1. Field of the Invention
The present invention relates to a card connector, and particularly to a card connector which is used to communicate between an electronic card and a mainboard and which allows the card inserted in or ejected out only by pressing the electronic card.
2. Related Art
Push—Push type connectors are often used to communicate between an electronic card and a mainboard, which allows the card inserted in or ejected out only by pressing the electronic card. U.S. Pat. No. 6,520,784 discloses such a card connector. The card connector includes a connector body receiving a plurality of terminals therein, an eject device assembled on the connector body for guiding an electronic card inserted in or ejected out, and a metal shell for covering the housing. However, the electronic card cannot be fixed when it is received in the eject device. Especially under undesired environment or exterior shock, the card tends to displace, resulting in improper contact between the conductive terminals and the mainboard and even unstable signal transmission. Additionally, in such a design, the conductive terminals are apt to wear down.
Accordingly, an object of the present invention is to provide a card connector which guides an electronic card inserted in or ejected out and which firmly retains the card when the card reaches a predetermined final position thereby effectively protecting from exterior shock and assuring reliable signal transmission.
The card connector comprises an insulative frame, a plurality of conductive terminals received in the insulative frame, an eject device assembled on the insulative frame and a shell covering the insulative frame.
The eject device includes a driving rod, a driven shaft, a driven sleeve, a slider and a resilient element. The driving rod axially defines a 90 degree first continuous chute. The driven shaft axially defines a 90 degree second continuous chute for meshing with the first continuous chute, whereby the driven shaft displaces relative to the driving rod along the meshing trace to position the card. An L-shaped link arm is formed on the driving rod and opposite to the first continuous chute. a first embedding groove is radially distributed in an outer peripheral of the driven shaft.
The driven sleeve is fixed on the insulative frame and telescopically connects with the driven shaft. A second embedding groove is radially distributed in an outer peripheral of the driven sleeve for meshing with the first embedding groove. A stop block is formed on the driven sleeve and opposite to the driven shaft.
The slider is cantileveredly mounted on the driving rod. An abutting portion is formed at a free end of the slider and near the stop block of the driven sleeve for abutting the stop block when assembled together. During insertion of the card, the driving rod drives the driven shaft to rotate. The stop block of the driven sleeve, which abuts the abutting portion of the slider in normal state, disengages from the abutting portion, and thereafter engages with a wedging hole of the card. Thus, the card in the final position is protected against exterior reverse shock.
With reference to
The insulative frame 2 includes a housing 20 and a pair of side posts 21, 22 at opposite sides of the housing 20. The housing 20 forms a bottom post 201, and defines a plurality of passageways 202 in the bottom post 201 for receiving the conductive terminals 3 therein. The side posts 21, 22 and the bottom post 201 borders a receiving slot (not labeled) for accommodating an electronic card 8 (shown in
The eject device 4 is assembled on the side post 22, and includes a driving rod 40, a driven shaft 41, a driven sleeve 42, a slider 43 and a resilient element 44.
The driving rod 40 axially defines a 90 degree first continuous chute 401. An L-shaped link arm 402 is integrally formed with the driving rod 40 and opposite to the first continuous chute 401. The L-shaped link arm 402 forms a 45 degree inclined surface 43 at an inner edge of the cross thereof against misplug of the card 8. A fixing groove 404 is defined between the L-shaped link arm 402 and the driving rod 40 for cantileveredly fixing an end of the slider 43 thereby enhancing resiliency of the slider 43.
The driven shaft 41 axially defines a 90 degree second continuous chute 410 for meshing with the first continuous chute 401. A first embedding groove 411 is radially distributed in an outer peripheral of the driven shaft 41. The driven shaft 41 forms a fixing post 412 at an end thereof and opposite the second continuous chute 410. In this embodiment, the resilient element 44 is a compressed spring. The resilient element 44 is mounted around the fixing post 412 and is accommodated in a positioning slot 25 (referring to
A driven sleeve 42 is fixed on the driven shaft 41. A second embedding groove 421 is radially distributed in an outer peripheral of the driven sleeve 42 for meshing with the first embedding groove 411, whereby the driven sleeve 42 telescopically connects with the driven shaft 41. A stop block 422 is formed on the driven sleeve 42 and opposite to the driven shaft 41. The driven sleeve 42 forms a tab 423 thereon for corresponding to the ditch 26 thereby fixing the driven sleeve 42 on the insulative frame 2. The slider 43 is cantileveredly mounted on the fixing groove 404 of the driving rod 40. An abutting portion 431 bends perpendicularly from at a free end of the slider 43 and near the stop block 422 of the driven sleeve 43 when assembled. In assembly, as shown in
Referring to
Further referring to
It is understood that the invention may be embodied in other forms without departing from the spirit thereof. Thus, the present examples and embodiments are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Number | Name | Date | Kind |
---|---|---|---|
5899763 | Kajiura | May 1999 | A |
6045377 | Kajiura | Apr 2000 | A |
6059588 | Tung et al. | May 2000 | A |
6113403 | Oguchi | Sep 2000 | A |
6155853 | Kajiura | Dec 2000 | A |
6319029 | Nishioka | Nov 2001 | B1 |
6482020 | Yeh | Nov 2002 | B1 |
6520784 | Ito et al. | Feb 2003 | B1 |