This invention relates to a card connector for use in connecting an electronic card with an electronic device. For example, the electronic card is a Secure Digital card or a Multi Media Card. For example, the electronic device is a digital camera, a mobile phone or a portable digital music player.
JP-A 2004-281100 discloses a connector of this type. The disclosed connector has an ejection mechanism which is referred to as a push-push type ejection mechanism, a two-stage ejection mechanism or a double click ejection mechanism. The ejection mechanism comprises a slider, a spring and a cam follower, which are individual parts. The slider is formed with a cam recess which has typically a heart-like shape. The spring urges the slider rearwards, while the slider is pushed forwards by an inserted card. The cam follower projects into the cam recess. The combination of the cam follower and the cam recess locks the slider in a forward position upon the slider is pushed forwards for the first time. When the slider is pushed forwards from its locking position for the second time, the ejection mechanism releases the slider to move it rearwards by using the spring's force so that the inserted card is also ejected rearwards.
It is an object of the present invention to provide a card connector which has the improved ejection mechanism comprised of less parts but having an equivalent ejection function.
In accordance with one aspect of the present invention there is provided a card connector for connecting an electronic card with an electronic device. The card connector comprises a base member, a metal cover and an ejection mechanism. The base member and the metal cover define a receptacle for receiving at least partially the electronic card therein. The ejection mechanism for ejecting the electronic card, at least in part, from the receptacle comprises a cam portion, a cam follower and a resilient supporter. The cam portion forms, at least in part, a cam path. The resilient supporter is formed integrally with the metal cover and supports the cam follower to allow the cam follower to travel along the cam path.
An appreciation of the objectives of the present invention and a more complete understanding of its structure may be had by studying the following description of the preferred embodiment and by referring to the accompanying drawings.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
With reference to
With reference to
With reference to
The resilient supporter 40 urges the cam follower 50 to be positioned at an initial position Pi (ri, θi). The initial position Pi (ri, θi) is an intersection point of a predetermined circle Ci and a predetermined straight line Li.
The resilient supporter 40 comprises a first portion 41 and a second portion 42. The first portion 41 is for providing the cam follower 50 with a circumferential force that urges the cam follower 50 to be on the predetermined line Li. The first portion 41 has an end 41a, to which the second portion 42 is connected. The second portion 42 is for providing the cam follower 50 with a radial force that urges the cam follower 50 to be on the predetermined circle Ci. The second portion 42 supports the cam follower 50 at its free end. The supported cam follower 50 projects along the Z-direction.
The first portion 41 comprises a base portion 43 and a movable portion 44. The base portion 43 extends in parallel with the origin line Lo. The movable portion 44 is connected with the base portion 43 at the origin point Po and has an end 41a. The movable portion 44 straightly extends from the origin point Po to the end 41a. The end 41a is regulated to be on a concentric but smaller circle of the predetermined circle Ci.
The second portion 42 is provided with a bent portion 45. The bent portion 45 is positioned farther from the origin line Lo than the end 41a of the first portion 41 in a circumferential direction on the polar coordinate plane. The bent portion 45 serves as a transmission portion which transmits an insertion force of the electronic card to the cam follower 50 upon the card insertion while transmitting a movement of the cam follower 50 as an ejection force to the electronic card upon the card ejection.
With reference to
The cam portion 60 of this embodiment is obtainable by stamping out a mother material of the metal cover 10 to form a predetermined piece 13 which has a mitten-like shape and extends from the general plate portion 11 of the metal cover 10, followed by bending the predetermined piece two times or more.
Note here that the illustrated embodiment can fully and effectively use the internal space of the receptacle by turning even a dead space to practical use. Known is a major kind of electronic card having a standardized cut corner potion or beveled corner portion. The cut corner defines a particular triangle space within the receptacle when the electronic card is inserted into the receptacle. The particular triangle space often becomes a dead space. The illustrated cam portion 60 can be disposed within the particular triangle space.
With reference also to
The first guide portion 61 constitutes a guide line segment which extends from a first point P1 (r1, θ1) to a second point P2 (r2, θ2). The illustrated first guide portion 61 is constituted by an edge of the mitten-like shaped predetermined piece 13. The guide line segment is not limited to a straight line segment but may be a curved line segment, provided that the guide line segment is a continuum line. The guide line segment intersects the predetermined circle Ci at an additional intersection point which is identified by the predetermined radius ri and an additional predetermined angle smaller than the predetermined angle θi.
To meet the above-mentioned requirements, the first point P1 is located within the inside region with respect to the predetermined circle Ci, while the second point P2 is located within the outside region with respect to the predetermined circle Ci. In addition, the angle θ1 is greater than the angle θ2. In this embodiment, the radius r1 is shorter than the radius r2 but may be longer than the radius r2. In other words, the first point P1 may be located within the outside region with respect to the predetermined circle Ci, while the second point P2 may be located within the inside region with respect to the predetermined circle Ci.
The receiving portion 62 is for receiving the cam follower 50. The illustrated receiving portion 62 is constituted by another edge of the mitten-like shaped predetermined piece 13. The receiving portion 62 forms a V-like line which passes through a third point P3 (r3, θ3), a fourth point P4 (r4, θ4) and a fifth point P5 (r5, θ5) in this order. The third to the fifth points P3 to P5 are located within the outside region with respect to the predetermined circle Ci. The third to the fifth points P3 to P5 must be located on the same region as the second point P2 with respect to the predetermined circle Ci. In other words, if the second point P2 is positioned within the outside region of the predetermined circle Ci, the third to the fifth points P3 to P5 are also positioned with in the outside region.
For smooth receiving and guiding of the cam follower 50, the third to the fifth points P3 to P5 should meet the following conditions: the angle θ3 is greater than the angle θ2; the third point P3 is positioned between the second point P2 and the predetermined circle Ci in a radial direction on the polar coordinate plane; the angle θ4 is greater than the angle θ3; the fourth point P4 is positioned between the third point P3 and the predetermined circle Ci in the radial direction; the angle θ5 is smaller than the fourth angle θ4.
The second guide portion 63 is for guiding the cam follower 50 from a sixth point P6 (ri, θ6) to the initial position Pi (ri, θi) upon the ejection of the electronic card. In this embodiment, the second guide portion 63 uses the circumferential force of the first portion 41 of the resilient supporter 40 for the guide of the cam follower 50. The sixth point P6 is located on the predetermined circle Ci and corresponds to the fifth point P5. In this embodiment, the angle θ6 is equal to the angle θ5.
In this embodiment, the second guide portion 63 is constituted by a surface of the mitten-like shaped predetermined piece 13 and is formed with a depression portion 66 and a slope portion 67. The depression portion 66 is positioned on the sixth point P6. The depression portion 66 is depressed downwardly in the Z-direction in comparison with the fifth point P5 of the receiving portion 62. In other words, the depression portion 66 is positioned downwardly in a projection orientation of the cam follower 50 in comparison with the fifth point P5 of the receiving portion 62. The depression portion 66 serves to guide the cam follower 50 on the predetermined circle Ci after the cam follower 50 passes through the fifth point P5. The slope portion 67 is positioned on the predetermined circle Ci. The slope portion 67 is sloped towards an orientation opposed to the projection orientation of the cam follower 50 in Z-direction. The slope portion 67 serves to guide the cam follower 50 towards the initial position Pi over the additional intersection point after the cam follower 50 is away from the sixth point P6.
The supplemental guide portion 64 is for guiding the cam follower 50 towards the receiving portion 63 after the cam follower 50 passes through the second point P2 upon the card insertion. In this embodiment, the cam portion 60 further comprises a connection portion 65, by which the supplemental guide portion 64 is connected with the depression portion 66.
The supplemental guide portion 64 constitutes a supplemental guide line segment which extends from a first supplemental point P7 (r7, θ7) to a second supplemental point P8 (r8, θ8). The supplemental guide line segment is not limited to a straight line segment but may be a curved line segment, provided that the supplemental guide line segment is a continuum line. The supplemental guide line segment intersects an imaginary straight line extending between the second point P2 and the fifth point P5. The first supplemental angle θ7 is greater than the second supplemental angle θ8. the second supplemental angle θ8 is smaller than the second angle θ2.and the fifth angle θ5. The second supplemental point P8 is positioned between the second point P2 and the predetermined circle Ci in the radial direction. In this embodiment, the first supplemental point P7 is also positioned between the third point P3 and the predetermined circle Ci in the radial direction.
The cam portion 60 of this embodiment is obtainable by stamping out a mother material of the metal cover 10 to form a predetermined piece which has a mitten-like shape and extends from the general plate portion 11 of the metal cover 10, followed by bending the predetermined piece two times or more.
The operation of the ejection mechanism will now be described.
As shown in
When the user pushes the electronic card 200 forwards for the second time, the cam follower 50 is also moved forwards, as shown in
As shown in
With reference to
The cam portion 60a is one obtainable by making cuts into a mother material of the metal cover 10 to form two or more predetermined pieces of rectangular shapes, followed by bending and raising the predetermined pieces.
The thus-formed cam portion 60a comprises a first guide portion 61a, a receiving portion 62a, a guide portion 63a and a supplemental guide portion 64a. The first guide portion 61a is provided with the warped portion 61a1. The warped portion 61a1 receives the cam follower 50 and guides along the first guide portion 61a when the cam follower 50 is moved forwards. On the other hand, the warped portion 61a1 constitutes, in cooperation with the guide portion 63a, a second guide portion of this embodiment and guides the cam follower 50 along the second guide portion so that the cam follower 50 is allowed to get over the first guide portion 61a and to return back to the initial position when the cam follower 50 is moved rearwards. The cam portion 60b also meets the requirements illustrated in
With reference to FIGS. 17 to 19, a card connector according to a third embodiment comprises a cam portion 60b which is formed integrally not with the metal cover 10 but with the base member 20. In detail, the base member 20 has a surface 21 which faces the general plate portion of the metal cover 10 under its combined state; the cam portion 60b is formed on the surface 21. The cam portion 60b may be formed upon molding process of the base member.
As best shown in
The island 60b1 generally has a constant thickness except for a slope portion 67b. The first guide portion 61b and the receiving portion 62b are constituted by side surfaces of the island 60b1. The second guide portion 63b is constituted by a top surface of the island 60b1 including the slope portion 67b. The supplemental guide portion 64b has a thickness thicker than that of the island 60b1, as best shown in
As shown in
Alternatively, as shown in
While there has been described what is believed to be the preferred embodiment of the invention, those skilled in the art will recognize that other and further modifications may be made thereto without departing from the sprit of the invention, and it is intended to claim all such embodiments that fall within the true scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-124318 | Apr 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP06/08378 | 4/14/2006 | WO | 7/11/2007 |