This application claims priority of German patent application no. 10 2018 000 145.9, filed Jan. 10, 2018, the entire content of which is incorporated herein by reference.
The invention relates to a carburetor for the combustion engine in a handheld work apparatus, to a combustion engine having a carburetor, and to a method for operating a combustion engine.
U.S. Pat. No. 4,909,211 A discloses a carburetor having a carburetor drum. In order to sense the rotational position, a rotational position transmitter which is not described specifically is arranged at one end of the carburetor drum.
It is an object of the invention to provide a carburetor which is simply constructed and permits precise sensing at least of a rotational position of the carburetor drum.
This object can, for example, be achieved via a carburetor for the combustion engine in a handheld work apparatus. The carburetor includes: a carburetor housing; a carburetor drum mounted rotatably about a pivot axis in the carburetor housing; the carburetor drum having a drum body; the drum body having at least one channel which runs transversely with respect to the pivot axis and forms an intake channel portion; a sensing unit for sensing at least one rotational position of the carburetor drum; the sensing unit including a control contour and a sensing device configured to interact with the control contour; and, the control contour being formed on the carburetor drum.
It is a further object of the invention to provide a combustion engine having a carburetor.
This object can, for example, be achieved via a combustion engine including: a carburetor having a carburetor housing and a carburetor drum mounted rotatably about a pivot axis in the carburetor housing; the carburetor drum having a drum body; the drum body having at least one channel which runs transversely with respect to the pivot axis and forms an intake channel portion; the carburetor including a sensing unit for sensing at least one rotational position of the carburetor drum; the sensing unit including a control contour and a sensing device configured to interact with the control contour; the control contour being formed on the carburetor drum; a fuel valve via which fuel is fed into the channel of the carburetor drum; and, a control device connected to the sensing unit and to the fuel valve for feeding fuel into the intake channel portion.
It is a further object of the invention to provide a method for operating a combustion engine.
This object can, for example, be achieved via a method for operating a combustion engine having a carburetor, the carburetor having a carburetor housing and a carburetor drum mounted rotatably about a pivot axis in the carburetor housing, the carburetor drum having a drum body, the drum body having at least one channel which runs transversely with respect to the pivot axis and forms an intake channel portion, the carburetor including a sensing unit for sensing at least one rotational position of the carburetor drum, the sensing unit including a control contour and a sensing device interacting with the control contour, the control contour being formed on the carburetor drum, the carburetor further having a fuel valve via which fuel is fed into the channel of the carburetor drum, the combustion engine having a control device which is connected to the sensing unit and to the fuel valve for feeding fuel into the intake channel portion. The method includes the steps of: sensing a rotational position of the carburetor drum via the sensing unit; and, controlling, via the control device, a supplied quantity of fuel in dependence upon the rotational position of the carburetor drum sensed by the sensing unit.
It is provided that the sensing unit includes a control contour and a sensing device interacting with the control contour, and that the control contour is formed directly on the carburetor drum. By arranging the control contour on the carburetor drum, tolerances between the position of the control contour and the position of the carburetor drum can be minimized. A control contour can be introduced into the carburetor drum in a simple manner during the production of the carburetor drum. A control contour here is a contour which can be scanned mechanically, for example an elevation or depression on the outer periphery of the carburetor drum. A control contour can be simply produced by mechanical machining of the carburetor drum. In order to sense the rotational position of the carburetor drum, it is advantageously provided that, in different peripheral portions of the carburetor drum, the control contour is at different distances from the pivot axis of the carburetor drum, the distances being sensed by the sensing device. It is preferably provided that the sensing device scans the control contour.
The sensing unit can be configured, for example, to produce an electrical signal. The signal produced by the sensing unit can be read in particular in an evaluation unit and can advantageously be used for controlling a fuel supply device. The evaluation unit can be, for example, a control apparatus of a combustion engine.
The control contour may preferably be arranged directly on the carburetor drum. The control contour can in particular be arranged on a top side of the carburetor drum. The control contour can in particular be formed integrally with that part of the carburetor drum which has the at least one channel running transversely with respect to the pivot axis. As a result, tolerances between the at least one channel and the control contour can be minimized.
The carburetor drum can advantageously be of multi-part configuration. In an advantageous manner, a first part of the carburetor drum has the control contour and a second part has the at least one channel. The first part and the second part can advantageously be connected fixedly to each other, in particular by welding, adhesive bonding or the like. The two parts are in particular connected to each other in an integrally bonded manner. As a result, the control contour and the at least one channel can be produced in a simple manner. The at least two parts of the carburetor drum can advantageously be composed of different materials. As a result, the control contour can be formed in one part from wear-resistant material, for example a plastic, and the at least one channel can be formed in a fuel-resistant material, for example metal or another plastic. The two parts can be precisely positioned with respect to each other during the manufacturing before the parts are fixedly connected to each other, and therefore small tolerances can be kept to.
The control contour is advantageously arranged on the drum body. As a result, the control contour can be formed at a comparatively large distance from the pivot axis of the drum body. Tolerances during the sensing of the rotational position of the carburetor drum are thereby minimized. The control contour can preferably be arranged in that region of the drum body which has the largest diameter. The control contour is advantageously formed in the drum body of the carburetor drum. In an advantageous configuration, the drum body of the carburetor drum is formed as a single part. In an advantageous alternative configuration, the drum body is constructed from two parts which are fixedly connected to each other.
The control contour can preferably include at least one depression on the periphery of the carburetor drum. The control contour advantageously includes at least one depression in the periphery of the drum body of the carburetor drum. In an advantageous configuration, the control contour includes a first depression which is assigned to idle running. In a configuration, the control contour includes a first depression which is assigned to idle running, and a second depression which is assigned to the full load. Accordingly, the idle running position can be determined via the control contour. Particularly advantageously, the idle running position and the full load position can be determined via the control contour. The partial load range provided between the idle running position and the full load position can be determined by a signal deviating from the idle running position and the full load position. As a result, the sensing of the position of all of the positions of the drum body that are important for controlling the combustion engine is possible via two switching states of the sensing unit. The differentiation between idle running position and full load position can be achieved by different signals in the idle running position and full load position, for example via depressions of differing depth for idle running position and full load position. In a configuration, the same signal is sensed in the idle running position and full load position by the sensing unit, and the differentiation between idle running position and full load position takes place via further information, in particular with reference to a rotational speed of the combustion engine.
The scanning of the control contour advantageously reacts to an operator-controlled element, for example a gas pedal, via which the operator adjusts the carburetor drum. In order to keep the forces exerted on the gas pedal by the sensing unit as small as possible, it is advantageously provided that at least one depression has a base bounding the depression in the radial direction. The base advantageously merges on at least one side, lying in the peripheral direction, with an incline into the outer peripheral surface of the carburetor drum. Via the incline, the forces exerted on the sensing device by the control contour during the transition from the depression into the outer peripheral surface of the carburetor drum can be kept small. The inclination of the incline is advantageously selected in such a manner that the sensing of the rotational position of the carburetor drum is sufficiently precisely possible, but at the same time small forces, which are advantageously scarcely noticed, if at all, by the operator, are exerted on the gas pedal by the incline. In a configuration, the base bounds the depression in the radially inner direction.
In an alternative configuration, it can be provided that the base of the depression merges with the incline into a curved surface segment. The surface segment is advantageously curved with one or more radii about the pivot axis of the drum body. The radii advantageously differ here from the distance of the base of the depression from the pivot axis, and therefore the surface segment and the base of the depression are formed with different radii. A further switching state of the sensing unit can be achieved via the curved surface segment. In particular, further rotational positions of the drum body can thereby be sensed. The curved surface segment can be a surface segment, the radius of which is smaller than that of the outer peripheral surface of the carburetor drum in order to permit the arrangement in a smaller construction space. In an alternative embodiment, the radius of the curved surface segment is larger than that of the outer peripheral surface. As a result, the accuracy of sensing the rotational position of the drum body can be increased.
The base of the depression advantageously bounds the depression on the side lying radially inward with respect to the pivot axis. In an advantageous configuration, the sensing device lies against the control contour radially outside the control contour with respect to the pivot axis. The sensing device is advantageously spring-loaded radially inward with respect to the pivot axis by a return spring. The sensing unit advantageously includes a switch which is actuated depending on the position of the sensing device. Sensing of at least two switching states can take place in a simple manner via a switch. An electrical signal generated by a switch can be further processed electronically in a simple manner, in particular by an electronic control device.
The sensing device can preferably be formed on a pivot lever which is mounted on the carburetor housing so as to be pivotable about a second pivot axis lying parallel to the pivot axis of the carburetor drum. In a configuration, the pivot lever is connected to ground via the return spring. The return spring is accordingly a contact spring via which electrical contact with the ground is produced. This results in a simple construction with few components. However, it can also be provided that different spring elements are used for producing the ground contact and for prestressing the pivot lever into its radially inner position.
A fuel valve via which fuel is fed into the intake channel is advantageously provided. The fuel valve can be activated on the basis of the sensing of at least one rotational position of the drum body, and the required quantity of fuel can be precisely metered. For a combustion engine having a carburetor with a fuel valve, it is provided that the combustion engine has a control device which is connected to the sensing unit and to the fuel valve for feeding fuel into the intake channel.
A method for operating a combustion engine advantageously makes provision for the control device to control the supplied quantity of fuel depending on the rotational position, sensed by the sensing unit, of the carburetor drum. Precise metering of fuel is thereby made possible, in particular if the entire quantity of fuel fed to the intake channel is metered via a single fuel valve. It can advantageously be provided to influence the control of the ignition of the combustion engine by sensing at least one rotational position of the carburetor drum.
The invention will now be described with reference to the drawings wherein:
The mixture inlet 11 and the air intake 10 are controlled by the piston skirt of the piston 5. The combustion engine 1 of the embodiment is a slot-controlled engine. The mixture inlet 11 is connected in the region of the upper dead center of the piston 5 to the interior of the crankcase 4. The air intake 10 opens in a region of the piston 5, in which a piston pocket 12 of the piston 5 moves. The piston pocket 12 connects the air intake 10 in the region of the upper dead center of the piston 5 to the transfer windows 15 of the outlet-near transfer channels 13 and the outlet-remote transfer channels 14. The illustration in
A carburetor 18 is provided for supplying fuel. The carburetor 18 has a carburetor drum 20. The carburetor drum 20 is mounted rotatably in order to control the supplied quantity of combustion air. A first channel 34 which forms an air channel portion and a second channel 33 which forms a mixture channel portion are formed in the carburetor drum 20. Alternatively, it can also be provided that only a mixture channel portion is provided in the carburetor drum 20.
During the operation of the combustion engine 1, a fuel/air mixture is sucked during the upward stroke of the piston 5 out of the second supply channel 9 via the mixture inlet 11 into the interior of the crankcase 4. As soon as the piston pockets 12 connect the at least one air intake 10 to the transfer windows 15, fuel-free or fuel-poor combustion air is sucked out of the first supply channel 8 via the transfer windows 15 into the transfer channels 13 and 14. During the subsequent downward stroke, that is, the movement of the piston 5 from the combustion chamber 3 in the direction of the crankcase 4, the fuel/air mixture in the interior of the crankcase 4 is compressed in the interior of the crankcase 4. As soon as the transfer windows 15 are opened by the downwardly moving piston 5, first of all fuel-free or fuel-poor air flows out of the transfer windows 15 into the combustion chamber 3. The fuel-poor or fuel-free combustion air flushes exhaust gases from the preceding engine cycle out of the combustion chamber 3 through an outlet 16 from the combustion chamber 3. Subsequently, a fresh mixture flows into the combustion chamber 3 from the interior of the crankcase 4. During the following upward stroke of the piston, the mixture in the combustion chamber 3 is compressed and ignited and burned in the region of the upper dead center of the piston 5. The burning causes the piston 5 to be accelerated again in the direction of the crankcase 4. As soon as the transfer windows 15 open, first of all air stored upstream flows out of the transfer channels 13 and 14 and subsequently a fresh mixture flows out of the interior of the crankcase 4 via the transfer channels 13 and 14 into the combustion chamber 3.
As
In an alternative embodiment, it can be provided that, in order to control the supplied quantity of fuel, a control needle projects into the fuel opening 28 and the size of an annular gap formed between control needle and fuel opening changes depending on the rotational position of the carburetor drum 20. To change the size of the annular gap, it is known to provide a ramp between carburetor housing 19 and carburetor drum 20, via which ramp the carburetor drum 20 is moved in the direction of the pivot axis 35 during a pivoting movement about the pivot axis 35.
On that side of the drum body 54 that lies adjacent to the drum shaft 61, the drum body 54 has a control contour 57 on its outer periphery. The control contour 57 serves for sensing the rotational position of the carburetor drum 20 and actuates the switch 22 (
As
As
In the embodiment, the drum body 54 is configured as a single part.
In the idle running position shown of the carburetor drum 20, the sensing device 56 lies against the base 58 of the first depression 47. The base 58 is at a distance a from the pivot axis 35 of the carburetor drum 20, the distance being smaller than the distance b of the outer peripheral surface 60 from the pivot axis 35 of the carburetor drum 20. The pivot lever 49 is prestressed in the direction of that position of the sensing device 56 which lies radially on the inside with respect to the pivot axis 35 of the carburetor drum 20. The prestressing of the pivot lever 49 is indicated in
A contact pin 51 which, together with the spring 50, forms the switch 22 is advantageously fixed on the pivot lever 49. In the switching position shown, the contact pin 51 is at a distance d from the spring 50, which is in the form of a contact spring. Accordingly, the contact pin 51 is not connected in an electrically conducting manner to the spring 50. The switch 22 is open. The spring 50 lies against a contact 53 of a diode 52 which is connected to the control device 45.
As
If the carburetor drum 20 is rotated in the direction of the arrow 68, for example by pressing the operator-controlled element 42 (
In the full gas position shown in
The figures show two slightly different configurations of the depressions 47 and 48 and of the spring 50. In the embodiment according to
As
It is provided in the embodiment that the switch 22 is open in the idle running state and in the full load state and is closed in the partial load state located in-between. It is provided that the control device 45 controls the quantity of fuel supplied via the fuel valve 27 depending on the rotational position, which is determined by the sensing unit 55, of the carburetor drum 20. In the embodiment, the sensing unit 55 is formed by the switch 22, the sensing device 56, the control contour 57 and the diode 52.
In an alternative configuration, it can be provided that, in the event of a rotational position of the carburetor drum 20 between the idle running position and the full load position, the sensing device 56 does not lie against the outer peripheral surface 60 of the carburetor drum 20 on the carburetor drum 20, but rather against a curved surface, the radius of which about the pivot axis 35 of the carburetor drum 20 differs from that of the outer peripheral surface 60, and which is therefore arranged closer to the pivot axis 35 of the carburetor drum 20 or further away from the pivot axis 35.
Further advantageous embodiments emerge from any desired combination of the embodiments described.
It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 000 145 | Jan 2018 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4909211 | Cook et al. | Mar 1990 | A |
7047937 | Frank et al. | May 2006 | B2 |
9512806 | Osburg | Dec 2016 | B2 |
20020121710 | King | Sep 2002 | A1 |
20040244769 | Frank et al. | Dec 2004 | A1 |
20100180861 | Doering | Jul 2010 | A1 |
20140360466 | Osburg | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
10326313 | Dec 2004 | DE |
102013009668 | Dec 2014 | DE |
Number | Date | Country | |
---|---|---|---|
20190211778 A1 | Jul 2019 | US |