The present invention related to carbon nanotubes and, more particularly, to a carbon nanotube (CNT) used as a demodulator of amplitude-modulated (AM) signals.
The use of carbon nanotubes (CNT) as components in high-frequency electronics has garnered much attention due to their favorably characteristics such as large mobilities, high transconductance, and long-free paths. Aside from the popular application of CNTs as high-frequency field effect transistors, other successful applications of CNTs include their use as RF detectors and mixers. Because of their electrical properties and very small dimensions, nanotubes are promising candidates for the realization of nanoscale devices.
Described herein are systems and methods in which a carbon nanotube (CNT) is used as a demodulator of amplitude-modulated (AM) signals. Due to the nonlinear current-voltage (I-V) characteristics of a CNT, the CNT induces rectification of an applied RF signal enabling the CNT to function as a demodulator of an amplitude-modulated (AM) RF signal. By properly biasing the CNT such that the operating point is centered on the maximum portion of the I-V curve, the demodulation effect of the CNT can be maximized. The present invention is useful for possible nanoscale wireless communications systems, e.g., nanoscale radios.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims. It is also intended that the invention is not limited to require the details of the example embodiments.
The details of the invention, including fabrication, structure and operation, may be gleaned in part by study of the accompanying figures, in which like reference numerals refer to like segments.
a) is a plot of the source-drain differential conductance vs gate (substrate) voltage of a semiconducting CNT.
b) shows a current-voltage (IDS vs VDS) curve of the CNT.
a) shows a comparison of demodulated current and |d2I/dV2| with respect to the bias voltage, VB, showing a good match between the two.
b) shows a linear modulation current detected by a lock-in amplifier across a 100 kΩ sense resistor, indicating that I is proportional to VRF2 (f=1 GHz, P=0 dBm, fmod=13 Hz).
a) shows a demodulated signal vs frequency, in which parasitic capacitance shorts the RF signal at frequencies>2 GHz.
b) shows a schematic of an RF equivalent circuit.
Each of the additional features and teachings disclosed below can be utilized separately or in conjunction with other features and teachings to provide a carbon nanotube demodulator of an amplitude modulated (AM) radio signal. Representative examples of the present invention, which examples utilize many of these additional features and teachings both separately and in combination, will now be described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Therefore, combinations of features and steps disclosed in the following detail description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the present teachings.
Moreover, the various features of the representative examples and the dependent claims may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings. In addition, it is expressly noted that all features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original disclosure, as well as for the purpose of restricting the claimed subject matter independent of the compositions of the features in the embodiments and/or the claims. It is also expressly noted that all value ranges or indications of groups of entities disclose every possible intermediate value or intermediate entity for the purpose of original disclosure, as well as for the purpose of restricting the claimed subject matter.
The embodiments provided herein are generally directed to systems and methods in which a carbon nanotube (CNT) is used as a demodulator of amplitude-modulated (AM) signals. Experimental results demonstrating the use of CNTs as AM demodulators are presented followed by an exemplary CNT based radio capable of demodulating high-fidelity audio. The CNT based AM demodulator demonstrates the utility of nanotechnology in the wireless field.
Experiments were conducted to demonstrate CNT based AM demodulators with modulation frequencies up to 100 KHz.
To fabricate the test devices 10, carbon nanotubes were synthesized on high resistivity Si wafers (>8000 Ωcm) to minimize the detrimental effect of parasitic capacitance at high frequencies. Using optical lithography, catalyst regions were patterned onto the wafer and after 1 h of sonication an aqueous solution of 100 mM FeCl3 catalyst was applied for 10 s and rinsed with DI water. The nanotubes were synthesize using a CVD growth process described in detail in Z. Yu, S. Li, P. J. Burke, “Synthesis of aligned arrays of millimeter long, straight single walled carbone nanotubes,” Chem. Mater. 2004, 16(18), 3414-3416, and S. Li, Z. Yu, C. Rutherglen, P. J. Burke, “Electrical properties of 0.4 cm long single walled carbon nanotubes,” Nano Lett. 2004, 4(10), 2003-2007. Subsequent to nanotube growth, Pd (20 nm)/Au (80 nm) electrodes were evaporated onto the nanotubes with a gap-spacing of 50 μm and a width of 300 μm. Only samples with a single CNT bridging the gap were used in the experiments. An SEM image 12 of one of the nanotubes 14 under study is shown in
To determine specific features of the nanotube's use as a demodulator, the test setup shown in
The CNT is capable of demodulating an amplitude modulated RF signal due to its nonlinear current-voltage (IDs vs VDS) characteristics. It can be shown that such nonlinearities can rectify a portion of the applied RF current, which to the first order can be expressed as:
where the voltage of the applied RF signal is VRF, and the second derivative represents the nonlinear current-voltage (IDs vs VDS) characteristics of the CNT itself. We found the demodulated signal followed this relationship very well. Comparing the demodulated signal to the absolute value of the numerical second-derivative of the I-V trace shown in
Maximizing the demodulation signal can be achieved trough proper biasing of the CNT. As evident in
Considering that the CNT resistance is on the order of 100 kΩ, from the RF point of view, a large impedance mismatch will exist between the CNT and the 50Ω characteristic impedance of the transmission line, resulting in a strong microwave signal reflection off the CNT. Because the power available from the source is PAVS=VRF2/8Z0, and the RF voltage at the CNT is VRF due to ZCNT>>4, using eq. 1, we obtain I/ PAVS=2(d2I/dV2)Z0 for the responsivity of the CNT demodulator. The circuit for this analysis is presented in
The effectiveness of the device at detecting the modulation signal up to 100 kHz was found to be limited by extrinsic parameters of the experimental setup and not due to the CNT itself. Due to capacitance within the bias tee and coax cable in conjunction with the sense resistor, an RC low-pass filter was established, thus giving a roll-off in the high audio frequency range of the demodulated signal. To minimize this effect, the sense resistor and the bias tee's capacitor were reduced to 100Ω and 100 pF, respectively. The roll-off was measured to have a −3 dB corner at 40 kHz, as shown in
Noise measurements were performed on the CNT demodulator system operating at a carrier frequency of 1 GHz and a bias voltage of 2.5 V. The system voltage-noise density, which includes noise from the lock-in amplifier, sense resistor, and CNT was measured to be 40×10−9(V/Hz1/2) at an audio frequency of 1 kHz. Using the measured responsivity, βI, of 125 nA/mW together with the device resistance of 100 kΩ, the noise-equivalent power (NEP) is calculated using NEP=υn/βIR(W/Hz1/2) and is 3 nW/Hz1/2. This puts an upper limit on the noise equivalent power of the CNT itself
Utilizing the above documented effect, we demonstrated a simple design for a CNT based radio receiver.
To predict how to optimize device performance as a function of length, one would need a quantitative and detailed theory of nanotube I-V curves and their nonlinearity. Although numerical simulation code exists that can predict nanotube I-V curves, a detailed study of the nonlinearity of CNTs as a function of length has not yet been preformed. In the absence of such studies, we may predict on the basis of general physical principles methods to optimize the CNT length to maximize the nonlinearity.
Considering that the nonlinearity in I-V originates from phonon scattering processes, one can further optimize the responsivity of the CNT demodulator by maximizing this nonlinear influence. In general, this can be accomplished by decreasing the length of the nanotube to an optimum value. Depending whether one is in the low or high voltage regime, the dominate scattering mechanism would be acoustic phonon scattering or optical phonon scattering, respectively. In the limit of each of these regions the slope of the nanotube's IDS vs VDS curve can be expressed as G=(4e2/h)×1i(li+L), where L is the nanotube length and li equals lap˜300 nm for acoustic phonon scattering in the low bias regime and lop˜15 nm for optical phonon scattering in the high bias voltage regime. The nonlinearity manifests as the bias voltage transitions from a region with one dominated scattering mechanism to the other, which in general can be maximized by considering what length nanotube, L, would result in the greatest difference in the slope of the I-V between the two regions. For example, if we consider the mean-free-path lengths stated above to be generally accurate, the difference in the sloped is maximized when the nanotube length is ˜100 nm. If the nanotube length is decreased further, ballistic transport dominates and the nonlinearity in I-V is again reduced. For long nanotubes (>10 μm) other scattering processes would become significant such as defect induced elastic scattering, which further complicates the analysis. Other mechanism typically responsible for nonlinear I-V characteristics such as Schottky barrier at the contacts were of negligible contribution due to the use of Pd ohmic contacts. Furthermore, because both metallic and semiconducting CNTs display this behavior, these scaling arguments could be applied to both cases. Thus, although the observed nonlinearity is rather mild, it can be dramatically improved through careful optimization.
Therefore, we have successfully demonstrated and analyzed the use of a carbon nanotube to demodulate an amplitude modulated (AM) signal in a radio receiver. The nanotube demodulator demonstrates that a critical component (the demodulator) of a radio receiver can be realized on a nanoscale using a nanotube, providing an important step to the realization of a truly nanoscale wireless communications system.
While the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/60130 | 4/11/2008 | WO | 00 | 10/6/2009 |
Number | Date | Country | |
---|---|---|---|
60911475 | Apr 2007 | US |