 2 psi of carrier gas (N2). GC graphs were analyzed by various detailed hydrocarbon analysis (DHA version 5.5) software, which consists of a hydrocarbon bank for proper calibration. Before performing the experiments with the actual samples, 18 known compounds were used to calibrate the detector. The solution was prepared by using 4 g of naphthalene dissolved in 10 ml of benzene.
Further use of the nanotube filters was evaluated for the successful removal of bacterial contamination from drinking water. A common pollutant of drinking water is the fecal bacterium Escherichia coli having a typical length of 2,000 nm to 5,000 nm and width 400 to 600 nm. This bacteria is responsible for many waterborne diseases. The nanotube filter was shown useful for filtering such common pollutants from drinking water. Sterile saline water with light E coli bacterial suspension (˜106 organisms per ml) was analyzed.
Similar successful filtration was also achieved for another bacterium, Staphylococcus aureus, with a spherical size of 1,000 nm, smaller than E. coli. Similar to the case of water with E. coli bacteria, it was possible to remove the S. aureus bacteria entirely from water through filtration by the present nanotube filters. This efficient bio-adsorptive property of the filters was also tested for much smaller (nanoscale dimensions) species, viruses. A polio-1 (poliovirus sabin 1, having sizes ˜25 to 30 nm with a molecular mass of 8.5×106 daltons, and having icosahedral shapes) was used. Stained Sabin 1 is the polio vaccine, which is attenuated (weakened) so the virus becomes impotent towards harming the central nervous system. Liquid containing suspension of 106 particles per milliliter of polio-1 virus was analyzed. This polio suspension was subjected to filtration process through the nanotube filters following the same technique as used for the bacterial (E-coli) filtration. In order to confirm the filtration of the virus, both unfiltered and filtered samples were investigated by TEM. A fine pipette was used to add a drop of the specimen on the carbon evaporated formvar coated copper grid (300 mesh).
Steady flow rates are observed during the filtration experiments for a significant amount of time. Using the area of the membrane tube (5.55 cm2), the flow rates were found to be 1.8 ml min−1 cm2 for petroleum, 1.1 ml min−1 cm2 for contaminated water and 2.2 ml min−1 cm2 for the benzene and naphthalene mixture. The typical pressure difference was ˜8.8×103 Pa. The filtration process itself was driven by gravity as no additional pressure was applied. It is believed that the confined geometry of the nanotubes (and hence nanoporosity) and the selective adsorption behavior of the nanotube surfaces are both useful in the filtration process. Because the inter-tubular spaces dominate the porosity in the membrane, and as many of the nanotube's internal spaces possibly have plugs of metal particles, it is believed that most of the filtering occurs in the interstitial spaces. However, there might be some transport through the inner hollow channels of the nanotubes, but the exact distribution of these two mechanisms is very difficult to quantify. One concern in all the above-mentioned filtering processes is fouling. However, the uniform dense packing of the nanotubes in the radial direction of the solid macrotube provides an ideal geometry for cross-flow filtration favoring minimum blockage, and is effective for cleaning the filters with purging cycles.
A major advantage of using the nanotube filters of the present invention over conventional membrane filters lies in the fact that the nanotube filters can be cleaned repeatedly after each filtration process to regain their full filtering efficiency. A simple process of ultrasonication and autoclaving (˜121° C. for 30 mins) was found to be sufficient for cleaning these filters. Cleaning can also be achieved by purging for the reuse of these filters. In conventional cellulose nitrate/acetate membrane filters used in water filtration, however, strong bacterial adsorption on the membrane surface affects their physical properties preventing their reusability as efficient filters; most of the typical filters used for virus filtration (e.g., Millipore) are not reusable. Because of the high thermal and chemical stability of the nanotubes, the nanotube filters of the present invention can also be operated at temperatures of ˜400° C., which are several times higher than the highest operating temperatures of the conventional polymer membrane filters (˜52° C.).
The foregoing description of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The description was chosen in order to explain the principles of the invention and its practical application. It is intended that the scope of the invention be defined by the claims appended hereto, and their equivalents. All publications mentioned herein as well as U.S. published application US-2003/0165418-A1, are incorporated by reference in their entirety.
The U.S. Government may have certain rights in this invention pursuant to grant number DMR 0117792 from the National Science Foundation.
Number | Date | Country | |
---|---|---|---|
60599007 | Aug 2004 | US |