Embodiments of the disclosure relate to the large-scale catalytic conversion of a carbon-containing feedstock into solid carbon, and, more specifically, to methods of converting mixtures of carbon monoxide, carbon dioxide, or any combination thereof to create carbon nanotube structures.
Additional information is disclosed in the following documents: International Patent Publication WO 2010/120581 A1, published Oct. 21, 2010, for “Method for Producing Solid Carbon by Reducing Carbon Oxides;” International Patent Publication WO 2013/158156, published Oct. 24, 2013, for “Methods and Structures for Reducing Carbon Oxides with Non-Ferrous Catalysts;” International Patent Publication WO 2013/158159, published Oct. 24, 2013, for “Methods and Systems for Thermal Energy Recovery from Production of Solid Carbon Materials by Reducing Carbon Oxides;” International Patent Publication WO 2013/158160, published Oct. 24, 2013, for “Methods for Producing Solid Carbon by Reducing Carbon Dioxide;” International Patent Publication WO 2013/158157, published Oct. 24, 2013, for “Methods and Reactors for Producing Solid Carbon Nanotubes, Solid Carbon Clusters, and Forests;” International Patent Publication WO 2013/158158, published Oct. 24, 2013, for “Methods for Treating an Offgas Containing Carbon Oxides;” International Patent Publication WO 2013/158155, published Oct. 24, 2013, for “Methods for Using Metal Catalysts in Carbon Oxide Catalytic Converters;” International Patent Publication WO 2013/158161, published Oct. 24, 2013, for “Methods and Systems for Capturing and Sequestering Carbon and for Reducing the Mass of Carbon Oxides in a Waste Gas Stream;” International Patent Publication WO 2014/011206, published Jan. 16, 2014, for “Methods and Systems for Forming Ammonia and Solid Carbon Products;” and International Patent Publication WO 2013/162650, published Oct. 31, 2013, “Carbon Nanotubes Having a Bimodal Size Distribution.” The entire contents of each of these documents are incorporated herein by this reference.
Solid carbon has numerous commercial applications. These applications include longstanding uses such as uses of carbon black and carbon fibers as a filler material in tires, inks, etc., many uses for various forms of graphite (e.g., pyrolytic graphite in heat shields) and innovative and emerging applications for buckminsterfullerene and carbon nanotubes. Conventional methods for the manufacture of various forms of solid carbon typically involve the pyrolysis of hydrocarbons in the presence of a suitable catalyst. Hydrocarbons are typically used as the carbon source due to historically abundant availability and relatively low cost. The use of carbon oxides as the carbon source in the production of solid carbon has largely been unexploited.
Carbon oxides, particularly carbon dioxide, are abundant gases that may be extracted from point-source emissions such as well gases, the exhaust gases of hydrocarbon combustion or from some process offgases. Carbon dioxide may also be extracted from the air. Because point-source emissions have much higher concentrations of carbon dioxide than does air, they are often economical sources from which to harvest carbon dioxide. However, the immediate availability of air may provide cost offsets by eliminating transportation costs through local manufacturing of solid carbon products from carbon dioxide in air.
Carbon dioxide is increasingly available and inexpensive as a byproduct of power generation and chemical processes in which an object may be to reduce or eliminate the emission of carbon dioxide into the atmosphere by capture and subsequent sequestration of the carbon dioxide (e.g., by injection into a geological formation). For example, the capture and sequestration of carbon dioxide is the basis for some “green” coal-fired power stations. In current practice, capture and sequestration of the carbon dioxide entails significant cost.
There is a spectrum of reactions involving carbon, oxygen, and hydrogen wherein various equilibria have been identified. Hydrocarbon pyrolysis involves equilibria between hydrogen and carbon that favors solid carbon production, typically with little or no oxygen present. The Boudouard reaction, also called the “carbon monoxide disproportionation reaction,” is the range of equilibria between carbon and oxygen that favors solid carbon production, typically with little or no hydrogen present. The Bosch reaction is within a region of equilibria where all of carbon, oxygen, and hydrogen are present under reaction conditions that also favor solid carbon production.
The relationship between the hydrocarbon pyrolysis, Boudouard, and Bosch reactions may be understood in terms of a C—H—O equilibrium diagram, as shown in
CNTs are valuable because of their unique material properties, including strength, current-carrying capacity, and thermal and electrical conductivity. Current bulk use of CNTs includes use as an additive to resins in the manufacture of composites. Research and development on the applications of CNTs is very active with a wide variety of applications in use or under consideration. One obstacle to widespread use of CNTs has been the cost of manufacture.
U.S. Pat. No. 7,794,690 (Abatzoglou, et al.) teaches a dry reforming process for sequestration of carbon from an organic material. Abatzoglou discloses a process utilizing a 2D carbon sequestration catalyst with, optionally, a 3D dry reforming catalyst. For example, Abatzoglou discloses a two-stage process for dry reformation of an organic material (e.g., methane, ethanol) and CO2 over a 3D catalyst to form syngas, in a first stage, followed by carbon sequestration of syngas over a 2D carbon steel catalyst to form CNTs and carbon nanofilaments. The 2D catalyst may be an active metal (e.g., Ni, Rh, Ru, Cu—Ni, Sn—Ni) on a nonporous metallic or ceramic support, or an iron-based catalyst (e.g., steel), on a monolith support. The 3D catalyst may be of similar composition, or may be a composite catalyst (e.g., Ni/ZrO2—Al2O3) over a similar support. Abatzoglou teaches preactivation of a 2D catalyst by passing an inert gas stream over a surface of the catalyst at a temperature beyond its eutectic point, to transform the iron into its alpha phase. Abatzoglou teaches minimizing water in the two-stage process or introducing water in low concentrations (0 to 10 wt %) in a reactant gas mixture during the dry reformation first stage.
This disclosure relates generally to catalytic conversion processes for reducing carbon oxides to a valuable solid carbon product, and, in particular, to the use of carbon oxides (e.g., carbon monoxide (CO) and/or carbon dioxide (CO2)) as the primary carbon source for the production of various solid carbon products including single and multi-walled carbon nanotubes, carbon micro fibers, buckminsterfullerenes, amorphous carbon, graphite, and graphene utilizing a reducing agent (e.g., hydrogen or a hydrocarbon) in the presence of a non-ferrous catalyst. The methods may be used to manufacture solid carbon products in various morphologies and to catalytically convert carbon oxides into solid carbon and water. One of the morphologies that may be formed is single-wall carbon nanotubes.
In some embodiments, a method of reducing a gaseous carbon oxide to a lower oxidation state includes reacting a carbon oxide with a gaseous reducing agent in the presence of a non-ferrous metal catalyst in a non-oxidized state. The catalyst has a surface comprised of grains of a predetermined mean grain size. The reaction proceeds under predetermined conditions of temperature and pressure adapted to produce water and a solid carbon product.
In certain embodiments hereof, the partial pressure of water in the reaction is regulated by various means, including recycling and condensation of water, to influence, for example, the structure or other aspects of the composition of carbon products produced. The partial pressure of water appears to assist in obtaining certain desirable carbon allotropes.
In certain embodiments, a broad range of inexpensive and readily-available catalysts, including steel-based catalysts, are described, without the need for activation of the catalyst before it is used in a reaction. Iron alloys, including steel, may contain various allotropes of iron, including alpha-iron (austenite), gamma iron, and delta-iron. In some embodiments, reactions disclosed herein advantageously utilize an iron-based catalyst, wherein the iron is not in an alpha phase. In certain embodiments, a stainless steel containing iron primarily in the austenitic phase is used as a catalyst.
Catalysts, including an iron-based catalyst (e.g., steel, steel wool, and intermetallic and carbide powders), may be used without a need for an additional solid support. In certain embodiments, reactions disclosed herein proceed without the need for a ceramic or metallic support for the catalyst. Omitting a solid support may simplify the setup of the reactor and reduce costs.
In other embodiments, a structure adapted to facilitate the reaction of a carbon oxide with a reducing agent includes a non-ferrous Bosch-type catalyst in a non-oxidized state configured to promote the reduction of the carbon oxide to a lower oxidation state. The non-ferrous Bosch-type catalyst includes a surface having a plurality of particles of catalyst material. The particles have a preselected mean grain size.
In certain embodiments, a method for utilizing a non-ferrous metallic compound in a reactor to reduce a gaseous carbon oxide includes purging gases in the reactor containing the non-ferrous metallic compound with a gaseous reducing agent and maintaining a predetermined reactor temperature sufficient to reduce oxides present in the metallic non-ferrous compound. A reaction gas mixture comprising the gaseous carbon oxide is introduced into the reactor to form a reaction gas composition at a reaction gas pressure. The reaction gas composition and reaction gas pressure are maintained in the reactor to reduce the gaseous carbon oxide.
Some methods of forming a solid carbon product include reacting a gaseous carbon oxide with a gaseous reducing agent in the presence of a catalyst comprising at least one of iron, nickel, chromium, molybdenum, tungsten, cobalt, and alloys and mixtures thereof. The catalyst has a predetermined grain size selected to control the size and morphology of the solid carbon product.
The disclosure includes methods for reducing a carbon oxide to a lower oxidation state. The methods may be used to manufacture solid carbon products in various morphologies, and to convert carbon oxides into solid carbon and water. Solid carbon products may include graphite (e.g., pyrolytic graphite), graphene, carbon black, fibrous carbon, buckminsterfullerenes, single-wall CNTs, or multi-wall CNTs. The type, purity, and homogeneity of solid carbon products may be controlled by the reaction conditions (time, temperature, pressure, partial pressure of reactants, and/or catalyst properties).
The methods, based generally on the Bosch reaction, include reactions in the interior region of the phase diagram shown in
The methods use two abundant feedstocks: a carbon oxide (e.g., carbon dioxide, carbon monoxide, or a mixture thereof) and a reducing agent. The reducing agent may be a hydrocarbon gas (e.g., natural gas, methane, etc.), hydrogen gas (H2), another reducing gas, or a mixture thereof. A hydrocarbon gas may also be a source of additional carbon. Synthesis gas, referred to herein and in the art as “syngas,” includes primarily carbon monoxide and hydrogen, and syngas has both the carbon oxide and the reducing gas in a mixture. Syngas may be used as all or a portion of the reaction gas mixture.
The reduction processes described herein generally result in the formation of at least one solid carbon product and water. The water may subsequently be condensed. Latent heat of the water may be extracted for heating purposes or as part of a low-pressure power extraction cycle. The water may be a useful co-product used for another process.
The methods disclosed herein use carbon oxides (e.g., carbon dioxide) as an economically valuable feedstock. In many industrial processes, carbon dioxide is an undesirable waste product, and may have disposal costs (e.g., for sequestration). Use of carbon dioxide as an input for solid carbon production may reduce or eliminate disposal costs, and may simultaneously convert carbon oxides to a salable product. Thus, methods disclosed herein may be incorporated with fossil fuel combustion processes. This combination may be beneficial because the formation of solid carbon products by such processes may be more economical than conventional separation and sequestration methods.
Carbon dioxide is present in many natural gas deposits at various concentrations, such as at concentrations of up to 5% by volume, up to 20% by volume, up to 60% by volume, or even higher. Other compounds, such as H2S, SO2, and other sulfur compounds are often present in natural gas. Removal of sulfur-containing compounds is often done at a well gathering site to form “sweet gas” (i.e., gas with little or no sulfur content). Removal of carbon dioxide before the natural gas is delivered to a consumer may be effectively accomplished via the techniques disclosed herein.
Solid carbon products such as buckminsterfullerene and carbon nanotubes may be formed by the catalytic conversion of carbon oxides to solid carbon and water. Carbon oxides may be derived from various sources, such as the atmosphere, combustion gases, process offgases, well gas, and other natural and industrial sources of carbon oxides. The carbon oxides may be separated from these sources and concentrated as needed, such as by amine absorption and regeneration.
The methods herein generally apply the Bosch reactions, such as the Bosch reaction of carbon dioxide with hydrogen to form solid carbon from carbon dioxide:
CO2+2H2C(s)+2H2O (Equation 1).
The type and quality of solid carbon produced may vary based on the type of catalysts, gas mixtures, and process variables (e.g., temperature, pressure, concentration of reactants and retention times). Solid carbon may be produced in many different morphologies through the carbon oxide reduction process disclosed herein. Some of the solid carbon morphologies that may be produced include graphite (e.g., pyrolytic graphite), graphene, carbon black, fibrous carbon, buckminsterfullerene, single-wall CNTs, multi-wall CNTs, platelets, or nanodiamond. The reactions occur in the interior region of the triangular equilibrium diagram shown in
The Bosch reactions use hydrogen or another reducing agent to reduce carbon oxides to solid carbon and water. The reactions may proceed in the presence of a non-ferrous catalyst at temperatures in excess of approximately 650° C., such as in excess of about 680° C. When the solid carbon is in the form of CNTs, Equation 1 is exothermic (heat producing) and releases approximately 24.9 kcal/mol at 650° C. (i.e., ΔH=−24.9 kcal/mol). Equation 1 is reversible, and solid carbon may be oxidized by water to form carbon dioxide. Although reaction temperatures above about 650° C. may be used to produce solid carbon nanotubes, if the temperature is too high, the rate of the reverse reaction of Equation 1 increases, and the net rate of reaction of carbon dioxide is lower. The equilibrium of Equation 1 generally shifts to the left as temperature increases.
The Bosch reactions are believed to be two-step reactions. In the first step of Equation 1, carbon dioxide reacts with hydrogen to create carbon monoxide and water:
CO2+H2CO+H2O (Equation 2).
Equation 2 is slightly endothermic at 650° C., requiring a heat input of about 8.47 kcal/mol (i.e., ΔH=+8.47 kcal/mol). In the second step of the reaction shown in Equation 1, carbon monoxide reacts with hydrogen to form solid carbon and water:
CO+H2C(s)+H2O (Equation 3).
Equation 3 may occur with stoichiometric amounts of reactants, or with excess CO2 or H2. Equation 3 is exothermic at 650° C., releasing 33.4 kcal/mol (1.16×104 joules/gram of C(s) when CNTs are formed (i.e., ΔH=−33.4 kcal/mol). Values of ΔH for Equation 3 may be calculated for other carbon products by the difference between the ΔH value for Equation 1 for that particular carbon product and the ΔH value for Equation 2.
The Bosch reactions may be used to efficiently produce solid carbon products of various morphologies on an industrial scale, using carbon oxides as the primary carbon source. The Bosch reactions may proceed at temperatures from about 450° C. to over 2,000° C. The reaction rates typically increase in the presence of a catalyst.
A reducing gas mixture of one or more of the commonly available hydrocarbon gases such as lower hydrocarbon alkanes (e.g., methane, ethane, propane, butane, pentane, and hexane), including those found in natural gas, may be economical in some applications. In one embodiment, the reducing gas comprises methane and releases heat in an exothermic reaction in the presence of a non-ferrous catalyst and under reaction conditions optimized for the particular desired type of solid carbon:
CH4+CO22C(s)+2H2O (Equation 4).
Equation 4 is believed to be a two-step reaction, including the following steps:
CH4+CO22CO+2H2 (Equation 5); and
CO+H2C(s)+H2O (Equation 6).
Carbon oxides used in the formation of solid carbon products may be the product of combustion of hydrocarbons, or may be from some other source. Carbon oxides may be injected with a reducing agent into a preheated reaction zone at a desired reaction temperature.
In the presence of limited oxygen, hydrocarbons may react to form carbon monoxide, carbon dioxide, and water, as well as small hydrocarbons and hydrogen. Higher concentrations of oxygen may limit the amount of solid carbon formed. Therefore, it may be desirable to restrict the amount of oxygen present in reaction systems to optimize the production of solid carbon. Additionally, the presence of oxygen may poison catalysts, thereby reducing the reaction rates. Thus, the presence of oxygen may reduce the overall production of solid carbon products.
The carbon oxide reduction reactions of this disclosure typically occur in the presence of a catalyst, which may be predominately composed of a non-ferrous metal. The catalyst composition, method of formation, catalyst grain size, and catalyst grain boundary conditions may influence the type, purity, and homogeneity of the solid carbon product. The reaction conditions, including the temperature and pressure of the reactor and the residence time of the reaction gases may be controlled to obtain solid carbon products having desired characteristics. The reactor feed gas mixture and reaction product are typically passed through the reactor and a condenser. The condenser may remove excess water and control the partial pressure of the water vapor in the reaction gas mixture.
The reaction kinetics favorable to the formation of the desired species of solid carbon may be established through the use of suitable catalysts. In certain embodiments, a carbon oxide is reduced in a reactor or catalytic converter containing a non-ferrous catalyst. As used herein, the term “non-ferrous catalyst” means and includes a catalyst including elements other than iron. Thus, a non-ferrous catalyst includes catalyst materials in which iron is present in combination with other elements or in which iron is not present. Typical catalysts include metals selected from groups 2 through 15 of the periodic table, such as from groups 5 through 10 (e.g., nickel, molybdenum, chromium, cobalt, tungsten, manganese, ruthenium, platinum, iridium, etc.), actinides, lanthanides, alloys thereof, and combinations thereof. Note that the periodic table may have various group numbering systems. As used herein, group 2 is the group including Be, group 3 is the group including Sc, group 4 is the group including Ti, group 5 is the group including V, group 6 is the group including Cr, group 7 is the group including Mn, group 8 is the group including Fe, group 9 is the group including Co, group 10 is the group including Ni, group 11 is the group including Cu, group 12 is the group including Zn, group 13 is the group including B, group 14 is the group including C, and group 15 is the group including N. For example, non-ferrous catalysts include nickel, cobalt, chromium, molybdenum, tungsten, and alloys thereof. Minor amounts of iron may be present in some alloys. Suitable catalysts may also include intermetallic compounds (e.g., Ni3Fe, Fe3Pt, etc.) or carbides (e.g., cementite (Fe3C) or silicon carbide (SiC)).
The non-ferrous catalyst may have a grain size proportional to the diameter of a desired carbon product. Non-ferrous catalysts may be in the form of nanoparticles or in the form of domains or grains and grain boundaries within a solid material. Non-ferrous catalysts may be selected to have a grain size related to a characteristic dimension of a desired diameter of the solid carbon product (e.g., a CNT diameter). In some embodiments, catalyst powder may be formed in or near the reaction zone by injecting a solution as an aerosol (i.e., a distribution of particles), such that upon evaporation of a carrier solvent, a selected particle size distribution results. Alternatively, powdered catalyst may be entrained in a carrier gas and delivered to the reactor. Entrainment may require the catalyst particles to be in relatively fine particles to effectively be transported by a carrier gas. By selecting the catalyst and the reaction conditions, the process may be tuned to produce selected morphologies of solid carbon product.
In the presence of a non-ferrous catalyst, reduction of carbon oxides typically proceeds to completion in under five seconds, and the reaction time can be as short as a few tenths of a second under the right process conditions and non-ferrous catalyst. Generally, shortening the reaction time or increasing the flow rate of the reactants through the reactor has the effect of decreasing the diameter of CNTs formed.
Non-ferrous catalysts may be provided on catalyst supports. A catalyst support can be any metal oxide or other material that can withstand the reaction conditions. For example, a support material may be selected to withstand elevated reaction temperatures in a reactor configured CNT synthesis. In some embodiments, catalyst support materials include Al2O3, SiO2, MgO, ZrO2, molecular sieve zeolites, and other oxidic supports. To control the properties of the solid carbon products formed on such catalysts, the metal loading on the catalyst support may be controlled, such as by leaving a portion of the surface of the support free of catalyst material. In some embodiments, catalyst materials may be provided without catalyst supports, thereby simplifying the preparation and reducing the cost of producing the solid carbon products.
For example, catalyst materials may be formed from catalyst precursors. Catalyst precursors may be mixed and dissolved in water or another solvent to make a solution of the catalyst precursors. The resulting solution may be dried to form the catalyst. In some embodiments, the solution may be sprayed to form an aerosol in a heated chamber, such as by atomization in a flow of gas, direct spraying of the solution through a nozzle, electrostatic spraying, dispersing the solution from the surface of a rotating fixture, and combinations thereof. In some embodiments, catalyst precursors may be combusted or otherwise decomposed by disposing a solution of catalyst precursor on a heated surface, allowing the solvent to evaporate, then allowing the catalyst precursor to combust. Other methods include creating the catalyst by a vacuum-deposition process at high vacuum (e.g., 10−6 to 10−8 Torr) and high temperatures (e.g., 900° C. to 1300° C.). Catalysts may be supplied as metal nanoparticles supported on solid supports via secondary dispersion and extraction. The catalyst may be mobilized, as in a fluidized bed, or may be stationary in the reactor as the carbon-containing gases flow through the reactor and react with the catalyst.
The catalyst particles may be nucleating sites from which CNTs grow. The catalyst particles may be domains or grains in a piece of metal material or discrete nanoparticles of catalytic metal deposited on an inert substrate (e.g., a quartz disk). The size of CNTs may be proportional to the size of the nucleating site. The ratio between a catalyst particle size and the diameter of a CNT formed thereon may be from about 1.2 to about 1.6. One possible theoretical basis for the correlation of particle size and CNT diameter is disclosed in Nasibulin et al., Correlation Between Catalyst Particle and Single-walled Carbon Nanotube Diameters, 43 CARBON 2251-57 (2005), though Naisbulin's estimate of 1.6 is higher than was typically experimentally observed in the experiments described herein.
Nucleation of a catalyst may be promoted by the use of light photons (e.g., pulsed laser light, X-ray radiation, ultraviolet, near and far infrared, etc.) such as by passing electromagnetic pulses through the catalyst or through catalyst precursors. This use of laser light may enhance the size uniformity of the resulting catalyst nanoparticles.
During reduction of carbon oxides to form CNTs, such as in the reactions shown in Equations 1 through 6, above, each CNT formed may raise a particle of catalyst material from a surface of bulk catalyst material. Without being bound by any particular theory, it appears that the catalyst surface is slowly consumed by the formation of CNTs due to embedding a particle of the catalyst material into growth tips of the CNTs. The material on which a CNT grows may not be considered a catalyst in the classical sense, but is nonetheless referred to herein and in the art as a “catalyst,” because the carbon is not believed to react with the material. Furthermore, CNTs may not form at all absent the catalyst.
As an alternative theory, the reaction may occur because of the presence of carbon in the catalyst material. Without being bound by any particular theory, carbon may act as a nucleating site for the reaction to proceed. Thus, the carbon in the catalyst material may promote reactions to reduce carbon oxides to solid carbon. As layers of solid carbon are formed, the newly formed carbon material may operate as nucleating sites for subsequent layers of solid carbon products.
The catalyst may include any of groups 5 through 10 of the periodic table (e.g., nickel, molybdenum, chromium, cobalt, tungsten, manganese, ruthenium, platinum, iridium, etc.), as well as lanthanides, actinides, alloys, and other combinations thereof. Catalysts formed from mixtures (e.g., alloys) of these materials may be designed to yield the desired solid carbon morphology.
Various commercially available grades of nickel, molybdenum, platinum, chromium, cobalt, and tungsten, and alloys thereof may be useful as catalysts. Various grades of chromium-, molybdenum-, cobalt-, tungsten-, or nickel-containing alloys or superalloys may be used, for example materials commercially available from Special Metals Corp., of New Hartford, N.Y., under the trade name INCONEL®, or materials commercially available from Haynes International, Inc., of Kokomo, Ind., under the trade name HASTELLOY® (e.g., HASTELLOY® B-2, HASTELLOY® B-3, HASTELLOY® C-4, HASTELLOY® C-2000, HASTELLOY® C-22, HASTELLOY® C-276, HASTELLOY® G-30, HASTELLOY® N, or HASTELLOY® W). The catalyst may be in solid form, such as plates, cylinders, pellets, spheres of various diameters (e.g., as steel shot), or combinations thereof. In some embodiments, catalyst materials may include a stainless steel, such as 15-5 stainless steel, an alloy having 14.0-15.5% Cr, 3.5-5.5% Ni, 2.5-4.5% Cu, 0.15-0.45 Nb+Ta, up to 1.0% Mn, up to 1.0% Si, up to 0.30% S, up to 0.07% C, and up to 0.04% P.
In one embodiment, substantially spherical catalyst material may be used in conjunction with a fluidized-bed reactor. The morphology of CNTs grown on metal catalyst may be dependent on the chemistry of the metal catalyst and the way the catalyst was processed. For example, CNT morphology may be related to grain size and grain boundary shapes within the metal. For example, the characteristic size of these features may influence the characteristic diameter of CNTs formed in the presence of such metal catalysts. All other factors being equal, smaller grain sizes or finer grain boundaries may correspond to smaller diameter CNTs.
The grain size of a catalyst material may at least partially determine the size of the CNT product. Metals with smaller grain sizes may produce smaller diameter CNTs. The grain size may be a function both of the chemistry of the metal catalyst and the heat-treating methods under which the grains are formed. As used herein, the term “grain size” of a non-ferrous catalyst refers to the mean, median, or mode grain diameter or width of the non-ferrous catalyst surface. For example, cold rolled, hot rolled, precipitation hardened, annealed, case hardened, tempered, or quenched metals may be selected as the catalyst depending on the desired morphology of the solid carbon.
The grain size of the metal crystalline surface may also at least partially determine the size of the CNT product. The grain distribution, including the crystalline grain size and grain boundaries, may be controlled by methods known in the art. For example, grain size may be controlled by controlling nucleation of the metal, such as by grain refinement or inoculation. Inoculants for promoting nucleation may include titanium, boron, aluminum titanium (Al3Ti), titanium diboride (TiB2), etc.
In general, the grain structure of a metal surface may be changed by methods known in the art. For example, a metal structure may be heated to a temperature sufficient to recrystallize the metal structure to form multiple randomly oriented grains. Alternatively, the metal may be heat-treated or annealed to change the grain structure, grain boundary, and grain size. For example, the metal may be annealed by heating the metal to a temperature above its recrystallization temperature, maintaining the temperature for a period of time, then cooling the metal. As another example, metal may be annealed by heating it for a period of time to allow grains within the microstructure of the metal to form new grains through recrystallization.
Recrystallization is a process in which a metal may be plastically deformed, annealed, or otherwise heat-treated. When the metal is heated, the heat-treatment affects grain growth in the metal structure. The size of a crystalline structure may vary with the temperature above the critical temperature and the time at that temperature. Additionally, a faster cooling rate from the recrystallization temperature may provide a larger maximum undercooling and a greater number of nucleation sites, thus producing a finer-grained metal. Thus, in one embodiment, crystal grain size and thus, nanotube size may be controlled by nucleation of the catalyst metal, the temperature of the catalyst heat-treatment, the length of time the catalyst metal is above the crystallization temperature, and the cooling process of the metal.
To form catalyst particles having a relatively finer mean grain size, the catalyst material may be heated to a selected temperature, followed by rapid cooling. In some embodiments, CNT diameter and morphology may be controlled by controlling the method of formation of the catalyst. For example, the use of a cold-rolled metal as a catalyst material may result in a different CNT morphology than the use of hot-rolled metal as a catalyst material.
The grain size and grain boundary of catalyst material may be changed to control the size and morphology of the solid carbon product. For example, catalyst material may be annealed at a temperature range from about 600° C. to about 1,100° C., from about 650° C. to about 1,000° C., from about 700° C. to about 900° C., or from about 750° C. to about 850° C. The resulting grain size may be from about 0.1 μm to about 50 μm, from about 0.2 μm to about 20 μm, from about 0.5 μm to about 5 μm, or from about 1.0 μm to about 2.0 μm. Various heat-treating, annealing, and quenching methods are known in the art of metal preparation, grain growth techniques, and grain refinement. Any of these methods may be used to alter the grain size and grain boundaries of the catalyst surface to control the size and morphology of the resulting solid carbon product.
The catalyst surface may be reduced prior to the reaction of carbon oxides. For example, a reducing gas mixture may be introduced into a reactor maintained at a selected temperature, pressure, and concentration to reduce the surface of the catalyst (i.e., to react with or remove oxidized materials). The grain size and grain boundary of the catalyst material may be controlled by heating the catalyst surface and reducing any oxides at the surface. Maintaining the catalyst surface in a reducing environment for longer periods of time may result in relatively larger grain sizes, and shorter reducing treatments may result in relatively smaller grain sizes. Similarly, lower reducing temperatures may result in smaller grain sizes. Oxidation and subsequent reduction of the catalyst surface may alter the grain structure and grain boundaries. The oxidation and/or reduction temperatures may be in the range from about 500° C. to about 1,200° C., from about 600° C. to about 1,000° C., or from about 700° C. to about 900° C. The resulting grain size may range from about 0.1 μm to about 500 μm, from about 0.2 μm to about 100 μm, from about 0.5 μm to about 10 μm, or from about 1.0 μm to about 2.0 μm.
The grain boundary and the mean grain size of the catalyst surface may be controlled, for example, by sputtering (ion bombardment). As used herein, the term “sputtering” refers to the removal of atoms from a surface by the impact of an ion, neutral atoms, neutrons, or electrons. Sputtering may be used to generate surface roughness of a particular grain boundary on the surface of the catalyst. Grain boundaries formed by sputtering may be advantageous for the reduction reactions of carbon oxides. Sputtering may be used to remove atoms from the surface of the metal catalyst. The ion beam energy may determine the resulting grain structure of the metal catalyst surface. For example, in alloys or oxidized metal surfaces, the energy of the ion beam may determine which atoms on the metal surface are removed. The energy applied during sputtering may be selected to remove only a particular atom in certain alloys. Thus, sputtering may result in a grain boundary having atoms or particles with relatively high surface-binding energies on the surface without atoms that may be removed by a low-energy ion beam. Increasing the ion beam energy may remove atoms and particles with higher surface binding energies from the metal surface. Thus, sputtering may be used to produce surfaces having controlled grain boundaries, mean grain sizes, and grain patterns. Sputtering may be used to control the size and morphology of the solid carbon product by controlling the mean grain size, grain boundary, or grain patterns of the metal catalyst surface.
In some embodiments, the catalyst surface may be controlled by chemical etching to form a catalyst surface of a selected mean grain size and with a selected grain boundary. Etching processes include swabbing, immersion, spraying, or other methods. The type of etchant, the strength of the etchant, and the etching time may affect the surface of the metal catalyst. For example, to etch a non-ferrous metal such as nickel-containing alloys or superalloys, an etchant may include a solution of 5 grams of copper(II) chloride (CuCl2) with 100 ml of ethanol and 100 ml of hydrochloric acid. In some embodiments, nitric acid in various concentrations may be used to etch non-ferrous catalysts. If a non-ferrous catalyst includes cobalt, the catalyst may be etched in a solution of iron(III) chloride (FeCl3) in hydrochloric acid, which may result in removing the cobalt. Thus, use of such an etchant may selectively etch the cobalt from a cobalt alloy, leaving other metals on the surface of the catalyst. In this manner, the grain boundary of the surface may be selectively controlled, thereby enabling control of properties of the solid carbon product formed thereon.
In some embodiments, the catalyst is a metal or intermetallic carbide (e.g., iron carbide (cementite)) having a crystalline structure substantially saturated with carbon. Such catalyst may be prepared by carburizing the metal or intermetallic catalyst by any of the several processes for carburization known to the art. Carburization is normally used in surface-hardening of metals in various metallurgical applications. The metal or intermetallic carbides as described herein may be more effective catalysts in many cases for the carbon oxide reduction reaction than the uncarburized metal or intermetallic catalysts.
Catalyst material may be secured to a structure and placed in a reactor. Alternatively, the catalyst may be pulverized or ball-milled. The pulverization or ball-milling process may affect the catalyst grain size and grain boundary, thereby affecting the morphology of CNTs formed. The pulverized or ball-milled non-ferrous catalyst may be collected and sieved to increase the uniformity of the catalyst particle size. If the catalyst is in powder or particulate form, the catalyst may be carried into the reactor by a carrier gas or a reactant gas. Catalyst in particulate form may also be used in a fluidized-bed reactor. Dynamic action of metal catalyst particles within the fluidized bed may continually cause fresh catalyst surfaces to be exposed as carbon nanotubes are formed and spalled off of the catalyst particle surface. Catalyst particles may be configured to increase the surface area of the catalyst in contact with the carbon oxide gases and the reducing gases as the reaction proceeds.
Reaction temperatures may depend on the composition of the catalyst or on the size of the catalyst particles. Catalyst materials having small particle sizes tend to catalyze reactions at lower temperatures than the same catalyst materials with larger particle sizes. For example, the Bosch reaction may occur at temperatures in the range of approximately 400° C. to 800° C. for iron-based catalysts, depending on the particle size and composition and the desired solid carbon product. In general, graphite and amorphous solid carbon form at lower temperatures, and CNTs form at higher temperatures. CNTs may form at temperatures above about 680° C. In general, the reactions described herein proceed at a wide range of pressures, from near vacuum, to pressures of 4.0 MPa (580 psi) or higher. For example, CNTs may form in pressure ranges of from about 0.28 MPa (40 psi) to about 6.2 MPa (900 psi). In some embodiments, CNTs may form at pressures from about 0.34 MPa (50 psi) to about 0.41 MPa (60 psi), or at a pressure of about 4.1 MPa (600 psi). Typically, increasing the pressure increases the reaction rate.
Under some conditions, carbon forms a buckysphere around a particle of catalyst, which may partially merge with the tube structure of a CNT, forming a nanobud. The introduction of additional catalyst material after the formation of CNTs may induce the formation of CNTs having branched or bud morphology.
When using a solid catalyst, such as a wafer of metal catalyst, CNTs appear to grow in a series of generations. Without being bound by any particular theory, it appears that reaction gases interact with an exposed surface of catalyst, and CNTs begin to grow on the surface. As the growth continues, neighboring CNTs become entangled and lift particles of the catalyst off the surface, exposing a new layer of catalyst material to the reaction gases. As each layer of catalyst material lifts off of the surface, the CNTs become entangled in clumps that resemble “pillows” or cockleburs under magnification.
A fluidized-bed reactor may take advantage of the detachment of CNTs as a separation means. That is, the flow of gases in a fluidized-bed reactor may be selected such that formations of CNTs are entrained in the gas flow, elutriated from the catalyst surface, and subsequently harvested from the gas mixture leaving the reactor.
Without being bound by any particular theory, carbon may act as a nucleating site for solid carbon. For example, as a component of a catalyst material, carbon may promote the reaction. As the reaction continues and each layer of solid carbon is formed, newly formed carbon may act as a nucleating site for subsequent layers of solid carbon. Thus, in one embodiment, the size and morphology of the solid carbon product is controlled by selecting and controlling the carbon composition of the catalyst metal.
A catalyst composition in which catalyst layers are consumed during a reaction may expose fresh surfaces of catalyst, allowing for the formation of solid carbon products to continue uninterrupted. Without being bound by any particular theory, such a mechanism appears to occur, for example, when rusted steel is used as the solid metal catalyst.
As depicted in, for example, FIGS. 4 and 19 of International Patent Publication WO 2013/158156, pillow morphology is characterized by the presence of CNTs that are entangled in clusters. The pillows appear as bulbous or billowing conglomerations of nanotubes, similar to the appearance of the outer periphery of cumulus clouds. The pillows may include carbon nanotubes of various diameters, lengths, and types. The pillows may appear in the form of discrete units in forests, piles, and fibers grown on a substrate. Metals of different compositions and forms may yield carbon nanotube pillows under a wide range of reaction gas mixes and reaction temperatures.
CNT pillow formations may form into larger agglomerations. For example, if a sample of carbon nanotube pillows is gently stirred or shaken in ethanol, the pillows agglomerate and interlock so that the boundaries of the pillows become indistinct. The agglomerations may be larger and stronger than the individual pillow formations. The pillow morphology of CNTs may be particularly suitable for forming various types of carbon nanotube paper, felts, electrodes, etc.
Various reactor designs may facilitate the formation and collection of desired solid carbon products. For example, a reactor may be designed to increase the surface area of a non-ferrous catalyst exposed to carbon oxides and reducing gases. In some embodiments, the reactor may be designed to accommodate catalyst particles having a relatively small mean diameter, thereby increasing the exposed catalyst surface area per unit mass of catalyst material. The reactor may be configured to hold layered sheets of catalyst material. In such embodiments, the exposed surface area per unit volume may be optimized, such as in configurations similar to radiator configurations. The reactor may also be designed to promote the breaking off of the solid carbon products from the non-ferrous catalyst surface, such as by the flow of reaction gases. The reactor may further be designed to promote elutriation of solid carbon products out of the reactor with excess reactant gases or a carrier gas, enabling continuous operation of the reactor.
Aerosol and fluidized-bed reactors are well suited for high-volume continuous production of solid carbon products. A fluid-wall reactor has the advantages of providing for the introduction of various substances (catalysts, additional reactants) and of minimizing or eliminating the accumulation of solid carbon products on reactor walls.
In some embodiments, a non-ferrous catalyst material may be conditioned before reduction of carbon oxides. A reactor volume may be purged or displaced by a reducing agent, and the temperature of the reactor may be controlled to reduce any oxides on the catalyst surface. The reactor temperature, the reducing time, and the reducing gas temperature and pressure may be controlled to control the grain size and grain boundary of the catalyst surface, as described above. Altering the grain size and grain boundary of the catalyst surface may alter the size and morphology of the carbon nanotube product. For example, the reducing gas and reactor may range from about 500° C. to about 1,200° C., from about 600° C. to about 1,000° C., or from about 700° C. to about 900° C. The catalyst may be exposed to the reducing agent for a period of time sufficient to reduce any oxides. After conditioning of the catalyst, a reaction gas mixture including a carbon oxide may be introduced into the reactor, and the reactor temperature and pressure may be maintained to suitable conditions for the reduction of the carbon oxide to form a desired solid carbon product.
In some embodiments, the reactor may be an aerosol reactor in which the catalyst is formed in a gas phase or in which the catalyst is preformed and selected for a specific size distribution, mixed into a liquid or carrier gas solution, and then sprayed into the reactor (e.g., via electrospray). The catalyst may then remain distributed in the gas phase or be deposited on solid surfaces in the reaction zone for the growth phase of the carbon product. The catalyst may subsequently transport the product out of the reaction zone. In another embodiment, one or more reactors may be fluidized-bed reactors in which the catalyst or catalyst-coated particles are introduced into the reactor and the solid carbon product is grown on the surface of the particles. The solid carbon may be either elutriated in the reactor, and carried out of the reactor entrained in the reaction gases, or the catalyst particles may be harvested and the solid carbon removed from the surface.
In some embodiments, a reactor is configured such that reactant gases enter at or near the top of the reactor and exit at or near the bottom of the reactor. The catalyst may be placed in the reactor to maximize the surface area of exposed catalyst per unit volume of reactor. For example, the catalyst may be in thin sheets, and the reactor may be configured to receive multiple sheets of catalyst material. The catalyst sheets may be arranged such that reactant gases flow past each sheet of catalyst material before exiting the reactor. For example, the catalyst sheets may be staggered in the reactor, such that the reactant gases flow across a first plate at the top of the reactor, past the first plate at the side of the reactor, then past the bottom of the first plate and the top of the second plate toward an opposite side of the reactor. This process may continue as the reactant gases pass through the reactor. The solid carbon product may be collected at the bottom of the reactor. The downward flow of the reactant gases and downward gravitational forces may promote the removal of solid carbon products from the surface of the catalyst.
The reactors may be batch reactors in which the catalyst is either a fixed solid surface or is mounted on a fixed solid surface (e.g., catalyst nanoparticles deposited on an inert substrate), with the solid carbon grown on the catalyst, and the catalyst and solid carbon product periodically removed from the reactor. Alternatively, the reactors may be continuous, wherein a solid catalyst or catalyst mounted on a solid substrate passes through a flowing gas stream, the resulting solid carbon product is harvested, and the solid surface is reintroduced to the reactor. The solid substrate may be the catalyst material (e.g., a solid piece of a chromium-, molybdenum-, cobalt-, or nickel-containing alloy or superalloy) or a surface on which the catalyst is mounted.
In one embodiment, a fluidized-bed reactor may be designed to retain the catalyst while allowing the solid CNT product to be entrained in the gas flow and to be lofted out of the reaction zone upon reaching a desired size. The shape of the reactor, the gas flow rates, or shape and flow rates in combination may control the residence time of the elutriates and the corresponding size of the solid carbon product (such as the length of the carbon nanotubes).
In one embodiment, particles in a fluidized-bed reactor are of a substantially uniform diameter. The diameter of the catalyst in the fluidized bed may be chosen based on the particular reactor configuration, the flow rate of the reactants through the reactor, the shape of the catalyst, the density of the catalyst, and the density of the reactant gases and any inert carrier gases. The diameter of the catalyst particles may be chosen to avoid entrainment of the catalyst with the reaction product and also to avoid channeling of the reactants through the bed. A diffuser or sparger may distribute the gaseous reactants to provide a uniform flow pattern through the bed particles and limit or prevent channeling of gases through the particle bed.
When the catalyst is a sheet or plate over an object of manufacture, the entire surface of the object of manufacture need not be uniformly coated with the carbon product. The carbon deposition area on the solid surface optionally may be limited to one or more regions by masking, or by selectively depositing the catalyst to promote the formation of the solid carbon on portions of the solid surface.
Solid carbon products may be collected and separated from the gas stream or from solid surfaces on which they form, such as by elutriation, centrifugation, electrostatic precipitation, or filtration. The techniques for separation of the solid product from the gas stream and the catalyst may depend on the type of reactor. For example, the solid carbon product may be harvested directly from a gas stream using electrophoretic or thermophoretic collectors, filters, etc., or by collecting the elutriates as they exit the reactor. After harvesting solid carbon products, gases may be recycled through the reactor. Combining the catalytic conversion process with a separation process may be beneficial because such a carbon separation and sequestration unit may be more economical than conventional separation and sequestration methods.
The catalytic converters described herein may use carbon oxides at relatively low pressures, so that equipment and costs associated with compression, liquefaction, and transport may be reduced. Furthermore, the heat produced in the catalytic converters may provide at least some of the process heat for the separation process. For example, a separation process, such as amine absorption, may receive at least part of the heat required for desorption from the catalytic converter, and deliver low pressure carbon oxide gases to the catalytic converter.
In one embodiment, a cyclone separator is used to separate and collect the solid carbon product. For a solid catalyst or solid surface-mounted catalyst, the solid carbon product may be scraped or otherwise abraded from the surface of the solid carrier material. Alternatively, when using a solid catalyst, the solid carbon product may be rinsed off a surface with a solvent for further processing.
In some cases, it may be beneficial to remove the solid carbon product from the reaction gas mixture prior to cooling (e.g., by withdrawing the solid carbon product from the reactor through a purge chamber wherein the reaction gases are displaced by an inert purging gas such as argon, nitrogen, or helium). Purging prior to cooling helps reduce the deposit or growth of undesirable morphologies on the desired solid carbon product during the cooling process.
In aerosol or fluidized-bed reactors, the residence time in the growth zone may be controlled by one or more forces (such as gravitational, electromagnetic, or centrifugal forces) counteracting the motion of the gas stream. These forces counterbalance the gas flow to help control the residence time, so that the size of the solid carbon product may be controlled.
In another embodiment, catalysts are introduced into an aerosol reactor by an electrospray process. Coulomb forces separate a suspension or solution containing a catalyst powder into small droplets from which individual particles form. The electrospray helps keep the particles separated so that they do not tend to clump or fuse. The electrospray also tends to charge the resulting carbon particles and make them easier to harvest from the aerosol using electrostatic collectors.
In aerosol reactors, catalyst particles may be sprayed into a carrier gas or fluid for transport into the reaction zone. The catalyst may be preconditioned in a catalyst-conditioning process prior to mixing with the reaction gases. Catalyst conditioning by heating in an inert carrier gas may promote the growth of specific chiralities of single wall CNTs. For example, heating catalyst material in a helium environment may promote the growth of chiralities of CNTs having metallic properties. One or more substances may be introduced into the reaction zone to modify the physical properties of the desired solid carbon product, either through incorporation in the solid carbon product, or by surface deposition on the solid carbon product.
The physical properties of the solid carbon products may be substantially modified by the application of additional substances to the surface of the solid carbon. Modifying agents (e.g., ammonia, thiophene, nitrogen gas, and/or surplus hydrogen) may be added to the reaction gases to modify the physical properties of the resulting solid carbon. Modifications and functionalizations may be performed in the reaction zone or after the solid carbon products have been removed from the reaction zone.
Some modifying agents may be introduced into the reduction reaction chamber near the completion of the solid carbon formation reaction by, for example, injecting a water stream containing a substance to be deposited, such as a metal ion. The substances may also be introduced as a component of a carrier gas. For example, surplus hydrogen may cause hydrogenation of a carbon lattice in some CNTs, causing the CNTs to have semiconductor properties.
Small amounts of substances (e.g., sulfur) added to the reaction zone may be catalyst promoters that accelerate the growth of carbon products on the catalysts. Such promoters may be introduced into the reactor in a wide variety of compounds. Such compounds may be selected such that the decomposition temperature of the compound is below the reaction temperature. For example, if sulfur is selected as a promoter for an iron-based catalyst, the sulfur may be introduced into the reaction zone as a thiophene gas, or as thiophene droplets in a carrier gas. Examples of sulfur-containing promoters include thiophene, hydrogen sulfide, heterocyclic sulfides, and inorganic sulfides. Other catalyst promoters include volatile lead, bismuth compounds, ammonia, nitrogen, excess hydrogen (i.e., hydrogen in a concentration higher than stoichiometric), and combinations of these.
In some embodiments, a catalyst particle is removed from the surrounding matrix as a CNT grows, and the catalyst particle may become embedded in one of the ends of the CNT. Thus, some of the catalyst material may be physically removed during the reaction, and the catalyst may need to be continually replenished. The material on which a CNT grows may not be considered a catalyst in the classical sense, but is nonetheless referred to herein and in the art as a “catalyst,” because the carbon is not believed to react with the material. Furthermore, CNTs may not form at all absent the catalyst. In scanning electron microscope images, catalyst ends appear significantly larger (e.g., 1.2 to 1.6 times the diameter) than the tubes that grow from them. This difference may be due to a carbon shell surrounding the catalyst, it may be indicative of a fundamental relationship between the catalyst particle size and that of the CNT that grows from it, or it may be due to some other factor or coincidence. Whatever the reason, one way to control the size of the CNTs appears to be through the control of the catalyst particle size, or grain size, keeping the catalyst particle size somewhat larger than the desired nanotube size.
The methods disclosed herein may be incorporated into power production, chemical processes, and manufacturing processes in which the combustion of a primary hydrocarbon fuel source is the primary source of heat. The resulting combustion gases from such processes contain carbon oxides that may act as sources of carbon for the manufacture of the desired solid carbon product. The methods are scalable for many different production capacities so that, for example, plants designed with this method in mind may be sized to handle the carbon oxide emissions from the combustion processes of a large coal-fired power plant or those from an internal combustion engine. For example, the methods may be used to reduce carbon dioxide from the atmosphere, combustion gases, process offgases, exhaust gases from the manufacture of Portland cement, and well gases, or from separated fractions thereof.
In another embodiment, the carbon oxides from a source gas mixture are separated from the source mixture and concentrated to form the carbon oxide feedstock for the reduction process. The carbon oxides in the source gases may be concentrated through various means known in the art. In yet another embodiment, the catalytic conversion process may be employed as an intermediate step in a multi-stage power extraction process wherein the first stages cool the combustion gases to the reaction temperature of the reduction process for the formation of the desired solid carbon product. The cooled combustion gases, at the desired temperature of the reduction reaction, may then be passed through the reduction process and subsequently passed through additional power extraction stages.
Coupling this method with a hydrocarbon combustion process for electrical power production has an additional advantage in that the hydrogen required for the reduction process may be formed by the electrolysis of water using off-peak power. The oxygen formed in the electrolysis process may be used as at least a portion of the combustible mixture for the combustion process.
When the methods disclosed herein are coupled with a combustion or chemical process that uses hydrocarbons, a portion of the hydrocarbons of the process may be used as the reducing agent gas. This may include the pyrolysis of the hydrocarbons to form a hydrogen gas that is provided as the reducing agent gas. The process of this disclosure may be adapted to various available hydrocarbon sources.
The reduction process of this method results in the formation of solid carbon product and water. The water may subsequently be condensed and the latent heat extracted for heating purposes, or as part of a low-pressure power extraction cycle. The water may be extracted as a useful co-product, and the associated latent heat of the water may be used for another process.
The following examples illustrate the processes described. Each example is explained in additional detail in the following subsection, and scanning electron microscope images of products of some examples are included in this disclosure or in International Patent Publication WO 2013/158156, previously incorporated by reference.
As depicted in
The temperature of the tube furnace 1 was measured by a type-K thermocouple located inside the outer quartz shell at approximately the centerline of the first tube furnace 1. The reported temperatures in the following examples are as shown on these thermocouples.
The mixing valve 7 includes pressure reducing valves and mass flow controllers for each of the gases so that the apparatus will not be over pressurized and so that the gas flow of each of the gases can be independently controlled.
The discharge from the condenser 4 includes a back pressure regulator so that a constant setpoint pressure can be maintained in the apparatus. The pressures shown in the examples are the pressure settings of this back pressure regulator.
The components illustrated in
The gases used in various combinations in the examples were: research grade carbon dioxide (CO2), available from PraxAir; research grade methane (CH4), available from PraxAir; standard grade nitrogen (N2), available from PraxAir; research grade helium (He), available from Air Liquide; and research grade hydrogen (H2), available from PraxAir.
Without being bound by any particular theory, the flow rates may have all been above a critical threshold. Flow rates may be important for design and operation of production facilities, but are not particularly important in the tests reported herein because the volume of the experimental apparatus was much larger than the volume of the catalyst and resulting solid carbon product. Appropriate tests to determine the optimum flow rates for a specific production design will readily occur to a skilled practitioner.
During the experiments, the pressure of the gases in the experimental apparatus would suddenly begin to rapidly drop as the temperature increased. The temperature at which the pressure began to drop varied with the catalyst and gas mixture. This drop in pressure may be an indication of the onset of formation of the solid carbon product. When the pressure dropped, additional reaction gases were added to the experimental apparatus via the mixing valve 7 to maintain pressure. After a short time, the pressure would begin to rise, at which point the mixing valve 7 was closed. The magnitude and duration of the pressure drop appear to be an indication of the onset of CNT growth and/or the rate of growth.
The start-up procedure followed one of two methods: heating the experimental apparatus in an inert gas (helium or nitrogen), or heating the experimental apparatus in air. In the case of heating in the inert gas, the experimental apparatus was purged by flowing inert gas through the apparatus for sufficient time to purge air out of the system. The inert gas was then turned off, and the heating element of the tube furnace 1 was turned on to begin the heating cycle and bring the tube furnace 1 up to the desired temperature. In the case of hydrogen, the apparatus was first purged with the inert gas and then the inert gas was purged with hydrogen. The hydrogen was then tuned off, and the heating element of the tube furnace 1 was turned on to begin the heating cycle and bring the tube furnace 1 up to the desired temperature.
When the tube furnace 1 reached approximately the experimental set point temperature, the experimental apparatus was purged with a reaction gas mixture (typically a stoichiometric mixture of carbon monoxide and hydrogen) for five minutes, after which the flow rate was reduced to the desired flow rate for the example.
In the examples, the tube furnace 1 was operated for a fixed time (typically 1 to 4 hours), after which the tube furnace 1 was turned off. After the tube furnace 1 was turned off, the experimental apparatus was purged with an inert gas (either helium or nitrogen) for approximately five minutes. The inert purge gas was then shut off and the tube furnace 1 was allowed to cool so that the test samples could be removed.
For each example, a catalyst sample was placed in a quartz boat, and installed in the tube furnace 1. Tube furnace 1 included a steel tube with a quartz tube liner configured so that the reaction gases flowed through the quartz tube liner. The quartz boat was placed inside the quartz tube liner, so that the catalyst sample was the only catalyst in contact with the reaction gases at the reaction temperature and pressure.
During the experiments, there were no observed differences in the quality of the CNTs produced based on the inert gas used for purging and cooling. Implementations of continuous flow reactors based on the batch examples herein will readily occur to a skilled practitioner.
A sample of mild steel wafer with extensive red rust spots was used as the catalyst. The mild steel wafer was placed in the tube furnace 1 at approximately the centerline. The experimental apparatus was purged with helium and brought to the desired reaction temperature.
When the furnace 1 temperature reached a temperature of 680° C., the experimental apparatus was purged with reaction gases in a stoichiometric mixture of carbon dioxide and hydrogen (delivered from the gas supply 6 by the mixing valve 7) for five minutes. The reaction gases flowed through the tube furnace 1 for one hour, after which the heating element of the furnace 1 was shut off, and the experimental apparatus was purged with helium for five minutes. The furnace 1 was then left to cool.
The steel sample was removed after the furnace 1 had cooled. FIG. 3 of International Patent Publication WO 2013/158156 shows a photograph of the steel sample after it was removed, including a “forest” type of growth on the substrate. This forest is comprised of CNT “pillows.” FIG. 4 of WO 2013/158156 shows an SEM (scanning electron microscope) image of the same sample under 700× magnification. FIG. 5 of WO 2013/158156 is a top view and shows the same sample of FIG. 4 of WO 2013/158156 under 18,000× magnification and shows the details of a typical pillow. The size of the CNTs (tens to hundreds of nanometers in diameter) indicates that they are probably multi-wall CNTs. FIG. 5 of WO 2013/158156 also shows the catalyst in the growth tip end of each CNT at bright spots. The average diameter of the growth tip appears to be approximately 1.2 to 1.3 times the diameter of the associated carbon nanotube. FIG. 6 of WO 2013/158156 shows an elemental analysis of the CNTs in FIG. 5 of WO 2013/158156, indicating that the CNTs are primarily carbon with minor iron and oxygen constituents, perhaps due to the catalyst particles embedded in the growth tips of the CNTs.
A quartz disk was placed lying flat on a wafer of 304 stainless steel, which was used as the catalyst. The wafer was placed in furnace 1 at approximately the centerline. The experimental apparatus was helium-purged and heated as in Example 1. Reaction gases were added and recirculated for one hour at a temperature of 680° C. and a pressure between 85.3 kPa (640 Torr) and 101.3 kPa (760 Torr), as in Example 1.
The stainless steel sample was removed from the furnace 1 after the furnace 1 had cooled. A mat of CNTs had grown between the quartz and the stainless steel wafer. Portions of the CNT mat adhered to both the quartz and the stainless steel surfaces. FIG. 7 of International Patent Publication WO 2013/158156 shows the sample under 10,000× magnification, and FIG. 8 of WO 2013/158156 shows the sample under 100,000× magnification. The size of the CNTs (tens to hundreds of nanometers in diameter) indicates that they are probably multi-wall CNTs.
A wafer of 316L stainless steel was used as the catalyst. The 316L stainless steel wafer was placed in furnace 1 at approximately the centerline. The experimental apparatus was helium-purged and heated as in Example 1. Reaction gases were added and recirculated for one hour as in Example 1, but at a temperature of 700° C. and a pressure between 93.3 kPa (700 Torr) and 97.3 kPa (730 Torr).
The stainless steel wafer was removed from the furnace 1 after the furnace 1 had cooled. FIG. 9 of International Patent Publication WO 2013/158156 is a photograph of the stainless steel wafer. The carbon nanotubes grew on only a portion of the wafer. The reasons for this are unclear. FIG. 10 of WO 2013/158156 shows an image of a region of the CNT forest on the wafer at 2,500× magnification, and FIG. 11 of WO 2013/158156 shows an image of the same region of the CNT forest at 10,000× magnification. The diameter of the tubes indicates that they are likely multi-wall CNTs.
A sample of mild steel wool was used as the catalyst. The steel wool was placed in the furnace 1 near the centerline and heated in air. The compressor 3, the refrigerated condenser 4, and the heating element of the tube furnace 1 were turned on, circulating air through the experimental apparatus. When the furnace 1 temperature reached 700° C., a stoichiometric mixture of carbon monoxide and hydrogen flowed from the gas supply 6 (via the mixing valve 7). The reaction gases flowed through the tube furnace 1 for one hour, after which the heating element of furnace 1 was shut off and the experimental apparatus was purged with helium for five minutes. The furnace 1 was then left to cool.
The steel wool sample with the solid carbon product was removed after the furnace 1 had cooled. FIG. 12 of International Patent Publication WO 2013/158156 is a photograph of the steel wool sample. The powdery black band of solid carbon product was sampled and examined under SEM, shown in an image of a particle of the powder at 800× magnification in FIG. 13 of WO 2013/158156. The depicted particle is a single “pillow” of the pile of pillows comprising the powdery black band. FIG. 14 of WO 2013/158156 shows an image of the same pillow at approximately 120,000× magnification. The diameter indicates that the CNTs are likely multi-wall.
A sample of 316 stainless steel wire was used as the catalyst. The wire was placed in the furnace 1 near the exit of the furnace 1. The experimental apparatus was purged with inert gas. The heating element of the furnace 1 and the refrigerated condenser 4 were turned on. Reaction gases in a stoichiometric mixture of carbon dioxide and hydrogen (delivered from the gas supply 6 by the mixing valve 7) were flowed through the experimental apparatus for two hours at 575° C., after which the heating element of the furnace 1 was shut off, and the experimental apparatus was purged with helium for five minutes. The tube furnace 1 was then left to cool.
The steel wire was removed from the furnace 1 after the furnace 1 had cooled. FIG. 15 of International Patent Publication WO 2013/158156 is a photograph of the steel wire sample with the surface growth of the solid carbon product, which in this example, includes graphite platelets. Samples of the graphite platelets were imaged using SEM, as shown in FIG. 16 of WO 2013/158156 at 7,000× magnification and in FIG. 17 of WO 2013/158156 at 50,000× magnification.
A wafer of 304 stainless steel was used as the catalyst. Quartz discs were place on the upper surface of the stainless steel wafer. The stainless steel wafer and quartz discs were placed in the furnace 1 at approximately the centerline. The experimental apparatus was helium-purged and heated as in Example 1. Reaction gases were added and recirculated at a temperature of 650° C. and a pressure between 85.3 kPa (640 Torr) and 101.3 kPa (760 Torr), as in Example 1.
The stainless steel wafer and quartz discs were removed after the furnace 1 had cooled. FIG. 18 of International Patent Publication WO 2013/158156 is a photograph of the sample with graphite platelets on a surface. Samples of the graphite platelets were imaged using SEM, as shown in FIG. 19 of WO 2013/158156 at 778× magnification. FIG. 19 of WO 2013/158156 shows pillows comprising the fibers. FIG. 20 of WO 2013/158156 shows one of the pillows at 11,000× magnification including the entangled structure of the carbon nanotubes. FIG. 21 of WO 2013/158156 shows a 70,000× magnification showing the detail of some of the carbon nanotubes of the same pillow as is shown in FIG. 20 of WO 2013/158156.
Substitution of the catalyst in the previous examples with catalysts comprised of groups 5 through 10 of the periodic table (e.g., nickel, molybdenum, chromium, cobalt, tungsten, manganese, ruthenium, platinum, iridium, etc.), actinides, lanthanides, and alloys and other combinations thereof may yield substantially similar results. Thus, substitution of catalyst with a chromium-, molybdenum-, cobalt-, tungsten-, or nickel-containing alloy or superalloy may yield a substantially similar result, with the size and morphology of the nanotube product dependent on the grain size of the catalyst material. Catalysts may also include mixtures of such metals. Similar reaction conditions as those described herein may be used with such catalysts. For example, the reaction temperature may range from about 500° C. to about 1,200° C., from about 600° C. to about 1,000° C., or from about 700° C. to about 900° C. In some embodiments, the temperature may be at least 650° C., such as at least 680° C., to produce a selected solid carbon product. The size and morphology of the solid carbon product (e.g., CNTs) may depend on the grain size of the non-ferrous catalyst.
For Examples 7 through 37 below, metal coupons were cut from a sheet of material, or another metal was catalyst was used as indicated. Coupons were generally approximately 13 mm to 15 mm wide, approximately 18 mm to 22 mm long, and approximately 2 mm to 6 mm thick. Coupons were separately placed in quartz boats about 8.5 cm long and 1.5 cm wide, and the boats were inserted end-to-end into a quartz tube having an inner diameter of about 2.54 cm and a length of about 1.2 m. The quartz tube was then placed in a tube furnace. The quartz tube was purged with hydrogen gas to reduce the surface of the coupons before the tube furnace was heated to operating conditions. After the tube furnace reached operating conditions, reaction gases were introduced into the quartz tube (i.e., flowed continuously through the quartz tube) such that both the upper and lower surfaces of each coupon were exposed to reaction gas. The temperature, pressure, and gas composition were measured at each coupon. After the test, the coupons were removed from the quartz tube. Weight changes and carbon formation were noted.
Three coupons were cut from a sheet of 304H stainless steel, and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm (standard cubic centimeters per minute). Solid carbon formed on each coupon at the rates shown in Table 2 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET specific surface area, as shown in Table 2. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 22 through 24 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 17.9 grams of water were collected from the gases during the test.
Three coupons were cut from a sheet of 25-35MA stainless steel (an alloy having 23%-27% Cr, 33%-37% Ni, 1.5% Mn, 2.0% Si, 0.35%-0.55% C, 0.50%-1.25% Nb, up to 0.50% Mo, with the balance Fe, available from MetalTek International, of Waukesha, Wis.) and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the rates shown in Table 3 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET specific surface area, as shown in Table 3. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 25 through 27 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 17.9 grams of water were collected from the gases during the test.
Three coupons were cut from a sheet of 25-35MA stainless steel and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the rates shown in Table 4 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET specific surface area, as shown in Table 4. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 28 through 30 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 25.0 grams of water were collected from the gases during the test.
Three coupons were cut from a sheet of Super 20-32Nb stainless steel (an alloy having 20% Cr, 33% Ni, 1.25% Mn, 0.60% Si, up to 0.12% C, 0.50%-1.25% Nb, up to 0.50% other materials, with the balance Fe, available from MetalTek International, of Waukesha, Wis.) and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the rates shown in Table 5 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET specific surface area, as shown in Table 5. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 31 through 33 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 27.3 grams of water were collected from the gases during the test.
Three coupons were cut from a sheet of HAYNES® 230 alloy (an alloy having 22% Cr, 57% Ni, 14% W, 2% Mo, 3% Fe, 5% Co, 0.5% Mn, 0.4% Si, 0.3% Al, 0.10% C, 0.02 La, and 0.015% B, available from Haynes International, of Kokomo, Ind.) and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the rates shown in Table 6 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET specific surface area, as shown in Table 6. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 34 through 36 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 20.9 grams of water were collected from the gases during the test.
Three coupons were cut from a sheet of HAYNES® HR-160 alloy (an alloy having 28% Cr, 37% Ni, 29% Co, 2% Fe, 2.75% Si, 0.5% Mn, 0.5% Ti, 0.05% C, and up to 1% each of W, Mo, Nb, available from Haynes International, of Kokomo, Ind.) and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the slow reaction rates shown in Table 7 below. Methane and carbon dioxide were formed in only small amounts. After the test, samples of the solid carbon were imaged using SEM, as shown in FIGS. 37 through 39 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 20.4 grams of water were collected from the gases during the test.
Three coupons were cut from a sheet of NICROFER® 6025HT alloy (an alloy having 24%-26% Cr, 8%-11% Fe, 0.15%-0.25% C, up to 0.5% Mn, up to 0.5% Si, up to 0.10% Cu, 1.8%-2.4% Al, 0.10%-0.20% Ti, 0.05%-0.12% Y, 0.01%-0.10% Zr, up to 0.02% P, up to 0.1% S, and the balance Ni, available from ThyssenKrupp VDM, of Werdohl, Germany) and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the slow reaction rates shown in Table 8 below. Methane and carbon dioxide were formed in only small amounts. After the test, solid carbon was physically removed from the coupons and samples of the solid carbon were imaged using SEM, as shown in FIGS. 34 through 36 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 0.48 grams of water were collected from the gases during the test.
Three coupons were cut from a sheet of ASTM F321 alloy (i.e., an alloy having 0.08% C, 2.0% Mn, 0.45% P, 0.030% S, 1.0% Si, 9.0%-12.0% Ni, 17.0%-19.0% Cr, with the balance Fe, in accordance with ASTM Standard A182) and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the rates shown in Table 9 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET specific surface area, as shown in Table 9. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 43 through 45 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 20.9 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of INCONEL® 693 alloy (i.e., an alloy having 27%-31% Cr, 2.5%-6.0% Fe, 2.5%-4.0% Al, 0.5%-2.5% Nb, up to 1.0% Mn, up to 1.0% Ti, up to 0.5% Cu, up to 0.5% Si, up to 0.15% C, up to 0.01% S, with the balance Ni, available from Special Metals Corporation, of New Hartford, N.Y.) and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 5 hours at 2000 sccm. Solid carbon formed on the coupon at the rates shown in Table 10 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and imaged using SEM, as shown in FIGS. 46 through 54 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 1.1 grams of water were collected from the gases during the test.
An alonized stainless steel tube was placed in a tube furnace without any coupons inside. The tube was purged with hydrogen gas to reduce the surface of the tube before the tube furnace was heated to operating conditions. After the tube furnace reached operating conditions, a reaction gas containing about 50% H2 and 50% CO was introduced into the tube at about 4.0 MPa. The gases flowed inside the tube for about 4 hours at 2000 sccm. Solid carbon formed on the interior of the tube between a point 24 inches (60 cm) from the gas inlet and 28 inches (71 cm) from the gas inlet. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, about 2.21 g of solid carbon were collected from the tube. Samples of the solid carbon were tested for BET surface area as shown in Table 11. Samples were imaged using SEM, as shown in FIGS. 55 and 56 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 20.3 grams of water were collected from the gases during the test.
A tube formed of KANTHAL® alloy (an alloy of iron, chromium, and aluminum, available from Sandvik Materials Technology, of Sandviken, Sweden) was placed in a tube furnace without any coupons inside. The tube was purged with hydrogen gas to reduce the surface of the tube before the tube furnace was heated to operating conditions. After the tube furnace reached operating conditions, a reaction gas containing about 50% H2 and 50% CO was introduced into the tube at about 4.0 MPa. The gases flowed inside the tube for about 4 hours at 2000 sccm. Very little solid carbon formed on the interior of the tube between a point 10 inches (25 cm) from the gas inlet and 33 inches (84 cm) from the gas inlet. Methane, carbon dioxide, and water formed in the tube in small amounts. After the test, about 0.1 g of solid carbon were collected from the tube. A sample of the solid carbon was imaged using SEM, as shown in FIG. 57 of International Patent Publication WO 2013/158156 at 50,000× magnification. About 1.69 grams of water were collected from the gases during the test.
Three coupons were cut from a sheet of silicon carbide, and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the rates shown in Table 13 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and measured, as shown in Table 13. Samples of the solid carbon were imaged using SEM, as shown in
Twelve coupons were cut from a sheet of galvanized steel (i.e., mild steel treated with zinc oxide) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 14 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET surface area, as shown in Table 14. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 58 through 67 of International Patent Publication WO 2013/158156 at 10,000× magnification. About 13.24 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of copper and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon did not appear to form at any appreciable rate on the copper coupons at the conditions shown in Table 15 below. No water was collected from the gases during the test.
Twelve coupons were cut from a sheet of brass and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon did not appear to form at any appreciable rate on the brass coupons at the conditions shown in Table 16 below. No water was collected from the gases during the test.
Three coupons were cut from a sheet of molybdenum metal and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 2000 sccm. Solid carbon formed on each coupon at the rates shown in Table 17 below. Some methane and carbon dioxide formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and measured, as shown in Table 17. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 68 and 69 of International Patent Publication WO 2013/158156 at 10,000× magnification. No detectable water was collected from the gases during the test.
Twelve coupons were cut from a sheet of cold-rolled steel (i.e., mild steel) and were washed in hydrochloric acid to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 18 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET surface area, as shown in Table 18. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 70 through 78 of International Patent Publication WO 2013/158156 at 10,000× magnification. About 10.77 grams of water were collected from the gases during the test.
Three pieces of wire, each about 2.5 cm to about 3.0 cm long, were cut from a roll of about 2.3 mm diameter molybdenum wire and were washed in ethanol to remove contaminants and oxidation. The wires were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 50% H2 and 50% CO was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the wires for about 4 hours at 2000 sccm. Solid carbon formed on each wire at the rates shown in Table 19 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and measured, as shown in Table 19. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 79 through 81 of International Patent Publication WO 2013/158156 at 10,000× magnification. About 1.11 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of galvanized mild steel (i.e., mild steel treated with zinc oxide) that has been heat-treated (as available from Hercules Industries, of Denver, Colo., under the trade name PAINTLOCK) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 20 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET surface area, as shown in Table 20. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 82 through 90 of International Patent Publication WO 2013/158156 at 10,000× magnification. About 12.6 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of 316L stainless steel (i.e., an alloy having 16%-18.5% Cr, 10%-14% Ni, 2%-3% Mo, up to about 2% Mn, up to about 1% Si, up to about 0.045% P, up to about 0.03% S, up to about 0.03% C, with the balance Fe) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 21 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET surface area, as shown in Table 21. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 91 through 99 of International Patent Publication WO 2013/158156 at 10,000× magnification. About 14.2 grams of water were collected from the gases during the test.
Twelve samples of metal grit, comprising about 75% Ni and 25% Fe, were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the metal grit for about 4 hours at 1200 sccm. Solid carbon formed on the metal grit at the rates shown in Table 22 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was tested for BET surface area, as shown in Table 22. Samples of the solid carbon were imaged using SEM, as shown in
Twelve coupons were cut from a sheet of 410 stainless steel (i.e., an alloy having 11.5%-13.5% Cr, at least 0.75% Ni, up to about 1% Mn, up to about 1% Si, up to about 0.04% P, up to about 0.03% S, up to about 0.015% C, with the balance Fe) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 23 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was physically removed from the coupons and tested for BET surface area, as shown in Table 23. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 100 through 107 of International Patent Publication WO 2013/158156 at 10,000× magnification. No water was collected from the gases during the test.
Twelve samples of metal powder, comprising 92%-98% cast iron, were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the metal powder for about 4 hours at 1200 sccm. Solid carbon formed on the metal powder at the rates shown in Table 24 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, solid carbon was tested for BET surface area, as shown in Table 24. Samples of the solid carbon were imaged using SEM, as shown in FIGS. 108 through 116 of International Patent Publication WO 2013/158156 at 10,000× magnification. About 28.7 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of 13-8H stainless steel (i.e., an alloy having 12.25%-13.5% Cr, 7.5%-8.5% Ni, 2.0%-2.5% Mo, 0.90%-1.35% Al, up to about 0.1% Mn, up to about 0.1% Si, up to about 0.01% P, up to about 0.05% C, up to about 0.01% N, and up to about 0.008% S with the balance Fe) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 25 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, samples of the solid carbon were imaged using SEM, as shown in FIGS. 117 through 123 of International Patent Publication WO 2013/158156 at 10,000× magnification. About 14.6 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of grade O1 tool steel (i.e., an alloy having about 0.90% C, 1.0%-1.4% Mn, about 0.50% Cr, about 0.50% Ni, and about 0.50% W, with the balance Fe) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 26 below. Methane, carbon dioxide, and water were also formed in the quartz tube. After the test, samples of the solid carbon were imaged using SEM, as shown in FIGS. 124 through 132 of International Patent Publication WO 2013/158156 at 10,000× magnification. About 14.2 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of 4140 steel (i.e., an alloy having about 0.42% C, about 1.0% Mn, about 1.0% Cr, about 0.30% Si, and about 0.20% Mo, with the balance Fe) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 27 below. Methane, carbon dioxide, and water were also formed in the quartz tube. About 10.5 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of M42 high speed steel (i.e., an alloy having about 1.1% C, about 9.5% Mo, about 3.8% Cr, about 1.5% W, about 1.2% V, and about 8.0% Co, with the balance Fe) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 28 below. Methane, carbon dioxide, and water were also formed in the quartz tube. About 17.8 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of D2 tool steel (i.e., an alloy having about 1.5% C, 11.0%-13.0% Cr, about 0.45% Mn, about 0.03% P, about 1.0% V, about 0.9% Mo, and about 0.3% S, with the balance Fe) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 29 below. Methane, carbon dioxide, and water were also formed in the quartz tube. About 14.2 grams of water were collected from the gases during the test.
Twelve coupons were cut from a sheet of 1045 steel (i.e., an alloy having 0.42%-0.5% C, 0.6%-0.9% Mn, up to about 0.04% P, and up to about 0.5% S, with the balance Fe) and were washed in ethanol to remove contaminants and oxidation. The coupons were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the coupons for about 4 hours at 1200 sccm. Solid carbon formed on each coupon at the rates shown in Table 30 below. Methane, carbon dioxide, and water were also formed in the quartz tube. About 13.4 grams of water were collected from the gases during the test.
Ten samples, each approximately 2 cm long, were cut from a cobalt rod having a diameter of about 2 mm, and were washed in ethanol to remove contaminants and oxidation. The samples were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the cobalt samples for about 4 hours at 1200 sccm. Solid carbon formed on each sample at the rates shown in Table 31 below. Methane, carbon dioxide, and water were also formed in the quartz tube. About 1.93 grams of water were collected from the gases during the test.
Twelve samples, each approximately 2.3-2.7 cm long, were cut from a titanium rod having a diameter of about 1.65 mm, and were washed in ethanol to remove contaminants and oxidation. The samples were placed in quartz boats in a quartz tube as described above. A reaction gas containing about 45% H2 and 45% CO and 10% Ar was introduced into the quartz tube at about 4.0 MPa. The gases flowed over the cobalt samples for about 4 hours at 1200 sccm. Solid carbon formed on each sample at the rates shown in Table 32 below. Methane, carbon dioxide, and water were also formed in the quartz tube. No water was collected from the gases during the test.
The experiment of Example 1 is repeated with a nickel-containing catalyst. The reactor temperature is maintained in excess of 680° C. The pressure of the reactor is controlled and may range from atmospheric pressure to pressures in excess of 6.2 MPa (900 psig). The carbon dioxide is thus reduced in the presence of a nickel-containing catalyst. The size and morphology of the solid carbon product is controlled by the grain size of the nickel-containing catalyst.
The experiment of Example 2 is repeated with a mixture of nickel and chromium as the catalyst. The carbon dioxide is reduced in the presence of the catalyst. The size and morphology of the resulting solid carbon product is controlled by the grain size of the nickel and chromium containing catalyst.
The experiment of Example 3 is repeated with methane used as the reducing agent in the place of hydrogen. Solid carbon nanotubes are formed by reducing carbon oxides with methane gas. The methane gas may also be combusted to provide the carbon oxide to be reduced. Carbon oxides created by the incomplete combustion of methane are reduced in the presence of methane to create solid CNTs. The combustion of methane forms carbon dioxide and water:
CH4+2O2CO2+2H2O (Equation 7).
The carbon dioxide produced in Equation 7 is reduced by methane in the presence of a catalyst as shown in Equation 4. The size and morphology of the resulting solid carbon product is controlled by the grain size of the catalyst.
The experiment of Example 4 is repeated in a fluidized-bed reactor. The reactor is configured such that the solid carbon product is elutriated from the reactor due to the drag forces on the particles. The size and shape of the catalyst particles are selected to have a relatively large contact surface area between the catalyst and the reactant gases.
This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/794,139, filed Mar. 15, 2013, for “Methods and Structures for Reducing Carbon Oxides with Intermetallic and Carbide Catalysts,” the contents of which are incorporated herein by this reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/025087 | 3/12/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/151144 | 9/25/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1478730 | Brownlee | Dec 1923 | A |
1735925 | Jaeger | Nov 1929 | A |
1964744 | Odell | Jul 1934 | A |
2440424 | Wiegand et al. | Apr 1948 | A |
2731328 | Atkinson | Jan 1956 | A |
2745973 | Rappaport | May 1956 | A |
2796327 | Pollock | Jun 1957 | A |
2796331 | Kauffman et al. | Jun 1957 | A |
2800616 | Becker | Jul 1957 | A |
2811653 | Moore | Oct 1957 | A |
2819414 | Sherwood et al. | Jan 1958 | A |
2837666 | Linder | Jun 1958 | A |
2976433 | Rappaport et al. | Mar 1961 | A |
3094634 | Rappaport | Jun 1963 | A |
3172774 | Diefendorf | Mar 1965 | A |
3249830 | Adany | May 1966 | A |
3378345 | Bourdeau et al. | Apr 1968 | A |
3634999 | Howard et al. | Jan 1972 | A |
3714474 | Hoff, Jr. | Jan 1973 | A |
3771959 | Fletcher et al. | Nov 1973 | A |
4024420 | Anthony et al. | May 1977 | A |
4126000 | Funk | Nov 1978 | A |
4197281 | Muenger | Apr 1980 | A |
4602477 | Lucadamo | Jul 1986 | A |
4628143 | Brotz | Dec 1986 | A |
4663230 | Tennent | May 1987 | A |
4710483 | Burk et al. | Dec 1987 | A |
4725346 | Joshi | Feb 1988 | A |
4727207 | Paparizos et al. | Feb 1988 | A |
4746458 | Brotz | May 1988 | A |
4900368 | Brotz | Feb 1990 | A |
5008579 | Conley et al. | Apr 1991 | A |
5021139 | Hartig et al. | Jun 1991 | A |
5082505 | Cota et al. | Jan 1992 | A |
5122332 | Russell | Jun 1992 | A |
5149584 | Baker et al. | Sep 1992 | A |
5187030 | Firmin et al. | Feb 1993 | A |
5260621 | Little et al. | Nov 1993 | A |
5396141 | Jantz et al. | Mar 1995 | A |
5413866 | Baker et al. | May 1995 | A |
5456897 | Moy et al. | Oct 1995 | A |
5531424 | Whipp | Jul 1996 | A |
5569635 | Moy et al. | Oct 1996 | A |
5578543 | Tennent et al. | Nov 1996 | A |
5589152 | Tennent et al. | Dec 1996 | A |
5641466 | Ebbesen et al. | Jun 1997 | A |
5648056 | Tanaka | Jul 1997 | A |
5650370 | Tennent et al. | Jul 1997 | A |
5691054 | Tennent et al. | Nov 1997 | A |
5707916 | Snyder et al. | Jan 1998 | A |
5726116 | Moy et al. | Mar 1998 | A |
5747161 | Iijima | May 1998 | A |
5780101 | Nolan et al. | Jul 1998 | A |
5859484 | Mannik et al. | Jan 1999 | A |
5877110 | Snyder et al. | Mar 1999 | A |
5965267 | Nolan et al. | Oct 1999 | A |
5997832 | Lieber et al. | Dec 1999 | A |
6099965 | Tennent et al. | Aug 2000 | A |
6159892 | Moy et al. | Dec 2000 | A |
6183714 | Smalley et al. | Feb 2001 | B1 |
6203814 | Fisher et al. | Mar 2001 | B1 |
6221330 | Moy et al. | Apr 2001 | B1 |
6232706 | Dai et al. | May 2001 | B1 |
6239057 | Ichikawa et al. | May 2001 | B1 |
6261532 | Ono | Jul 2001 | B1 |
6262129 | Murray et al. | Jul 2001 | B1 |
6294144 | Moy et al. | Sep 2001 | B1 |
6333016 | Resasco et al. | Dec 2001 | B1 |
6346189 | Dai et al. | Feb 2002 | B1 |
6361861 | Gao | Mar 2002 | B2 |
6375917 | Mandeville et al. | Apr 2002 | B1 |
6413487 | Resasco et al. | Jul 2002 | B1 |
6423288 | Mandeville et al. | Jul 2002 | B2 |
6426442 | Ichikawa et al. | Jul 2002 | B1 |
6465813 | Ihm | Oct 2002 | B2 |
6518218 | Sun et al. | Feb 2003 | B1 |
6596101 | Weihs et al. | Jul 2003 | B2 |
6645455 | Margrave et al. | Nov 2003 | B2 |
6683783 | Smalley et al. | Jan 2004 | B1 |
6686311 | Sun et al. | Feb 2004 | B2 |
6692717 | Smalley et al. | Feb 2004 | B1 |
6713519 | Wang et al. | Mar 2004 | B2 |
6749827 | Smalley et al. | Jun 2004 | B2 |
6761870 | Smalley et al. | Jul 2004 | B1 |
6790425 | Smalley et al. | Sep 2004 | B1 |
6800369 | Gimzewski et al. | Oct 2004 | B2 |
6827918 | Margrave et al. | Dec 2004 | B2 |
6827919 | Moy et al. | Dec 2004 | B1 |
6835330 | Nishino et al. | Dec 2004 | B2 |
6835366 | Margrave et al. | Dec 2004 | B1 |
6841139 | Margrave et al. | Jan 2005 | B2 |
6855301 | Rich et al. | Feb 2005 | B1 |
6855593 | Andoh | Feb 2005 | B2 |
6875412 | Margrave et al. | Apr 2005 | B2 |
6890986 | Pruett | May 2005 | B2 |
6899945 | Smalley et al. | May 2005 | B2 |
6905544 | Setoguchi et al. | Jun 2005 | B2 |
6913740 | Polverejan et al. | Jul 2005 | B2 |
6913789 | Smalley et al. | Jul 2005 | B2 |
6916434 | Nishino et al. | Jul 2005 | B2 |
6919064 | Resasco et al. | Jul 2005 | B2 |
6936233 | Smalley et al. | Aug 2005 | B2 |
6949237 | Smalley et al. | Sep 2005 | B2 |
6955800 | Resasco et al. | Oct 2005 | B2 |
6960389 | Tennent et al. | Nov 2005 | B2 |
6962685 | Sun | Nov 2005 | B2 |
6979709 | Smalley et al. | Dec 2005 | B2 |
6986876 | Smalley et al. | Jan 2006 | B2 |
6994907 | Resasco et al. | Feb 2006 | B2 |
6998358 | French et al. | Feb 2006 | B2 |
7011771 | Gao et al. | Mar 2006 | B2 |
7041620 | Smalley et al. | May 2006 | B2 |
7045108 | Jiang et al. | May 2006 | B2 |
7048999 | Smalley et al. | May 2006 | B2 |
7052668 | Smalley et al. | May 2006 | B2 |
7067098 | Colbert et al. | Jun 2006 | B2 |
7071406 | Smalley et al. | Jul 2006 | B2 |
7074379 | Moy et al. | Jul 2006 | B2 |
7094385 | Beguin et al. | Aug 2006 | B2 |
7094386 | Resasco et al. | Aug 2006 | B2 |
7094679 | Li et al. | Aug 2006 | B1 |
7097820 | Colbert et al. | Aug 2006 | B2 |
7105596 | Smalley et al. | Sep 2006 | B2 |
7125534 | Smalley et al. | Oct 2006 | B1 |
7132062 | Howard | Nov 2006 | B1 |
7135159 | Shaffer et al. | Nov 2006 | B2 |
7135160 | Yang et al. | Nov 2006 | B2 |
7138100 | Smalley et al. | Nov 2006 | B2 |
7150864 | Smalley et al. | Dec 2006 | B1 |
7157068 | Li et al. | Jan 2007 | B2 |
7160532 | Liu et al. | Jan 2007 | B2 |
7169329 | Wong et al. | Jan 2007 | B2 |
7201887 | Smalley et al. | Apr 2007 | B2 |
7204970 | Smalley et al. | Apr 2007 | B2 |
7205069 | Smalley et al. | Apr 2007 | B2 |
7212147 | Messano | May 2007 | B2 |
7214360 | Chen et al. | May 2007 | B2 |
7250148 | Yang et al. | Jul 2007 | B2 |
7270795 | Kawakami et al. | Sep 2007 | B2 |
7291318 | Sakurabayashi et al. | Nov 2007 | B2 |
7338648 | Harutyunyan et al. | Mar 2008 | B2 |
7365289 | Wilkes et al. | Apr 2008 | B2 |
7374793 | Furukawa et al. | May 2008 | B2 |
7390477 | Smalley et al. | Jun 2008 | B2 |
7396798 | Ma et al. | Jul 2008 | B2 |
7408186 | Merkulov et al. | Aug 2008 | B2 |
7410628 | Bening et al. | Aug 2008 | B2 |
7413723 | Niu et al. | Aug 2008 | B2 |
7452828 | Hirakata et al. | Nov 2008 | B2 |
7459137 | Tour et al. | Dec 2008 | B2 |
7459138 | Resasco et al. | Dec 2008 | B2 |
7473873 | Biris et al. | Jan 2009 | B2 |
7510695 | Smalley et al. | Mar 2009 | B2 |
7527780 | Margrave et al. | May 2009 | B2 |
7563427 | Wei et al. | Jul 2009 | B2 |
7563428 | Resasco et al. | Jul 2009 | B2 |
7569203 | Fridman et al. | Aug 2009 | B2 |
7572426 | Strano et al. | Aug 2009 | B2 |
7585482 | Resasco et al. | Sep 2009 | B2 |
7585483 | Edwin | Sep 2009 | B2 |
7601322 | Huang | Oct 2009 | B2 |
7611579 | Lashmore et al. | Nov 2009 | B2 |
7615204 | Ajayan et al. | Nov 2009 | B2 |
7618599 | Kim et al. | Nov 2009 | B2 |
7622059 | Bordere et al. | Nov 2009 | B2 |
7632569 | Smalley et al. | Dec 2009 | B2 |
7645933 | Narkis et al. | Jan 2010 | B2 |
7655302 | Smalley et al. | Feb 2010 | B2 |
7670510 | Wong et al. | Mar 2010 | B2 |
7700065 | Fujioka et al. | Apr 2010 | B2 |
7704481 | Higashi et al. | Apr 2010 | B2 |
7718283 | Raffaelle et al. | May 2010 | B2 |
7719265 | Harutyunyan et al. | May 2010 | B2 |
7731930 | Taki et al. | Jun 2010 | B2 |
7736741 | Maruyama et al. | Jun 2010 | B2 |
7740825 | Tohji et al. | Jun 2010 | B2 |
7749477 | Jiang et al. | Jul 2010 | B2 |
7754182 | Jiang et al. | Jul 2010 | B2 |
7772447 | Iaccino et al. | Aug 2010 | B2 |
7780939 | Margrave et al. | Aug 2010 | B2 |
7785558 | Hikata | Aug 2010 | B2 |
7790228 | Suekane et al. | Sep 2010 | B2 |
7794690 | Abatzoglou et al. | Sep 2010 | B2 |
7794797 | Vasenkov | Sep 2010 | B2 |
7799246 | Bordere et al. | Sep 2010 | B2 |
7811542 | McElrath et al. | Oct 2010 | B1 |
7824648 | Jiang et al. | Nov 2010 | B2 |
7837968 | Chang et al. | Nov 2010 | B2 |
7838843 | Kawakami et al. | Nov 2010 | B2 |
7842271 | Petrik | Nov 2010 | B2 |
7854945 | Fischer et al. | Dec 2010 | B2 |
7854991 | Hata et al. | Dec 2010 | B2 |
7858648 | Bianco et al. | Dec 2010 | B2 |
7871591 | Harutyunyan et al. | Jan 2011 | B2 |
7883995 | Mitchell et al. | Feb 2011 | B2 |
7887774 | Strano et al. | Feb 2011 | B2 |
7888543 | Iaccino et al. | Feb 2011 | B2 |
7897209 | Shibuya et al. | Mar 2011 | B2 |
7901654 | Harutyunyan | Mar 2011 | B2 |
7906095 | Kawabata | Mar 2011 | B2 |
7919065 | Pedersen et al. | Apr 2011 | B2 |
7923403 | Ma et al. | Apr 2011 | B2 |
7923615 | Silvy et al. | Apr 2011 | B2 |
7932419 | Liu et al. | Apr 2011 | B2 |
7947245 | Tada et al. | May 2011 | B2 |
7951351 | Ma et al. | May 2011 | B2 |
7964174 | Dubin et al. | Jun 2011 | B2 |
7981396 | Harutyunyan | Jul 2011 | B2 |
7988861 | Pham-Huu et al. | Aug 2011 | B2 |
7993594 | Wei et al. | Aug 2011 | B2 |
8012447 | Harutyunyan et al. | Sep 2011 | B2 |
8017282 | Choi et al. | Sep 2011 | B2 |
8017892 | Biris et al. | Sep 2011 | B2 |
8038908 | Hirai et al. | Oct 2011 | B2 |
8114518 | Hata et al. | Feb 2012 | B2 |
8138384 | Iaccino et al. | Mar 2012 | B2 |
8173096 | Chang et al. | May 2012 | B2 |
8178049 | Shiraki et al. | May 2012 | B2 |
8226902 | Jang et al. | Jul 2012 | B2 |
8314044 | Jangbarwala | Nov 2012 | B2 |
8679444 | Noyes | Mar 2014 | B2 |
9090472 | Noyes | Jul 2015 | B2 |
9221685 | Noyes | Dec 2015 | B2 |
9475699 | Noyes | Oct 2016 | B2 |
20010009119 | Murray et al. | Jul 2001 | A1 |
20020054849 | Baker et al. | May 2002 | A1 |
20020102193 | Smalley et al. | Aug 2002 | A1 |
20020102196 | Smalley et al. | Aug 2002 | A1 |
20020127169 | Smalley et al. | Sep 2002 | A1 |
20020127170 | Hong et al. | Sep 2002 | A1 |
20020172767 | Grigorian et al. | Nov 2002 | A1 |
20030059364 | Prilutskiy | Mar 2003 | A1 |
20030147802 | Smalley et al. | Aug 2003 | A1 |
20030194362 | Rogers et al. | Oct 2003 | A1 |
20040053440 | Lai et al. | Mar 2004 | A1 |
20040070009 | Resasco et al. | Apr 2004 | A1 |
20040105807 | Fan et al. | Jun 2004 | A1 |
20040111968 | Day et al. | Jun 2004 | A1 |
20040151654 | Wei et al. | Aug 2004 | A1 |
20040194705 | Dai et al. | Oct 2004 | A1 |
20040197260 | Resasco et al. | Oct 2004 | A1 |
20040202603 | Fischer et al. | Oct 2004 | A1 |
20040234445 | Serp et al. | Nov 2004 | A1 |
20040247503 | Hyeon | Dec 2004 | A1 |
20040265212 | Varadan et al. | Dec 2004 | A1 |
20050002850 | Niu et al. | Jan 2005 | A1 |
20050002851 | McElrath et al. | Jan 2005 | A1 |
20050025695 | Pradhan | Feb 2005 | A1 |
20050042162 | Resasco et al. | Feb 2005 | A1 |
20050046322 | Kim et al. | Mar 2005 | A1 |
20050074392 | Yang et al. | Apr 2005 | A1 |
20050079118 | Maruyama et al. | Apr 2005 | A1 |
20050100499 | Oya et al. | May 2005 | A1 |
20050176990 | Coleman et al. | Aug 2005 | A1 |
20050244325 | Nam et al. | Nov 2005 | A1 |
20050276743 | Lacombe et al. | Dec 2005 | A1 |
20060013757 | Edwin et al. | Jan 2006 | A1 |
20060032330 | Sato | Feb 2006 | A1 |
20060039849 | Resasco et al. | Feb 2006 | A1 |
20060045837 | Nishimura | Mar 2006 | A1 |
20060078489 | Harutyunyan et al. | Apr 2006 | A1 |
20060104884 | Shaffer et al. | May 2006 | A1 |
20060104886 | Wilson | May 2006 | A1 |
20060104887 | Fujioka et al. | May 2006 | A1 |
20060133990 | Hyeon et al. | Jun 2006 | A1 |
20060141346 | Gordon et al. | Jun 2006 | A1 |
20060165988 | Chiang et al. | Jul 2006 | A1 |
20060191835 | Petrik et al. | Aug 2006 | A1 |
20060199770 | Bianco et al. | Sep 2006 | A1 |
20060204426 | Akins et al. | Sep 2006 | A1 |
20060225534 | Swihart et al. | Oct 2006 | A1 |
20060228286 | Tada et al. | Oct 2006 | A1 |
20060239890 | Chang et al. | Oct 2006 | A1 |
20060239891 | Niu et al. | Oct 2006 | A1 |
20060245996 | Xie et al. | Nov 2006 | A1 |
20060275956 | Konesky | Dec 2006 | A1 |
20070003470 | Smalley et al. | Jan 2007 | A1 |
20070020168 | Asmussen et al. | Jan 2007 | A1 |
20070031320 | Jiang et al. | Feb 2007 | A1 |
20070080605 | Chandrashekhar et al. | Apr 2007 | A1 |
20070116631 | Li et al. | May 2007 | A1 |
20070148962 | Kauppinen et al. | Jun 2007 | A1 |
20070149392 | Ku et al. | Jun 2007 | A1 |
20070183959 | Charlier et al. | Aug 2007 | A1 |
20070189953 | Bai et al. | Aug 2007 | A1 |
20070207318 | Jin et al. | Sep 2007 | A1 |
20070209093 | Tohji et al. | Sep 2007 | A1 |
20070253886 | Abatzoglou et al. | Nov 2007 | A1 |
20070264187 | Harutyunyan et al. | Nov 2007 | A1 |
20070280876 | Tour et al. | Dec 2007 | A1 |
20070281087 | Harutyunyan et al. | Dec 2007 | A1 |
20080003170 | Buchholz et al. | Jan 2008 | A1 |
20080003182 | Wilson et al. | Jan 2008 | A1 |
20080008760 | Bianco et al. | Jan 2008 | A1 |
20080014654 | Weisman et al. | Jan 2008 | A1 |
20080095695 | Shanov et al. | Apr 2008 | A1 |
20080118426 | Li et al. | May 2008 | A1 |
20080134942 | Brenner et al. | Jun 2008 | A1 |
20080160312 | Furukawa et al. | Jul 2008 | A1 |
20080169061 | Tour et al. | Jul 2008 | A1 |
20080176069 | Ma et al. | Jul 2008 | A1 |
20080182155 | Choi et al. | Jul 2008 | A1 |
20080193367 | Kalck et al. | Aug 2008 | A1 |
20080217588 | Arnold et al. | Sep 2008 | A1 |
20080226538 | Rumpf et al. | Sep 2008 | A1 |
20080233402 | Carlson et al. | Sep 2008 | A1 |
20080260618 | Kawabata | Oct 2008 | A1 |
20080274277 | Rashidi et al. | Nov 2008 | A1 |
20080279753 | Harutyunyan | Nov 2008 | A1 |
20080280136 | Zachariah et al. | Nov 2008 | A1 |
20080296537 | Gordon et al. | Dec 2008 | A1 |
20080299029 | Grosboll et al. | Dec 2008 | A1 |
20080305028 | McKeigue et al. | Dec 2008 | A1 |
20080305029 | McKeigue et al. | Dec 2008 | A1 |
20080305030 | McKeigue et al. | Dec 2008 | A1 |
20080318357 | Raffaelle et al. | Dec 2008 | A1 |
20090001326 | Sato et al. | Jan 2009 | A1 |
20090004075 | Chung et al. | Jan 2009 | A1 |
20090011128 | Oshima et al. | Jan 2009 | A1 |
20090035569 | Gonzalez Moral et al. | Feb 2009 | A1 |
20090056802 | Rabani | Mar 2009 | A1 |
20090074634 | Tada et al. | Mar 2009 | A1 |
20090081454 | Axmann et al. | Mar 2009 | A1 |
20090087371 | Jang et al. | Apr 2009 | A1 |
20090087622 | Busnaina et al. | Apr 2009 | A1 |
20090124705 | Meyer et al. | May 2009 | A1 |
20090134363 | Bordere et al. | May 2009 | A1 |
20090136413 | Li | May 2009 | A1 |
20090140215 | Buchholz et al. | Jun 2009 | A1 |
20090186223 | Saito et al. | Jul 2009 | A1 |
20090191352 | DuFaux et al. | Jul 2009 | A1 |
20090203519 | Abatzoglou et al. | Aug 2009 | A1 |
20090208388 | McKeigue et al. | Aug 2009 | A1 |
20090208708 | Wei et al. | Aug 2009 | A1 |
20090220392 | McKeigue et al. | Sep 2009 | A1 |
20090226704 | Kauppinen et al. | Sep 2009 | A1 |
20090257945 | Biris et al. | Oct 2009 | A1 |
20090286084 | Tennent et al. | Nov 2009 | A1 |
20090286675 | Wei et al. | Nov 2009 | A1 |
20090294753 | Hauge et al. | Dec 2009 | A1 |
20090297846 | Hata et al. | Dec 2009 | A1 |
20090297847 | Kim et al. | Dec 2009 | A1 |
20090301349 | Afzali-Ardakani et al. | Dec 2009 | A1 |
20100004468 | Wong et al. | Jan 2010 | A1 |
20100009204 | Noguchi et al. | Jan 2010 | A1 |
20100028735 | Basset et al. | Feb 2010 | A1 |
20100034725 | Harutyunyan | Feb 2010 | A1 |
20100047152 | Whelan | Feb 2010 | A1 |
20100062229 | Hata et al. | Mar 2010 | A1 |
20100065776 | Han et al. | Mar 2010 | A1 |
20100074811 | McKeigue et al. | Mar 2010 | A1 |
20100081568 | Bedworth | Apr 2010 | A1 |
20100104808 | Fan et al. | Apr 2010 | A1 |
20100129654 | Jiang et al. | May 2010 | A1 |
20100132259 | Haque | Jun 2010 | A1 |
20100132883 | Burke et al. | Jun 2010 | A1 |
20100150810 | Yoshida et al. | Jun 2010 | A1 |
20100158788 | Kim et al. | Jun 2010 | A1 |
20100159222 | Hata et al. | Jun 2010 | A1 |
20100160155 | Liang | Jun 2010 | A1 |
20100167053 | Sung et al. | Jul 2010 | A1 |
20100173037 | Jiang et al. | Jul 2010 | A1 |
20100173153 | Hata et al. | Jul 2010 | A1 |
20100196249 | Hata et al. | Aug 2010 | A1 |
20100196600 | Shibuya et al. | Aug 2010 | A1 |
20100209696 | Seals et al. | Aug 2010 | A1 |
20100213419 | Jiang et al. | Aug 2010 | A1 |
20100221173 | Tennent et al. | Sep 2010 | A1 |
20100222432 | Hua | Sep 2010 | A1 |
20100226848 | Nakayama et al. | Sep 2010 | A1 |
20100230642 | Kim et al. | Sep 2010 | A1 |
20100239489 | Harutyunyan et al. | Sep 2010 | A1 |
20100254860 | Shiraki et al. | Oct 2010 | A1 |
20100254886 | McElrath et al. | Oct 2010 | A1 |
20100260927 | Gordon et al. | Oct 2010 | A1 |
20100278717 | Suzuki et al. | Nov 2010 | A1 |
20100298125 | Kim et al. | Nov 2010 | A1 |
20100301278 | Hirai et al. | Dec 2010 | A1 |
20100303675 | Suekane et al. | Dec 2010 | A1 |
20100316556 | Wei et al. | Dec 2010 | A1 |
20100316562 | Carruthers et al. | Dec 2010 | A1 |
20100317790 | Jang et al. | Dec 2010 | A1 |
20100320437 | Gordon et al. | Dec 2010 | A1 |
20110008617 | Hata et al. | Jan 2011 | A1 |
20110014368 | Vasenkov | Jan 2011 | A1 |
20110020211 | Jayatissa | Jan 2011 | A1 |
20110024697 | Biris et al. | Feb 2011 | A1 |
20110027162 | Steiner, III et al. | Feb 2011 | A1 |
20110027163 | Shinohara et al. | Feb 2011 | A1 |
20110033367 | Riehl et al. | Feb 2011 | A1 |
20110039124 | Ikeuchi et al. | Feb 2011 | A1 |
20110053020 | Norton et al. | Mar 2011 | A1 |
20110053050 | Lim et al. | Mar 2011 | A1 |
20110060087 | Noguchi et al. | Mar 2011 | A1 |
20110085961 | Noda et al. | Apr 2011 | A1 |
20110110842 | Haddon | May 2011 | A1 |
20110117365 | Hata et al. | May 2011 | A1 |
20110120138 | Gaiffi et al. | May 2011 | A1 |
20110150746 | Khodadadi et al. | Jun 2011 | A1 |
20110155964 | Arnold et al. | Jun 2011 | A1 |
20110158892 | Yamaki | Jun 2011 | A1 |
20110171109 | Petrik | Jul 2011 | A1 |
20110174145 | Ogrin et al. | Jul 2011 | A1 |
20110206469 | Furuyama et al. | Aug 2011 | A1 |
20110298071 | Spencer et al. | Dec 2011 | A9 |
20120034150 | Noyes | Feb 2012 | A1 |
20120083408 | Sato et al. | Apr 2012 | A1 |
20120107610 | Moravsky et al. | May 2012 | A1 |
20120137664 | Shawabkeh et al. | Jun 2012 | A1 |
20120148476 | Hata et al. | Jun 2012 | A1 |
20130154438 | Tan Xing Haw | Jun 2013 | A1 |
20140021827 | Noyes | Jan 2014 | A1 |
20140141248 | Noyes | May 2014 | A1 |
20140348739 | Denton et al. | Nov 2014 | A1 |
20150059527 | Noyes | Mar 2015 | A1 |
20150059571 | Denton et al. | Mar 2015 | A1 |
20150064092 | Noyes | Mar 2015 | A1 |
20150064096 | Noyes | Mar 2015 | A1 |
20150064097 | Noyes | Mar 2015 | A1 |
20150071846 | Noyes | Mar 2015 | A1 |
20150071848 | Denton et al. | Mar 2015 | A1 |
20150078981 | Noyes | Mar 2015 | A1 |
20150078982 | Noyes | Mar 2015 | A1 |
20150086468 | Noyes | Mar 2015 | A1 |
20150093323 | Koveal, Jr. et al. | Apr 2015 | A1 |
20150114819 | Denton et al. | Apr 2015 | A1 |
20150147259 | Noyes | May 2015 | A1 |
20150147261 | Denton et al. | May 2015 | A1 |
20150225242 | Noyes | Aug 2015 | A1 |
20150291424 | Noyes | Oct 2015 | A1 |
20150321918 | Noyes | Nov 2015 | A1 |
20160016794 | Noyes | Jan 2016 | A1 |
20160016800 | Noyes | Jan 2016 | A1 |
20160016862 | Noyes | Jan 2016 | A1 |
20160023902 | Noyes | Jan 2016 | A1 |
20160027934 | Noyes | Jan 2016 | A1 |
20160030925 | Noyes | Feb 2016 | A1 |
20160030926 | Noyes | Feb 2016 | A1 |
20160031710 | Noyes et al. | Feb 2016 | A1 |
20160039677 | Noyes | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
2186931 | May 2010 | EP |
2404869 | Jan 2012 | EP |
3339339 | Oct 2002 | JP |
2004517789 | Jun 2004 | JP |
2004360099 | Dec 2004 | JP |
2005075725 | Mar 2005 | JP |
2005532976 | Nov 2005 | JP |
2007191840 | Aug 2007 | JP |
1020050072056 | Jul 2005 | KR |
2004096704 | Nov 2005 | WO |
2005103348 | Nov 2005 | WO |
2006003482 | Aug 2006 | WO |
2007086909 | Nov 2007 | WO |
2007139097 | Dec 2007 | WO |
2007126412 | Jun 2008 | WO |
2009011984 | Jan 2009 | WO |
2006130150 | Apr 2009 | WO |
2009122139 | Oct 2009 | WO |
2009145959 | Dec 2009 | WO |
2010047439 | Apr 2010 | WO |
2010087903 | Aug 2010 | WO |
2010120581 | Oct 2010 | WO |
2011009071 | Jan 2011 | WO |
2011020568 | Feb 2011 | WO |
2011029144 | Mar 2011 | WO |
2010146169 | Apr 2011 | WO |
2010124258 | May 2011 | WO |
2011053192 | May 2011 | WO |
2013090274 | Jun 2013 | WO |
2013158157 | Oct 2013 | WO |
2013158158 | Oct 2013 | WO |
2013158438 | Oct 2013 | WO |
2013158439 | Oct 2013 | WO |
2013158441 | Oct 2013 | WO |
Entry |
---|
Abatzoglou, Nicolas et al., “The use of catalytic reforming reactions for CO2 sequestration as carbon nanotubes,” Proceedings of the 2006 IASMEIWSEAS International Conference on Energy & Environmental Systems, Chalkida, Greece, May 8-10, 2006 (pp. 21-26) (available at: http://www.wseas.us/e-library/conferences/2006evia/papers/516-1 9 3.pdf). |
Abatzoglou, Nicolas et al., “Green Diesel from Fischer-Tropsch Synthesis: Challenges and Hurdles,” Proc. of the 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, Jul. 24-26, 2007, pp. 223-232. |
Baker, B. A. and G. D. Smith “Metal Dusting in a Laboratory Environment—Alloying Addition Effects,” Special Metals Corporation, undated. |
Baker, B. A. and G. D. Smith, “Alloy Solutions to Metal Dusting Problems in the PetroChemical Industry,” Special Metals Corporation, undated. |
Bogue, Robert, Powering Tomorrow's Sensor: A Review of Technologies—Part 1, Sensor Review, 2010, pp. 182-186, vol. 30, No. 3. |
Cha, S. 1., et al., “Mechanical and electrical properties of cross-linked carbon nanotubes,” Carbon 46 (2008) 482-488, Elsevier, Ltd. |
Cheng, H.M. et al., “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Applied Physics Letters 72:3282-3284, Jun. 22, 1998 (available at: http://carbon.imr.ac.cn/file/journai/1998/98—APL—72—3282-ChengH M.pdf). |
Notice of First Office Action of corresponding, copending Chinese Application No. 201380020288.2 dated Aug. 31, 2015, 3 pages. |
Text of Notice of the First Office Action of corresponding, copending Chinese Application No. 201380020288.2 dated Aug. 31, 2015, 6 pages. |
Chun, Changmin, and Ramanarayanan, Trikur A., “Metal Dusting Corrosion of Metals and Alloys,” 2007. |
Chung, U.C., and W.S. Chung, “Mechanism on Growth of Carbon Nanotubes Using CO—H2 Gas Mixture,” Materials Science Forum vols. 475-479 (2005) pp. 3551-3554. |
Dai, et al., “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chemical Physics Letters 260 (1996) 471-475, Elsevier. |
Dresselhaus et al., Carbon Nanotubes Synthesis, Structure, Properties, and Applications. 2001, pp. 1-9, Springer. |
Garmirian, James Edwin, “Carbon Deposition in a Bosch Process Using a Cobalt and Nickel Catalyst,” PhD Dissertation, Massachusetts Institute of Technology, Mar. 1980, pp. 14-185. |
Grobert, Nicole, “Carbon nanotubes—becoming clean,” Materials Today, vol. 10, No. 1-2, Jan.-Feb. 2007, Elsevier, pp. 28-35. |
Hata, Kenji, “From Highly Efficient Impurity-Free CNT Synthesis to DWNT forests, CNTsolids and Super-Capacitors,” unknown date, unknown publisher, Research Center for Advanced Carbon Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan. |
Hiraoka, Tatsuki, et al., “Synthesis of Single- and Double-Walled Carbon Nanotube Forests on Conducting Metal Foils,” 9 J. Am. Chem. Soc. 2006, 128, 13338-13339. |
Holmes, et al.; A Carbon Dioxide Reduction Unit Using Bosch Reaction and Expendable Catalyst Cartridges; NASA; 1970; available at https:J/archive.org/details/nasa—techdoc—1971 0002858. |
Huang, Z.P., et al., “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition,” Applied Physics Letters 73:3845-3847, Dec. 28, 1998. |
“INCONEL® alloy 693—Excellent Resistance to Metal Dusting and High Temperature Corrosion” Special Metals Product Sheet, 2005. |
Krestinin, A. V., et al. “Kinetics of Growth of Carbon Fibers on an Iron Catalyst in Methane Pyrolysis: A Measurement Procedure with the Use of an Optical Microscope,” Kinetics and Catalysis, 2008, vol. 49, No. 1, pp. 68-78. |
Lal, Arch It, “Effect of Gas Composition and Carbon Activity on the Growth of Carbon Nanotubes,” Masters Thesis, University of Florida, 2003. |
Manasse et al., Schottky Barrier Betavoltaic Battery, IEEE Transactions on Nuclear Science, vol. NS-23, No. 1, Feb. 1976, pp. 860-870. |
Manning, Michael Patrick, “An Investigation of the Bosch Process,” PhD Dissertation, Massachusetts Institute of Technology, Jan. 1976. |
Muller-Lorenz and Grabke, Coking by metal dusting of steels, 1999, Materials and Corrosion 50, 614-621 (1999). |
Nasibulin, Albert G., et al., “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chemical Physics Letters 417 (2005) 179-184. |
Nasibulin, Albert G., et al., “Correlation between catalyst particle and single-walled carbon nanotube diameters,” Carbon 43 (2005) 2251-2257. |
Noordin, Mohamad and Kong Yong Liew, “Synthesis of Alumina Nanofibers and Composites,” in Nanofibers, pp. 405-418 (Ashok Kumar, ed., 2010) ISBN 978-953-7619-86-2 (available at http://www.intechopen.com/books/nanofibers/synthesis-of-alumina- nanofibers-and-composites). |
International Preliminary Report on Patentability, for international Application No. PCT/US2013/000075, dated Oct. 21, 2014, 7 pages. |
PCT International Search Report and Written Opinion, PCT/US2013/000075, dated Jun. 26, 2013. |
Pender, Mark J., et al., “Molecular and polymeric precursors to boron carbide nanofibers, nanocylinders, and nanoporous ceramics,” Pure Appl. Chem., vol. 75, No. 9, pp. 1287-1294, 2003. |
Ruckenstein, E. and H.Y. Wang, “Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/?Al203 Catalysts,” Journal of Catalysis, vol. 205, Issue 2, Jan. 25, 2002, pp. 289-293. |
Sacco, Albert Jr., “An Investigation of the Reactions of Carbon Dioxide, Carbon Monoxide, Methane, Hydrogen, and Water over Iron, Iron Carbides, and Iron Oxides,” PhD Dissertation, Massachusetts Institute of Technology, Jul. 1977, pp. 2, 15-234. |
SAE 820875 Utilization of Ruthenium and Ruthenium-Iron Alloys as Bosch Process Catalysts. Jul. 19-21, 1982. |
SAE 911451 Optimization of Bosch Reaction, Jul. 15-18, 1991. |
Skulason, Egill, Metallic and Semiconducting Properties of Carbon Nanotubes, Modern Physics, Nov. 2005, slide presentation, 21 slides, available at https://notendur.hi.is/egillsk/stuff/annad/Egiii.Slides2.pdf, last visited Apr. 28, 2014. |
Songsasen, Apisit and Paranchai Pairgreethaves, “Preparation of Carbon Nanotubes by Nickel Catalyzed Decomposition of Liquefied Petroleum Gas (LPG),” Kasetsart J. (Nat. Sci.) 35 : 354-359 (2001) (available at: http://kasetsartjournal.ku.ac.th/kuj—files/2008/A0804251023348734.pdf). |
Srivastava, A. K., et al. “Microstructural features and mechanical properties of carbon nanotubes reinforced aluminum-based metal matrix composites.” Indian Journal of Engineering and Materials Sciences 15.3 (2008): 247-255. |
Szakalos, P., “Mechanisms and driving forces of metal dusting,” Materials and Corrosion, 2003, 54, No. 10, pp. 752-762. |
XP-002719593 Thomson abstract, Database WPI Week 198920 Thomson Scientific, London, GB; AN 1989-148422 XP002719593, & JP H01 92425 A (NIPPON KOKAN KK) Apr. 11, 1989 (Apr. 11, 1989), one page. |
Tsai, Heng-Yi, et al., “A feasibility study of preparing carbon nanotubes by using a metal dusting process,” Diamond & Related Materials 18 (2009) 324-327, Elsevier. |
Unknown author, “Metal Dusting,” unknown publisher, undated. |
Unknown author, “Metal Dusting of reducing gas furnace HK40 tube,” unknown publisher, undated. |
Wei, et al. “The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space-time analysis,” Powder Technology 183 (2008) 10-20, Elsevier. |
Wiegand et al., Fabrication of High Strength Metal-Carbon Nanotube Composites, U.S. Army Research and Development, Picatinny, New Jersey, and New Jersey Institute of Technology, Newark, New Jersey, report date Dec. 2008, 6 pages. |
Wilson, Richard B., “Fundamental Investigation of the Bosch Reaction,” Master's Thesis, Massachusetts Institute of Technology, Sep. 1971, pp. 12,23, 37, 43, 44, 62, 70, 80, 83-88, 98. |
Zeng Z. and Natesan, K., Relationship between the Growth of Carbon Nanofilaments and Metal Dusting Corrosion, 2005, Chem. Mater. 2005, 17, 3794-3801. |
Number | Date | Country | |
---|---|---|---|
20160031710 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61794139 | Mar 2013 | US |