Conjugated polymers have been investigated for a number of applications in optoelectronics and sensing because the extended π-electron delocalization along their backbones endows them with useful electronic and optical properties. For instance, polydiacetylene (PDA) typically changes color from blue to red under various external stimuli (including interactions with ligands or changes in temperature, pH, chemical or mechanical stress), and has been explored as a material for chromatic sensors. This color change is caused by the conformation change of the PDA as a result of these stimuli. More precisely, the increased motional freedom of the PDA side chains caused by the stimuli leads to a more disordered (and less coplanar) polymer structure with a shorter conjugation length. Significant efforts have been already made to add new sensing functionalities to PDA but, to the best of our knowledge, no current-induced color change has ever been reported for this material. Although it is difficult to induce conformation changes of pure PDA under electric fields, current-induced chromatic behavior in PDA could have applications in the non-destructive evaluation and monitoring of structures ranging from aircraft to small electronic facilities.
A possible and convenient approach to solve the above dilemma is formation of nanocomposites. If one phase produces electric fields which are strong enough to induce conformation changes of incorporated PDA molecules at nanoscale when passed with current, the collective effects may macroscopically reflect color changes. One of the ideal candidates to meet this requirement is carbon nanotube (CNT). As already extensively explored, nanotubes show excellent electrical conductivities. For instance, long nanotube arrays have been synthesized recently through chemical vapor deposition, and conductivity of individual multi-walled nanotubes can be as high as 104 S/cm at room temperature. These nanotubes may be spun into macroscopic fibers while maintaining excellent electrical properties. Therefore, it is the objective of this study to produce new CNT/PDA composite with current-induced chromatic changes.
To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, the present invention provides a composite including carbon nanotube fibers, and, a polydiacetylene.
In another embodiment, the present invention, provides sensor including a composite of carbon nanotube fibers and a polydiacetylene, said composite subject to a detectable change in response to a stimuli from among temperature, pH, chemical exposure, mechanical stress, and, a means of measuring the detectable change.
a) to 1(c) show characterization of carbon nanotubes used to make the CNT/PDA fiber composites in accordance with the present invention. In
a) and 4(b) show various chromatic transitions of a composite CNT/PDA fiber in response to an electric current in accordance with the present invention. In
The present invention concerns composites of carbon nanotubes and a polymer such as polydiacetylene.
Pure nanotube fibers are spun from nanotube arrays which are synthesized by a chemical vapor deposition process (see
CNT/PDA fibers exhibit high conductivities of 102-103 S/cm due to alignment of nanotubes inside. Temperature dependence of conductivities of CNT/PDA fibers was further investigated by a four-probe approach. As shown in
Importantly, CNT/PDA composite fibers rapidly change colors from blue to red under electrical current.
There are several possible reasons responsible for current-induced chromatism of composite fibers. Temperature may increase to induce color changes when current is passing through CNT/PDA fibers. Nevertheless, the following facts may exclude thermally induced color changes. (1) PDA changed colors from blue to red starting from ˜56° C., and the thermochromatism is irreversible, i.e., they remained red after cooled to room temperature (see
The current-induced color change of CNT/PDA fibers is more likely derived from interactions between nanotubes and polymers and unique electrical properties enabled by nanotubes. CNT/PDA fibers exhibit high conductivities with three-dimensional hopping conduction, i.e., electrons hop from one nanotube to another inside a fiber. Therefore, there exist electric fields among neighboring nanotubes, and the electric fields might result in polarization of COOH groups in side chains and conjugated PDA backbones among neighboring nanotubes. The above polarizations decrease π electron delocalization of PDA backbone, which reflects color changes of fibers similar to other reported stimuli (see
Although chromatic response to mechanical stress was previously demonstrated for poly (urethane-diacetylene), it was achieved with large elongation which may limit its sensing applications. Nanotubes are the strongest material ever discovered by mankind, and nanotube fibers exhibit high mechanical strengths. High strengths may provide PDA with mechanochromatism at neglectable elongation. This hypothesis was confirmed by experiments. Color changes of CNT/PDA fibers at high tensile stresses were observed by UV-vis spectrometer. Absorption maxima of blue and red PDAs are located at 600-700 nm and 500-600 nm, respectively. For a CNT/PDA fiber with tensile strength of 0.55 GPa, it remained blue at tensile stress lower than 0.48 GPa and suddenly became red beyond this point (see
CNT/PDA fibers also chromatically respond to a wide variety of other environmental stimuli such as mechanical abrasion, chemical, and organic vapor. Composite fibers change colors from blue to red under mechanical abrasion in seconds (see
In summary, CNT/PDA composite fibers that reversibly change colors in response to electrical current and mechanical stress with negletcable elongation have been synthesized. CNT/PDA fiber can be potentially used as a sensing component that can collectively and chromatically respond to the widest environmental stimuli to date. These CNT/PDA composite fibers are very promising for applications in many fields such as sensors, actuators, and other novel electronic devices.
The present invention is more particularly described in the following examples which are intended as illustrative only, since numerous modifications and variations will be apparent to those skilled in the art.
Preparation of Nanotube Fibers was as has been Reported Elsewhere (See Li et al., Sustained growth of ultralong carbon nanotube arrays for fiber spinning Adv. Mater. 18, 3160-3163 (2006)). For the fabrication of CNT/PDA composite fibers, diacetylenic precursors (e.g., CH3(CH2)11C≡C—C≡C(CH2)8COOH) were first dissolved in tetrahydrofuran with concentration of 10 mg/mL. Pure nanotube fibers were dipped into the precursor solution, followed by evaporation of solvent at room temperature. Before polymerization, treated fibers were exposed to the open air in a hood for 24 hr. Dry fibers were black originated from nanotubes. Diacetylenic moieties were polymerized at room temperature under ultraviolet light with a wavelength of 254 nm. Polymerization time varied from minutes to hours, depending on fiber diameters. After polymerization, CNT/PDA fibers became blue.
Nanotubes were characterized by scanning electron microscopy (SEM, JEOL 6300FXV operated at 5 kV and Hitachi FE-SEM S-4800 operated at 1 kV) and transmission electron microscopy (TEM, JEOL JEM-2100F and Philips CM30 operated at 200 kV). SEM samples were coated with a thin layer of Au/Pt (5 nm) before observations. TEM samples were prepared by dropcasting nanotube/ethanol solutions onto copper grids in the open air. Mechanical tests were performed by a Shimadzu Table-Top Universal Testing Instrument. Nanotube fibers were mounted on paper tabs with a gauge length of 5 mm. Fiber diameter was measured using a laser-diffraction method and further confirmed by SEM. Raman measurements were performed on Renishaw in Via Reflex with excitation wavelength of 514.5 nm and laser power of 20 mW at room temperature. UV-vis spectrometer was recorded on Shimadz UV-3150.
Although the present invention has been described with reference to specific details, it is not intended that such details should be regarded as limitations upon the scope of the invention, except as and to the extent that they are included in the accompanying claims.
This application claims priority to U.S. Provisional Application No. 61/275,133, filed on Aug. 25, 2009.
The present invention relates to composites and more particularly relates to composites of carbon nanotubes and a polymer such as polydiacetylene. The United States government has rights in this invention pursuant to Contract No. DE-AC52-06NA25396 between the United States Department of Energy and Los Alamos National Security, LLC for the operation of Los Alamos National Laboratory.
Number | Date | Country | |
---|---|---|---|
61275133 | Aug 2009 | US |