Card edge connector for an imaging sensor

Information

  • Patent Grant
  • 11438490
  • Patent Number
    11,438,490
  • Date Filed
    Monday, February 1, 2021
    3 years ago
  • Date Issued
    Tuesday, September 6, 2022
    a year ago
Abstract
The disclosure extends to devices, systems and methods for connecting one or more sensors to one or more printed circuit boards (PCB) in the distal end or tip of a scope. The disclosure also extends to a connector assembly for an image sensor for protecting the sensor and conveying information from the sensor to the PCB.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.


BACKGROUND

The disclosure relates generally to card edge connectors and more specifically, but not entirely, to card edge connectors for sensors, such as an image sensor. Advances in technology have provided advances in imaging capabilities for medical use. One area that has enjoyed some of the most beneficial advances is that of endoscopic surgical procedures because of the advances in the components that make up an endoscope.


Conventional, digital video systems used for laparoscopy, arthroscopy, ENT, gynecology and urology are based upon conventional, rigid endoscopes, which are optically and mechanically coupled to a separate hand-piece unit, which contains one or more image sensor(s). Image information is optically transmitted along the length of the endoscope, after which it is focused upon the sensor via an optical coupler.


However, due to advances in technology sensors are now being located in the distal end or distal tip of medical or other type of scopes. With such advancements come difficulties and problems associated with mechanically and electrically connecting the sensor to a printed circuit board (PCB) in such scopes. Accordingly, devices, systems and methods for connecting sensors to PCBs in the distal end or tip of a scope are needed. As will be seen, the disclosure provides such devices, systems and methods for connecting sensors to PCBs in the distal end or tip of a scope in an effective and elegant manner.


The features and advantages of the disclosure will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by the practice of the disclosure without undue experimentation. The features and advantages of the disclosure may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive implementations of the disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified. Advantages of the disclosure will become better understood with regard to the following description and accompanying drawings where:



FIGS. 1A-1G illustrate various embodiments of an endoscopic system in accordance with the principles and teachings of the disclosure;



FIGS. 2A-2D illustrate front, side cross-sectional, rear, and bottom cross-sectional views, respectively, of an endoscopic device in accordance with the principles and teachings of the disclosure;



FIGS. 3A-3D illustrate front, side cross-sectional, rear, and bottom cross-sectional views, respectively, of a card edge connector device in accordance with the principles and teachings of the disclosure;



FIGS. 4A-4C illustrate front, side cross-sectional and bottom cross-sectional views, respectively, of a card edge connector device with a sensor loaded therein in accordance with the principles and teachings of the disclosure;



FIGS. 5A-5C illustrate front, side cross-sectional, and bottom cross-sectional views, respectively, of a card edge connector device with a sensor loaded therein with wire bonds connecting the sensor to electrical connectors, such as pins or pads, of the connector in accordance with the principles and teachings of the disclosure;



FIGS. 6A-6C illustrate a front perspective view of a card edge connector device, a rear perspective view of the card edge connector device, and a front perspective view of the card edge connector device with a sensor loaded therein, respectively, in accordance with the principles and teachings of the disclosure;



FIGS. 7A-7C illustrate front, side cross-sectional and bottom cross-sectional views, respectively, of a card edge connector device with a sensor loaded proud of a plane of the connector in accordance with the principles and teachings of the disclosure;



FIGS. 8A-8B illustrate perspective views of a card edge connector device for use with a backside illuminated sensor loaded proud of a plane of the connector in accordance with the principles and teachings of the disclosure;



FIGS. 9A-9C illustrate front, side cross-sectional and bottom cross-sectional views, respectively, of a card edge connector device with a sensor loaded proud of a plane of the connector in accordance with the principles and teachings of the disclosure; and



FIGS. 10A and 10B illustrate a front view and a side cross-sectional view, respectively, of a conventional, prior art packaged imaging sensor device.





DETAILED DESCRIPTION

The disclosure extends to devices, systems and methods for connecting one or more sensors to one or more printed circuit boards (PCB) in the distal end or tip of a scope where lateral space may be limited. The disclosure also extends to a card edge connector for an image sensor for protecting the sensor and conveying information from the sensor to the PCB, wherein the image sensor may be connected at one end of the card edge connector and the PCB may be connected at the opposite end of the card edge connector. The disclosure also extends to a card edge connector for an image sensor for protecting the sensor and conveying information from the sensor to the PCB, wherein the image sensor may be connected at one end of the card edge connector and the PCB may be connected at the opposite end of the card edge connector in a vertical and substantially perpendicular orientation with respect to the printed circuit board. A portion of a PCB may comprise traces leading to the edge of the board that are intended to plug into a matching card edge connector socket. The card edge connector may only require a female connector where the male connector may be formed out of the edge of the PCB.


In the following description of the disclosure, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific implementations in which the disclosure may be practiced. It is understood that other implementations may be utilized and structural changes may be made without departing from the scope of the disclosure.


In describing and claiming the subject matter of the disclosure, the following terminology will be used in accordance with the definitions set out below.


It must be noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


As used herein, the terms “comprising,” “including,” “containing,” “characterized by,” and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps.


As used herein, the term “proximal” shall refer broadly to the concept of a portion nearest an origin.


As used herein, the term “distal” shall generally refer to the opposite of proximal, and thus to the concept of a portion farther from an origin, or a furthest portion, depending upon the context.


Referring now to FIG. 1, there is illustrated various embodiments of an endoscopic system 100. It will be appreciated that the system 100 may comprise many different configurations. One example is shown in FIG. 1A, which illustrates an endoscopic system 100 comprising a rigid angled scope 102, an optical coupler 104, a handpiece 106, an image sensor 108, which may be located within the handpiece 106 or distally at a tip of the endoscope 102 as illustrated in dashed lines, an electronic cable 110, a light cable 112, such as a fiber optic cable, a light source 114, a control unit 116, such as a camera control unit (CCU), a video cable 118 and a display 120.


The system configuration shown in FIG. 1B illustrates an endoscopic system 100 comprising a rigid angled scope 102, an optical coupler 104, a handpiece 106, an image sensor 108, which may be located within the handpiece 106 or distally at a tip of the endoscope 102 as illustrated in dashed lines, an electronic cable 110, a light cable 112, such as a fiber optic cable, a control unit 116, such as a camera control unit (CCU), with an integrated light source 114, a video cable 118, and a display 120.


The system configuration shown in FIG. 1C illustrates an endoscopic system 100 comprising an articulating scope 102, an optical coupler 104, a handpiece 106, an image sensor 108, which may be located within the handpiece 106 or distally at a tip of the endoscope 102 as illustrated in dashed lines, an electronic cable 110, a light cable 112, such as a fiber optic cable, a light source 114, a control unit 116, such as a camera control unit (CCU), a video cable 118 and a display 120.


The system configuration shown in FIG. 1D illustrates an endoscopic system 100 comprising a handpiece 106 with an integrated rigid 0 degree scope 102, an image sensor 108, which may be located within the handpiece 106 or distally at a tip of the scope 102 as illustrated in dashed lines, a combined electronic and light cable 110, a control unit 116, such as a camera control unit (CCU) with an integrated light source 114, a video cable 118 and a display 120.


The system configuration shown in FIG. 1E illustrates an endoscopic system 100 comprising a handpiece 106 with an integrated rigid angled scope 102 and rotation post 105, an image sensor 108, which may be located within the handpiece 106 or distally at a tip of the scope 102 as illustrated in dashed lines, a combined electronic and light cable 110, a control unit 116, such as a camera control unit (CCU) with an integrated light source 114, a video cable 118 and a display 120.


The system configuration shown in FIG. 1F illustrates an endoscopic system 100 comprising a handpiece 106 with an integrated articulating scope 102, an image sensor 108, which may be located within the handpiece 106 or distally at a tip of the scope 102 as illustrated in dashed lines, a combined electronic and light cable 110, a control unit 116, such as a camera control unit (CCU) with an integrated light source 114, a video cable 118 and a display 120.


The system configuration shown in FIG. 1G illustrates an endoscopic system 100 comprising a handpiece 106 with an integrated flexible scope 102, an image sensor 108, which may be located within the handpiece 106 or distally at a tip of the scope 102 as illustrated in dashed lines, a combined electronic and light cable 110, a control unit 116, such as a camera control unit (CCU) with an integrated light source 114, a video cable 118 and a display 120.


It will be appreciated that any of the above-identified configurations for an endoscopic system shown in FIGS. 1A-1G, any combination of the above elements in a different configuration, and any other configuration used for Minimally Invasive Surgery, are intended to fall within the scope of this disclosure.


In an implementation of the system 100 for providing an image in a light deficient environment, the system may comprise a surgical scope, which itself may comprise a tubular member having a proximal portion and a distal portion. The system 100 may further comprise a light source, a camera control unit (CCU), and a display. As described more fully herein below, the surgical scope may comprise a connector assembly that may be located at the distal portion of the tubular member and may have a first end, a second end, and a plurality of electrical connectors. The connector assembly may also receive therein a printed circuit board and an image sensor. In such an implementation, the image sensor may be connected to the connector assembly at the first end of and the printed circuit board may be connected to the connector assembly at the second end, such that the connector assembly attaches the image sensor at the distal portion of the tubular member and electrically connects the image sensor to the printed circuit board via the plurality of electrical connectors, thereby providing electrical communication between the image sensor and the printed circuit board.


Referring now to FIGS. 2A-2D, an endoscopic device 200 is illustrated. The endoscopic device 200 may comprise a tubular member, such as an outer scope tube 202, a lens assembly 204, a connector or card edge connector 206, an image sensor 208, a card edge PCBA 210, and a plurality of wires and/or a wire harness and/or other communication components 212. It will be appreciated that the connector 206 may sometimes be referred to herein as a connector assembly 206 because a connector may comprise sub-components that when assembled form a complete connector.


The endoscopic device is illustrated in FIGS. 2A-2D with the imaging sensor 208 located at a distal portion 203, or at a tip, of the outer scope tube 202. It will be appreciated that the endoscopic device 200 may comprise: an outer scope tube 202, a lens assembly 204 complete with various optical elements that may be used in conventional endoscopic devices, which are not shown for purposes of clarity, a card edge connector 206 for housing or securing an image sensor 208 at a first end, which may be a distal end or distal portion 206a of the connector 206 as illustrated, connecting to a card edge PCBA 210 at a second or proximal end 206b, and wires and/or a wire harness and/or other communication components 212 to convey a signal from the card edge PCBA 210 to the image processor (not illustrated), which may be located remotely with respect to the image sensor, for example, in the handpiece of an imaging device or camera, or in the camera control unit (CCU), or further up the length of a lumen.


The image sensor 208 may include an image sensor silicon die, a pixel array 209, and a plurality of sensor pads for electrically communicating with corresponding electrical connectors, such as pins or pads. The image sensor 208 may include a plurality of bonds 221, such as wire bonds, which connect the plurality of sensor pads 220 to a corresponding plurality of electrical connectors 222, such as pins or pads, which may be part of the connector 206.


It will be appreciated that the card edge connector 206 may be used as a package to house the sensor 208. Additionally, it should be understood that structures of the card edge connector 206 may aid in the manufacture and transport of the sensor as part of sensor packaging. One purpose for the card edge connector or package 206 is to simplify the process of connecting the imaging sensor 208 to the wiring harness 212. The card edge connector or package 206 may facilitate sensor connection to a wiring harness 212.


It will be appreciated that FIGS. 2A-2D illustrate the PCBA 210 being connected to the connector assembly 206 at the second end 206b of the connector assembly 206. Conversely, the image sensor 208 is illustrated as being connected to the connector assembly 206 at the first end 206a, such that the connector assembly 206 attaches the image sensor 208 at the distal portion 203 of the tubular member 202 and electrically connects the image sensor 208 to the PCBA 210 via the plurality of electrical connectors 222, thereby providing electrical communication between the image sensor 208 and the PCBA 210. It will be appreciated by those skilled in the art that the connector assembly 206 may be used in conjunction with any elongated configuration in addition to a generally tubular configuration and such elongated configurations are intended to fall within the scope of this disclosure.


The connector assembly 206 may operate to attach the image sensor 208 within the distal portion 203 of the tubular member 202 in a vertical and substantially perpendicular orientation (as illustrated best in FIG. 2D) with respect to the PCBA 210. In an implementation, the PCBA 210 may be attached perpendicularly out of the center of and with respect to the image sensor 208. In an implementation, the PCBA 210 may be attached perpendicularly off of an edge of and with respect to the image sensor 208. As illustrated, the image sensor 208 may be located substantially beneath a plane (illustrated by dashed line P in FIG. 2D) of the electrical connectors 222 at the first end 206a of the connector assembly 206, such that the plane of the electrical connectors 222 at the first end 206a of the connector assembly 206 is located substantially above the image sensor 208. In this configuration, the pixel array 209 of the image sensor 208 is located beneath the plane (illustrated by dashed line P in FIG. 2D) of the electrical connectors 222 at the first end 206a of the connector assembly 206.


Referring now to FIGS. 3A-3D, the figures illustrate a front, side cross-sectional, rear, and bottom cross-sectional views, respectively, of the card edge connector device 206 in accordance with the principles and teachings of the disclosure. The card edge connector 206 of FIGS. 3A-3D is illustrated without the scope or endoscopic device, including the outer scope tube 202, for purposes of clarity and simplicity in discussing the details of the connector 206.


It will be appreciated that the card edge connector 206 may be configured, dimensioned and built to help minimize the overall size of the package, for example, in the x-dimension (width) and the y-dimension (height). Accordingly, one end 206a of the connector 206, which may be a first end or at the distal end or distal portion, may be optimized for placement of the sensor 208 in order to protect the wire-bonds that may connect the sensor 208 to the plurality of electrical connectors 222, such as pins or pads, of the connector 206, and to provide overall protection of the sensor 208.


To facilitate the above, the card edge connector 206 may comprise a cavity or recess 230 for receiving therein the sensor 208 and silicon die. The other end 206b, which may be a second end or a proximal end, of the connector 206 may be optimized to accept the edge card PCBA 210 (illustrated best in FIGS. 2B and 2D). At this end 206b, a first slot, socket or receptacle 232 (as illustrated best in FIGS. 3B-3D) may be provided to accept or receive therein the edge card PCBA 210. It will be appreciated that the PCBA 210 may be held in the first slot, socket or receptacle 232 via a bias force. The plurality of electrical connectors 222 may extend into the first slot, socket or receptacle 232, such that when the PCBA 210 is located within the first slot 232 the electrical connectors 222 of the connector assembly 206 may be in electrical communication with corresponding electrical connectors on the PCBA 210. The connector 206 may further comprise a vertical slot or channel 250 for receiving fiber optic cable strands therein.



FIGS. 4A-4C illustrate a front, side cross-sectional, and bottom cross-sectional views, respectively, of the card edge connector device 206 with a sensor 208 loaded therein in accordance with the principles and teachings of the disclosure. It will be appreciated that the sensor 208 may be loaded in the cavity 230 as discussed above in connection with FIGS. 3A-3D. It will be appreciated that the imaging sensor 208 and silicon die may be attached or otherwise connected to the connector 206 using any mechanical mechanism and/or an adhesive or other bond. For example, the imaging sensor 208 may comprise a plurality of sensor pads or electrical connectors 220 that may be bonded or otherwise connected to the electrical connectors 222 of the card edge connector 206 with a plurality of bonds 221, such as wire bonds.


In the configuration illustrated in FIGS. 4A-4C, the pixel array 209 of the image sensor 208 is located on the same plane or substantially the same plane (illustrated by dashed line P in FIG. 4C) as the electrical connectors 222 at the first end 206a of the connector assembly 206.


In an implementation of the disclosure illustrated best in FIGS. 7A-7C, adhesive may be used to attach the sensor 208 to the connector 206. The adhesive may be electrically conductive adhesive, and may be, for example, gold or silver filled adhesive or other metallic filled adhesive. The adhesive may be placed in controlled locations of the connector 206 to electrically connect the silicon die to a specific pin of the connector 206, such as the ground pin. As illustrated best in FIG. 7C, the controlled location may be an individual cavity or other receptacle 224 to receive the electrically conductive adhesive therein. As illustrated in 7C, a ground pin 222a is shown as being electrically connected to the sensor pad 220 by a wire bond 221 to the ground pin 222a. In other words, the ground pin 222a may be electrically connected to the silicon die of the sensor by an electrically conductive adhesive to provide an improved electrical ground path for the sensor. As illustrated, the wire bond 221 may be run on the outside of the sensor to the one or more electrical connectors 222, such as pins. It will be appreciated that the attachment of the electrically conductive adhesive to the ground pin 222a may reduce the amount of noise in the sensor 208 and may increase signal integrity as compared to a sensor attached to a ground pin without any epoxy or electrically conductive adhesive.



FIGS. 5A-5C illustrate front, side cross-sectional, and bottom cross-sectional views, respectively, of the card edge connector device 206 with a sensor 208 loaded therein with wire bonds 221 connecting the sensor 208 to electrical connectors 222, such as pins or pads, of the connector 206 in accordance with the principles and teachings of the disclosure. As illustrated best in FIG. 5B, the connector 206 may comprise the cavity 230 that may be defined by a sidewall 209. In various implementations, the sidewall 209 may comprise a height, such that the sidewall 209 extends above and beyond the sensor 208. In various implementations, the connector assembly 206 may comprise the cavity 230 or a partial cavity that may comprise a sidewall 209 and that is located at the first end 206a of the connector 206. It will be appreciated that the image sensor 208 may be located within the cavity 230 or partial cavity, such that the sidewall 209 surrounds at least a portion of the image sensor 208, thereby protecting the image sensor 208 and electrical connectors 221, 222 from damage. In an implementation, the image sensor 208 may be completely surrounded by the sidewall 209. In an implementation, the image sensor 208 may be partially surrounded by the sidewall 209. In an implementation, the image sensor 208 may not be surrounded by the sidewall 209, but may instead sit proud of and with respect to the connector 206.


In the configuration illustrated in FIGS. 5A-5C, the pixel array 209 of the image sensor 208 is located on the same plane or substantially the same plane (illustrated by dashed line P in FIG. 5C) as the electrical connectors 222 at the first end 206a of the connector assembly 206.



FIGS. 6A-6C illustrate a front, three-dimensional view of the card edge connector device 206, a rear, three-dimensional view of the card edge connector device 206, and a front, three-dimensional view of the card edge connector device 206 with a sensor 208 loaded therein, respectively, in accordance with the principles and teachings of the disclosure. The three images illustrated in FIGS. 6A-6C, illustrate the concept disclosed herein for the card edge connector 206. In an implementation, the housing of the connector 206 may comprise 3.5 mm housing outer diameter. In an implementation, the connector 206 may comprise six contacts or electrical connectors 222. In an implementation, the connector 206 may comprise a fine pitch (e.g., about 0.5 mm to about 0.6 mm) In an implementation, the connector 206 may comprise a first end or distal end 206a comprising the cavity or recess 230 to hold and receive the sensor die therein. In an implementation, the connector 206 may comprise a second end or proximal end 206b comprising a socket or receptacle 232 to accept or receive a micro edge card or PCBA therein. In an implementation, the PCBA may comprise a rigid PCB and features to connect a wire harness as is known in the art. In an implementation, the PCBA may comprise a flat flexible PCB.



FIGS. 7A-7C illustrate front, side cross-sectional and bottom cross-sectional views, respectively, of a card edge connector device 206 with a sensor 208 loaded proud of a plane of the connector in accordance with the principles and teachings of the disclosure. The figures illustrate an implementation in which the sensor 208 may sit proud above the plane (represented by dashed line P) of the electrical connectors 222, such as pins or pads, at the first end 206a of the connector assembly 206 as illustrated best in FIG. 7C. In this configuration, the pixel array 209 of the image sensor 208 is located above a plane (represented by dashed line P) of the electrical connectors 222 at the first end 206a of the connector assembly 206. This configuration may allow the electrical connectors 222, such as pins or pads, of the connector assembly 206 to sit under the sensor 208 rather than being positioned on either side of the sensor 208 as in other implementations disclosed herein. This configuration may enable a smaller overall housing diameter and an overall smaller housing package or assembly for use with tubular members having small diameters, such as an endoscope having a diameter of 5 mm or less.


In an implementation of the disclosure illustrated best in FIGS. 7A-7C, adhesive may be placed in controlled locations of the connector 206 to electrically connect the silicon die of the image sensor 208 to a specific pin of the connector 206, such as the ground pin. As illustrated best in FIG. 7C, the controlled location may be an individual cavity or other receptacle 224 to receive the electrically conductive adhesive therein. As illustrated in 7C, a ground pin 222a is shown as being electrically connected to the sensor pad 220 by a wire bond 221 to the ground pin 222a. In other words, the ground pin 222a may be electrically connected to the silicon die of the sensor by an electrically conductive adhesive to provide an improved electrical ground path for the sensor. As illustrated, the wire bond 221 may be run on the outside of the sensor to the one or more electrical connectors 222, such as pins. This configuration allows for an overall smaller housing for use with tubular members having small diameters, such as an endoscope having a diameter of 5 mm or less. It will be appreciated that the attachment of the electrically conductive adhesive to the ground pin 222a may reduce the amount of noise in the sensor 208 and may increase signal integrity as compared to a sensor attached to a ground pin without any epoxy or electrically conductive adhesive.



FIGS. 8A-8B illustrate perspective views of a card edge connector device 206 for use with a backside illuminated sensor 208 loaded proud of a plane P of the connector 206 in accordance with the principles and teachings of the disclosure. In this implementation, the pixel array 209 of the image sensor 208 is located above a plane of the electrical connectors 222 at the first end 206a of the connector assembly 206. The figures illustrate an implementation in which the sensor 208 is constructed using a backside illumination (BSI) manufacturing process resulting in the sensor pads 220 being located on the opposite side of the silicon die as the pixel array 209. As shown, this BSI sensor may be used with the card edge connector 206 disclosed herein. The pads 220 of BSI sensor 208 may be bonded directly to the electrical connectors 222, such as pins or pads, of the card edge connector 206 without the need for wire bonds. Referring specifically to FIG. 8A, pad 220b may be bonded directly to the electrical connector 222b without the need for wire bonds. Such direct bonding may occur with respect to all sensor pads 220 and all electrical connectors 222. It will be appreciated that the pads 220 that may be located on the underside of the sensor 208 may be soldered onto the electrical connectors 222 of the connector assembly 206.



FIGS. 9A-9C illustrate front, side cross-sectional and bottom cross-sectional views, respectively, of a card edge connector device 206 with a sensor 208 loaded proud of a plane (represented by dashed line P) at the first end 206a of the connector assembly 206 in accordance with the principles and teachings of the disclosure. In this implementation, the pixel array 209 of the image sensor 208 is located above a plane (represented by dashed line P) of the electrical connectors 222 at the first end 206a of the connector assembly 206.


The figures illustrate an implementation in which the sensor 208 is constructed using a backside illumination (BSI) manufacturing process resulting in the sensor pads 220 being located on the opposite side of the silicon die as the pixel array 209. As can be seen in FIGS. 9A-9C, which implement the details of FIGS. 8A-8B, this configuration may allow the card edge connector 206 diameter to shrink with respect to the size of the sensor 208 resulting in a more efficient use of the limited space available in a tubular member having a sensor located distally therein, while still retaining the benefits of the connector assembly 206. This efficiency gain can be used to put a larger sensor in a specific scope diameter, or to shrink the scope diameter around a specific sensor size, either of which may result in improved clinical efficiency.


It will be appreciated that the disclosure illustrates in FIGS. 1A-6C and describes herein novel devices, systems and methods for packaging a silicon imaging sensor die that: (1) protects the sensor 208 and wire bonds 221 from damage; and/or (2) minimizes the footprint of the final card edge connector 206 assembly; and/or (3) enables simple mechanical connection to a PCBA with an attached wire harness that carries data to a remote or off-site image processing hardware. The above characteristics may be important for applications in which space is minimal, such as in an endoscopic application with the image sensor located distally within a tip of the scope or any other application in which physical space is limited.



FIGS. 10A and 10B illustrate a top view and a cross-sectional view, respectively, of a conventional, prior art packaged imaging sensor device. It will be appreciated that the connector 206 of the disclosure provides significant advantages over a conventional package for an image sensor. A common method of packaging silicon die comprising an imaging sensor is illustrated. It will be appreciated that the ceramic package has a glass lid to protect the die and the wire bonds as illustrated. Conventional packages are optimized to keep height of the image sensor to a minimum, but the footprint of the image sensor is very large in comparison to the footprint of the image sensor disclosed herein. Due to the mechanical constraints of being located within a tip or distal end of an endoscope or other application where space is constrained, a large footprint is unworkable or undesirable. Conventional packages for an image sensor are optimized for a surface-mount solder process to attach the PCBA, which has local image processing hardware and circuitry (e.g., image processing hardware and circuitry on the same PCBA as the image sensor), but such a configuration may be difficult to connect to a wire harness.


It will be appreciated that the teachings and principles of the disclosure may be used in a reusable device platform, a limited use device platform, a re-posable use device platform, or a single-use/disposable device platform without departing from the scope of the disclosure. It will be appreciated that in a re-usable device platform an end-user is responsible for cleaning and sterilization of the device. In a limited use device platform the device can be used for some specified amount of times before becoming inoperable. Typical new device is delivered sterile with additional uses requiring the end-user to clean and sterilize before additional uses. In a re-posable use device platform a third-party may reprocess the device (e.g., cleans, packages and sterilizes) a single-use device for additional uses at a lower cost than a new unit. In a single-use/disposable device platform a device is provided sterile to the operating room and used only once before being disposed of.


In the foregoing Detailed Description of the Disclosure, various features of the disclosure may have been grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, inventive aspects lie in less than all features of a single foregoing disclosed embodiment.


It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the disclosure. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the disclosure and the appended claims are intended to cover such modifications and arrangements.


Thus, while the disclosure has been shown in the drawings and described above with particularity and detail, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.


Further, where appropriate, functions described herein can be performed in one or more of: hardware, software, firmware, digital components, or analog components. For example, one or more application specific integrated circuits (ASICs) can be programmed to carry out one or more of the systems and procedures described herein. Certain terms are used throughout the following description and Claims to refer to particular system components. As one skilled in the art will appreciate, components may be referred to by different names. This document does not intend to distinguish between components that differ in name, but not function.

Claims
  • 1. A surgical scope for providing an image in a light deficient environment comprising: a handpiece;a tubular member proximate to the handpiece, the tubular member comprising a proximal portion and a distal portion;a printed circuit board;an image sensor; anda card edge connector assembly that is located at the distal portion of and within the tubular member and comprising a first end that receives the image sensor, a second end having a recess for receiving the printed circuit board, and a plurality of electrical connectors between the first end and the second end for electrically connecting the printed circuit board to the image sensor;wherein the image sensor is connected to the card edge connector assembly at the first end of said card edge connector assembly, andwherein the printed circuit board is connected to the card edge connector assembly at the second end of said card edge connector assembly, such that the card edge connector assembly electrically connects the image sensor to the printed circuit board via the plurality of electrical connectors, thereby providing electrical communication between the image sensor and the printed circuit board.
  • 2. The surgical scope of claim 1, wherein the card edge connector assembly attaches the image sensor within the tubular member in a vertical and substantially perpendicular orientation with respect to the printed circuit board.
  • 3. The surgical scope of claim 2, wherein the printed circuit board is attached perpendicularly out of the center of and with respect to the image sensor.
  • 4. The surgical scope of claim 2, wherein the printed circuit board is attached perpendicularly off of an edge of and with respect to the image sensor.
  • 5. The surgical scope of claim 1, wherein the image sensor comprises a plurality of electrical pads that are electrically attached to the plurality of electrical connectors via wire bonds.
  • 6. The surgical scope of claim 1, wherein the image sensor is electrically attached to one of the plurality of electrical connectors via an electrically conductive adhesive.
  • 7. The surgical scope of claim 6, wherein the image sensor is electrically attached to the plurality of electrical connectors via wire bonds; wherein the image sensor comprises a silicon die; and wherein the electrically conductive adhesive is placed in controlled locations of the card edge connector assembly to electrically connect a backside of the silicon die to a ground in the card edge connector assembly.
  • 8. The surgical scope of claim 1, wherein the image sensor is backside illuminated and comprises a plurality of electrical pads that are soldered to the plurality of electrical connectors of the card edge connector assembly to thereby electrically attach the image sensor to the card edge connector assembly.
  • 9. The surgical scope of claim 1, wherein the image sensor is located above a plane of the electrical connectors at the first end of the card edge connector assembly, such that the electrical connectors are located underneath the image sensor.
  • 10. The surgical scope of claim 1, wherein the card edge connector assembly comprises a cavity comprising a sidewall at the first end, wherein the image sensor is located within the cavity such that the sidewall of said cavity surrounds at least a portion of the image sensor, thereby protecting the image sensor and electrical connectors.
  • 11. The surgical scope of claim 10, wherein the image sensor comprises a pixel array that is located above a plane of the electrical connectors at the first end of the card edge connector assembly.
  • 12. The surgical scope of claim 10, wherein the image sensor comprises a pixel array that is located on the same plane as the electrical connectors at the first end of the card edge connector assembly.
  • 13. The surgical scope of claim 10, wherein the image sensor comprises a pixel array that is located beneath a plane of the electrical connectors at the first end of the card edge connector assembly.
  • 14. The surgical scope of claim 1, wherein the second end of the card edge connector assembly comprises a slot for receiving the printed circuit board therein; and wherein the printed circuit board is held in the slot via a bias force.
  • 15. The surgical scope of claim 14, wherein the plurality of electrical connectors extend into the slot, such that when the printed circuit board is located within the slot the electrical connectors of the card edge connector assembly are in electrical communication with corresponding electrical connectors on the printed circuit board.
  • 16. A system for providing an image in a light deficient environment, the system comprising: a surgical scope comprising a handpiece and a tubular member proximate to the handpiece, the tubular member comprising a proximal portion and a distal portion;a light source;a camera control unit; anda display;wherein the surgical scope further comprises: a printed circuit board;an image sensor; anda card edge connector assembly that is located at the distal portion of and within the tubular member and comprising a first end that receives the image sensor, a second end having a recess for receiving the printed circuit board, and a plurality of electrical connectors between the first end and the second end for electrically connecting the printed circuit board to the image sensor;wherein the image sensor is connected to the card edge connector assembly at the second end of said card edge connector assembly, andwherein the printed circuit board is connected to the card edge connector assembly at the first end of said card edge connector assembly, such that the card edge connector assembly electrically connects the image sensor to the printed circuit board via the plurality of electrical connectors, thereby providing electrical communication between the image sensor and the printed circuit board.
  • 17. The system of claim 16, wherein the card edge connector assembly attaches the image sensor within the tubular member in a vertical and substantially perpendicular orientation with respect to the printed circuit board.
  • 18. The system of claim 17, wherein the printed circuit board is attached perpendicularly out of the center of and with respect to the image sensor.
  • 19. The system of claim 17, wherein the printed circuit board is attached perpendicularly off of an edge of and with respect to the image sensor.
  • 20. The system of claim 16, wherein the image sensor comprises a plurality of electrical pads that are electrically attached to the plurality of electrical connectors via wire bonds.
  • 21. The system of claim 16, wherein the image sensor is electrically attached to one of the plurality of electrical connectors via an electrically conductive adhesive.
  • 22. The system of claim 21, wherein the image sensor is electrically attached to the plurality of electrical connectors via wire bonds; wherein the image sensor comprises a silicon die; and wherein the electrically conductive adhesive is placed in controlled locations of the card edge connector assembly to electrically connect a backside of the silicon die to a ground in the card edge connector assembly.
  • 23. The system of claim 16, wherein the image sensor is backside illuminated and comprises a plurality of electrical pads that are soldered to the plurality of electrical connectors of the card edge connector assembly to thereby electrically attach the image sensor to the card edge connector assembly.
  • 24. The system of claim 16, wherein the image sensor is located above a plane of the electrical connectors at the first end of the card edge connector assembly, such that the electrical connectors are located underneath the image sensor.
  • 25. The system of claim 16, wherein the card edge connector assembly comprises a cavity comprising a sidewall at the first end, wherein the image sensor is located within the cavity such that the sidewall of said cavity surrounds at least a portion of the image sensor, thereby protecting the image sensor and electrical connectors.
  • 26. The system of claim 25, wherein the image sensor comprises a pixel array that is located above a plane of the electrical connectors at the first end of the card edge connector assembly.
  • 27. The system of claim 25, wherein the image sensor comprises a pixel array that is located on the same plane as the electrical connectors at the first end of the card edge connector assembly.
  • 28. The system of claim 25, wherein the image sensor comprises a pixel array that is located beneath a plane of the electrical connectors at the first end of the card edge connector assembly.
  • 29. The system of claim 16, wherein the second end of the card edge connector assembly comprises a slot for receiving the printed circuit board therein; and wherein the printed circuit board is held in the slot via a bias force.
  • 30. The system of claim 29, wherein the plurality of electrical connectors extend into the slot, such that when the printed circuit board is located within the slot the electrical connectors of the card edge connector assembly are in electrical communication with corresponding electrical connectors on the printed circuit board.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/140,125, filed Sep. 24, 2018, which is a continuation of U.S. application Ser. No. 14/666,210, filed Mar. 23, 2015 (now U.S. Pat. No. 10,084,944, issued Sep. 25, 2018) and claims the benefit of U.S. Provisional Application No. 61/968,959, filed Mar. 21, 2014, which are incorporated herein by reference in their entirety, including but not limited to those portions that specifically appear hereinafter, the incorporation by reference being made with the following exception: In the event that any portion of the above-referenced applications are inconsistent with this application, this application supersedes said above-referenced applications.

US Referenced Citations (518)
Number Name Date Kind
3666885 Hemsley et al. May 1972 A
4011403 Epstein et al. Mar 1977 A
4356534 Hattori Oct 1982 A
4363963 Ando Dec 1982 A
4433675 Konoshima Feb 1984 A
4436095 Kruger Mar 1984 A
4473839 Noda Sep 1984 A
4644403 Sakai et al. Feb 1987 A
4651226 Motoor et al. Mar 1987 A
4692606 Sakai et al. Sep 1987 A
4740837 Yanagisawa et al. Apr 1988 A
4741327 Yabe May 1988 A
4742388 Cooper et al. May 1988 A
4745471 Takamura et al. May 1988 A
4773396 Okazaki Sep 1988 A
4780762 Nagasaki Oct 1988 A
4782386 Ams et al. Nov 1988 A
4786965 Yabe Nov 1988 A
4832003 Yabe May 1989 A
4845555 Yabe et al. Jul 1989 A
4853772 Kikuchi Aug 1989 A
4853773 Hibino et al. Aug 1989 A
4865018 Kanno et al. Sep 1989 A
4866526 Ams et al. Sep 1989 A
4884133 Kanno et al. Nov 1989 A
4884134 Tsuji et al. Nov 1989 A
4908701 Udagawa Mar 1990 A
4918521 Yabe et al. Apr 1990 A
4924856 Noguchi May 1990 A
4938205 Nudelman Jul 1990 A
4942473 Zeevi et al. Jul 1990 A
4947246 Kikuchi Aug 1990 A
4953539 Nakamura et al. Sep 1990 A
4959710 Uehara et al. Sep 1990 A
4963960 Takami Oct 1990 A
5001556 Nakamura et al. Mar 1991 A
5016975 Sasaki et al. May 1991 A
5021888 Kondou et al. Jun 1991 A
5047846 Uchiyama et al. Sep 1991 A
RE33854 Adair Mar 1992 E
5103497 Hicks Apr 1992 A
5111804 Funakoshi May 1992 A
5133035 Hicks Jul 1992 A
5187572 Nakamura et al. Feb 1993 A
5188094 Adair Feb 1993 A
5196938 Blessinger Mar 1993 A
5200838 Nudelman et al. Apr 1993 A
5220198 Tsuji Jun 1993 A
5228430 Sakamoto Jul 1993 A
5233416 Inoue Aug 1993 A
5241170 Field, Jr. et al. Aug 1993 A
5255087 Nakamura et al. Oct 1993 A
5264925 Shipp et al. Nov 1993 A
5313306 Kuban et al. May 1994 A
5325847 Matsuno Jul 1994 A
5365268 Minami Nov 1994 A
5402768 Adair Apr 1995 A
5408268 Shipp Apr 1995 A
5411020 Ito May 1995 A
5427087 Ito et al. Jun 1995 A
5454366 Ito et al. Oct 1995 A
5494483 Adair Feb 1996 A
5523786 Parulski Jun 1996 A
5550595 Hannah Aug 1996 A
5558841 Nakagawa et al. Sep 1996 A
5594497 Ahem et al. Jan 1997 A
5658238 Suzuki et al. Aug 1997 A
5627584 Borchardt et al. Sep 1997 A
5665959 Fossum et al. Sep 1997 A
5704836 Norton et al. Jan 1998 A
5730702 Tanaka et al. Mar 1998 A
5734418 Danna Mar 1998 A
5748234 Lippincott May 1998 A
5749830 Kaneko et al. May 1998 A
5754313 Pelchy et al. May 1998 A
5783909 Hochstein Jul 1998 A
5784099 Lippincott Jul 1998 A
5857963 Pelchy et al. Jan 1999 A
5887049 Fossum Mar 1999 A
5924978 Koeda et al. Jul 1999 A
5929901 Adair et al. Jul 1999 A
5949483 Fossum et al. Sep 1999 A
5957834 Mochida Sep 1999 A
5986693 Adair et al. Nov 1999 A
5995136 Hattori et al. Nov 1999 A
6023315 Harrold et al. Feb 2000 A
6038067 George Mar 2000 A
6043839 Adair et al. Mar 2000 A
6139489 Wampler et al. Oct 2000 A
6141505 Miyata et al. Oct 2000 A
6142930 Ito et al. Nov 2000 A
6166768 Fossum et al. Dec 2000 A
6184922 Saito et al. Feb 2001 B1
6184940 Sano Feb 2001 B1
6215517 Takahashi et al. Mar 2001 B1
6222175 Krymski Apr 2001 B1
6239456 Berezin et al. May 2001 B1
6272269 Naum Aug 2001 B1
6275255 Adair et al. Aug 2001 B1
6292220 Ogawa et al. Sep 2001 B1
6294775 Seibel et al. Sep 2001 B1
6310642 Adair et al. Oct 2001 B1
6320331 Iida et al. Nov 2001 B1
6331156 Haefele et al. Dec 2001 B1
6389205 Muckner et al. May 2002 B1
6416463 Tsuzuki et al. Jul 2002 B1
6429953 Feng Aug 2002 B1
6444970 Barbato Sep 2002 B1
6445022 Barna et al. Sep 2002 B1
6445139 Marshall et al. Sep 2002 B1
6464633 Hosoda et al. Oct 2002 B1
6466618 Messing et al. Oct 2002 B1
6485414 Neuberger Nov 2002 B1
6512280 Chen et al. Jan 2003 B2
6567115 Miyashita et al. May 2003 B1
6627474 Barna et al. Sep 2003 B2
6631230 Campbell Oct 2003 B1
6659940 Adler Dec 2003 B2
6665013 Fossum et al. Dec 2003 B1
6677992 Matsumoto et al. Jan 2004 B1
6687534 Tsujita Feb 2004 B2
6690466 Miller et al. Feb 2004 B2
6692431 Kazakevich Feb 2004 B2
6707499 Kung et al. Mar 2004 B1
6772181 Fu et al. Aug 2004 B1
6773392 Kikuchi et al. Aug 2004 B2
6791739 Ramanujan et al. Sep 2004 B2
6796939 Hirata et al. Sep 2004 B1
6799065 Niemeyer Sep 2004 B1
6809358 Hsieh et al. Oct 2004 B2
6836288 Lewis Dec 2004 B1
6838653 Campbell et al. Jan 2005 B2
6841947 Berg-Johansen Jan 2005 B2
6847399 Ang Jan 2005 B1
6856712 Fauver et al. Feb 2005 B2
6873363 Barna et al. Mar 2005 B1
6879340 Chevallier Apr 2005 B1
6899675 Cline et al. May 2005 B2
6900829 Orzawa et al. May 2005 B1
6906745 Fossum et al. Jun 2005 B1
6921920 Kazakevich Jul 2005 B2
6933974 Lee Aug 2005 B2
6947090 Komoro et al. Sep 2005 B2
6961461 MacKinnon et al. Nov 2005 B2
6970195 Bidermann et al. Nov 2005 B1
6977733 Denk et al. Dec 2005 B2
6982740 Adair et al. Jan 2006 B2
6998594 Gaines et al. Feb 2006 B2
6999118 Suzuki Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7009648 Lauxtermann et al. Mar 2006 B2
7030904 Mair et al. Apr 2006 B2
7037259 Hakamata et al. May 2006 B2
7068878 Crossman-Bosworth et al. Jun 2006 B2
7071979 Ohtani et al. Jul 2006 B1
7079178 Hynecek Jul 2006 B2
7102682 Baer Sep 2006 B2
7105371 Fossum et al. Sep 2006 B2
7106377 Bean et al. Sep 2006 B2
7119839 Mansoorian Oct 2006 B1
7151568 Kawachi et al. Dec 2006 B2
7159782 Johnston et al. Jan 2007 B2
7184084 Glenn Feb 2007 B2
7189226 Auld et al. Mar 2007 B2
7189961 Johnston et al. Mar 2007 B2
7194129 Reinhart Mar 2007 B1
7208983 Imaizumi et al. Apr 2007 B2
7252236 Johnston et al. Aug 2007 B2
7258663 Doguchi et al. Aug 2007 B2
7261687 Yang Aug 2007 B2
7280139 Pahr et al. Oct 2007 B2
7298938 Johnston Nov 2007 B2
7312879 Johnston Dec 2007 B2
7319478 Dolt et al. Jan 2008 B2
7355155 Wang Apr 2008 B2
7356198 Chauville et al. Apr 2008 B2
7365768 Ono et al. Apr 2008 B1
7369140 King et al. May 2008 B1
7369176 Sonnenschein et al. May 2008 B2
7385708 Ackerman et al. Jun 2008 B2
7455638 Ogawa et al. Nov 2008 B2
7470229 Ogawa et al. Dec 2008 B2
7476197 Wiklof et al. Jan 2009 B2
7532760 Kaplinsky et al. May 2009 B2
7540645 Choi May 2009 B2
7544163 MacKinnon et al. Jun 2009 B2
7545434 Bean et al. Jun 2009 B2
7564935 Suzuki Jul 2009 B2
7567291 Bechtel et al. Jul 2009 B2
7573516 Krymski et al. Aug 2009 B2
7573519 Phan et al. Aug 2009 B2
7583872 Seibel et al. Sep 2009 B2
7608807 Hick et al. Oct 2009 B2
7616238 Avni et al. Nov 2009 B2
7630008 Sarwari Dec 2009 B2
7744528 Wallace et al. Jun 2010 B2
7760258 Huang et al. Jul 2010 B2
7783133 Dunki-Jacobs et al. Aug 2010 B2
7784697 Johnston et al. Aug 2010 B2
7791009 Johnston et al. Sep 2010 B2
7792378 Liege et al. Sep 2010 B2
7794394 Frangioni Sep 2010 B2
7796870 Wang Sep 2010 B2
7813538 Carroll et al. Oct 2010 B2
7901974 Venezia et al. Mar 2011 B2
7914447 Kanai Mar 2011 B2
7916193 Fossum Mar 2011 B2
7935050 Luanava et al. May 2011 B2
7944566 Xie May 2011 B2
7952096 Rhodes May 2011 B2
7969097 Van De Ven Jun 2011 B2
7995123 Lee et al. Aug 2011 B2
8018589 MacKinnon et al. Sep 2011 B2
8040394 Fossum et al. Oct 2011 B2
8054339 Fossum et al. Nov 2011 B2
8059174 Mann et al. Nov 2011 B2
8100826 MacKinnon et al. Jan 2012 B2
8159584 Iwabuchi et al. Apr 2012 B2
8193542 Maehara Jun 2012 B2
8194061 Wang et al. Jun 2012 B2
8212884 Seibel et al. Jul 2012 B2
8213698 Wang Jul 2012 B2
8231522 Endo et al. Jul 2012 B2
8300111 Iwane Oct 2012 B2
8372003 St. George et al. Feb 2013 B2
8382662 Soper et al. Feb 2013 B2
8396535 Wang et al. Mar 2013 B2
8423110 Barbato et al. Apr 2013 B2
8471938 Altice, Jr. et al. Jun 2013 B2
8476575 Mokhuatyuk Jul 2013 B2
8482823 Cheng Jul 2013 B2
8493474 Richardson Jul 2013 B2
8493564 Brukilacchio et al. Jul 2013 B2
8523367 Ogura Sep 2013 B2
8537203 Seibel et al. Sep 2013 B2
8559743 Liege et al. Oct 2013 B2
8582011 Dosluoglu Nov 2013 B2
8602971 Farr Dec 2013 B2
8605177 Rossi et al. Dec 2013 B2
8610808 Prescher et al. Dec 2013 B2
8614754 Fossum Dec 2013 B2
8625016 Fossum et al. Jan 2014 B2
8638847 Wang Jan 2014 B2
8648287 Fossum Feb 2014 B1
8649848 Crane et al. Feb 2014 B2
8668339 Kabuki et al. Mar 2014 B2
8675125 Cossairt et al. Mar 2014 B2
8698887 Makino et al. Apr 2014 B2
8836834 Hashimoto et al. Sep 2014 B2
8848063 Jo et al. Sep 2014 B2
8858425 Farr et al. Oct 2014 B2
8885034 Adair et al. Nov 2014 B2
8941308 Briggs Jan 2015 B2
9182337 Kamee et al. Nov 2015 B2
9349764 Lee et al. May 2016 B1
9509917 Blanquart et al. Nov 2016 B2
9516239 Blanquart et al. Dec 2016 B2
9634878 Bench et al. Apr 2017 B1
9762879 Blanquart et al. Sep 2017 B2
9777913 Talbert et al. Oct 2017 B2
10084944 Henley et al. Sep 2018 B2
10251530 Henley et al. Apr 2019 B2
10277875 Blanquart et al. Apr 2019 B2
10568496 Blanquart et al. Feb 2020 B2
10785461 Blanquart et al. Sep 2020 B2
10911649 Henley et al. Feb 2021 B2
20010016064 Tsuruoka et al. Aug 2001 A1
20010017649 Yaron Aug 2001 A1
20010030744 Chang Oct 2001 A1
20010055462 Seibel Dec 2001 A1
20020045801 Niida et al. Apr 2002 A1
20020054219 Jaspers May 2002 A1
20020064341 Fauver et al. May 2002 A1
20020080248 Adair et al. Jun 2002 A1
20020080359 Denk et al. Jun 2002 A1
20020140844 Kurokawa et al. Oct 2002 A1
20020158976 Vni et al. Oct 2002 A1
20020158986 Baer Oct 2002 A1
20030007087 Hakamata et al. Jan 2003 A1
20030007686 Roever Jan 2003 A1
20030107664 Suzuki Jun 2003 A1
20030112507 Divelbiss et al. Jun 2003 A1
20030189663 Dolt et al. Oct 2003 A1
20030189705 Pardo Oct 2003 A1
20040082833 Adler et al. Apr 2004 A1
20040170712 Sadek El Mogy Sep 2004 A1
20040215059 Homan et al. Oct 2004 A1
20050009982 Inagaki et al. Jan 2005 A1
20050010081 Doguchi et al. Jan 2005 A1
20050027164 Barbato et al. Feb 2005 A1
20050038322 Banik Feb 2005 A1
20050041571 Ichihara et al. Feb 2005 A1
20050052680 Okamura Mar 2005 A1
20050113641 Bala May 2005 A1
20050122530 Denk et al. Jun 2005 A1
20050151866 Ando et al. Jul 2005 A1
20050169375 Pai et al. Aug 2005 A1
20050200291 Naugler et al. Sep 2005 A1
20050234302 MacKinnon et al. Oct 2005 A1
20050237384 Jess et al. Oct 2005 A1
20050261552 Mori et al. Nov 2005 A1
20050267328 Blumzvig et al. Dec 2005 A1
20050267329 Konstorum et al. Dec 2005 A1
20050277808 Sonnenschein et al. Dec 2005 A1
20050288546 Sonnenschein et al. Dec 2005 A1
20060038823 Areas Feb 2006 A1
20060069314 Farr Mar 2006 A1
20060087841 Chern et al. Apr 2006 A1
20060106284 Shouji et al. May 2006 A1
20060197664 Zhang et al. Sep 2006 A1
20060202036 Wang et al. Sep 2006 A1
20060221250 Rossbach et al. Oct 2006 A1
20060226231 Johnston et al. Oct 2006 A1
20060264734 Kimoto et al. Nov 2006 A1
20060274335 Wittenstein Dec 2006 A1
20070010712 Negishi Jan 2007 A1
20070010713 Negishi Jan 2007 A1
20070029629 Yazdi Feb 2007 A1
20070041448 Miller et al. Feb 2007 A1
20070066868 Shikii Mar 2007 A1
20070083085 Birnkrant et al. Apr 2007 A1
20070092283 Sugihara Apr 2007 A1
20070129601 Johnston et al. Jun 2007 A1
20070147033 Ogawa et al. Jun 2007 A1
20070182723 Imai et al. Aug 2007 A1
20070182842 Sonnenschein et al. Aug 2007 A1
20070225560 Avni et al. Sep 2007 A1
20070244364 Luanava et al. Oct 2007 A1
20070244365 Wiklof Oct 2007 A1
20070274649 Takahashi et al. Nov 2007 A1
20070276187 Wiklof et al. Nov 2007 A1
20070279486 Bayer et al. Dec 2007 A1
20070285526 Mann et al. Dec 2007 A1
20070293720 Bayer Dec 2007 A1
20080045800 Farr Feb 2008 A2
20080049132 Suzuki Feb 2008 A1
20080088719 Jacob et al. Apr 2008 A1
20080107333 Mazinani et al. May 2008 A1
20080136953 Barnea et al. Jun 2008 A1
20080158348 Karpen et al. Jul 2008 A1
20080164550 Chen et al. Jul 2008 A1
20080165360 Johnston Jul 2008 A1
20080167523 Uchiyama et al. Jul 2008 A1
20080192131 Kim et al. Aug 2008 A1
20080208077 Iddan et al. Aug 2008 A1
20080218598 Harada et al. Sep 2008 A1
20080218615 Huang et al. Sep 2008 A1
20080218824 Johnston et al. Sep 2008 A1
20080249369 Seibel et al. Oct 2008 A1
20080287742 St. George et al. Nov 2008 A1
20090012361 MacKinnon et al. Jan 2009 A1
20090012368 Banik Jan 2009 A1
20090021588 Border et al. Jan 2009 A1
20090021618 Schwarz et al. Jan 2009 A1
20090024000 Chen Jan 2009 A1
20090028465 Pan Jan 2009 A1
20090074265 Huang et al. Mar 2009 A1
20090091645 Trimeche et al. Apr 2009 A1
20090137893 Seibel et al. May 2009 A1
20090147077 Tani et al. Jun 2009 A1
20090154886 Lewis et al. Jun 2009 A1
20090160976 Chen et al. Jun 2009 A1
20090189530 Ashdown et al. Jul 2009 A1
20090208143 Yoon et al. Aug 2009 A1
20090227847 Tepper et al. Sep 2009 A1
20090232213 Jia Sep 2009 A1
20090259102 Koninckx et al. Oct 2009 A1
20090268063 Ellis-Monaghan et al. Oct 2009 A1
20090274380 Wedi Nov 2009 A1
20090292168 Farr Nov 2009 A1
20090309500 Reisch Dec 2009 A1
20090316116 Melville et al. Dec 2009 A1
20090322912 Blanquart Dec 2009 A1
20100004513 MacKinnon et al. Jan 2010 A1
20100026722 Kondo Feb 2010 A1
20100049180 Wells et al. Feb 2010 A1
20100069713 Endo et al. Mar 2010 A1
20100102199 Negley et al. Apr 2010 A1
20100121142 OuYang et al. May 2010 A1
20100121143 Sugimoto et al. May 2010 A1
20100123775 Shibasaki May 2010 A1
20100134608 Shibasaki Jun 2010 A1
20100134662 Bub Jun 2010 A1
20100135398 Wittmann et al. Jun 2010 A1
20100137684 Shibasaki et al. Jun 2010 A1
20100149421 Lin et al. Jun 2010 A1
20100157037 Iketani et al. Jun 2010 A1
20100157039 Sugai Jun 2010 A1
20100165087 Corso et al. Jul 2010 A1
20100171429 Garcia et al. Jul 2010 A1
20100182446 Matsubayashi Jul 2010 A1
20100198009 Farr et al. Aug 2010 A1
20100198134 Eckhouse et al. Aug 2010 A1
20100201797 Shizukuishi et al. Aug 2010 A1
20100208056 Olsson et al. Aug 2010 A1
20100228089 Hoffman et al. Sep 2010 A1
20100261961 Scott et al. Oct 2010 A1
20100274082 Iguchi et al. Oct 2010 A1
20100274090 Ozaki et al. Oct 2010 A1
20100305406 Braun et al. Dec 2010 A1
20100309333 Smith et al. Dec 2010 A1
20110028790 Farr et al. Feb 2011 A1
20110034769 Adair et al. Feb 2011 A1
20110051390 Lin et al. Mar 2011 A1
20110063483 Rossi et al. Mar 2011 A1
20110122301 Yamura et al. May 2011 A1
20110149358 Cheng Jun 2011 A1
20110181709 Wright et al. Jul 2011 A1
20110181840 Cobb Jul 2011 A1
20110184239 Wright et al. Jul 2011 A1
20110184243 Wright et al. Jul 2011 A1
20110208004 Feingold et al. Aug 2011 A1
20110212649 Stokoe et al. Sep 2011 A1
20110237882 Saito Sep 2011 A1
20110237884 Saito Sep 2011 A1
20110245605 Jacobsen et al. Oct 2011 A1
20110245616 Kobayashi Oct 2011 A1
20110255844 Wu et al. Oct 2011 A1
20110274175 Sumitomo Nov 2011 A1
20110279679 Samuel et al. Nov 2011 A1
20110288374 Hadani et al. Nov 2011 A1
20110291564 Huang Dec 2011 A1
20110292258 Adler et al. Dec 2011 A1
20110295061 Haramaty et al. Dec 2011 A1
20120004508 McDowall et al. Jan 2012 A1
20120014563 Bendall Jan 2012 A1
20120016200 Seto et al. Jan 2012 A1
20120029279 Kucklick Feb 2012 A1
20120033118 Lee et al. Feb 2012 A1
20120041267 Benning et al. Feb 2012 A1
20120041534 Clerc et al. Feb 2012 A1
20120050592 Oguma Mar 2012 A1
20120078052 Cheng Mar 2012 A1
20120098933 Robinson et al. Apr 2012 A1
20120104230 Eismann May 2012 A1
20120113506 Gmitro et al. May 2012 A1
20120120282 Goris May 2012 A1
20120140302 Xie et al. Jun 2012 A1
20120155761 Matsuoka Jun 2012 A1
20120157774 Kaku Jun 2012 A1
20120172665 Allyn Jul 2012 A1
20120194686 Liu et al. Aug 2012 A1
20120197080 Murayama Aug 2012 A1
20120200685 Kawasaki et al. Aug 2012 A1
20120209071 Bayer et al. Aug 2012 A1
20120242975 Min et al. Sep 2012 A1
20120262621 Sato et al. Oct 2012 A1
20120281111 Jo et al. Nov 2012 A1
20120296238 Chernov et al. Nov 2012 A1
20120319586 Riesebosch Dec 2012 A1
20120327270 Shirakawa et al. Dec 2012 A1
20130016200 Ovod Jan 2013 A1
20130018256 Kislev et al. Jan 2013 A1
20130035545 Ono Feb 2013 A1
20130053642 Mizuyoshi et al. Feb 2013 A1
20130070071 Peltie et al. Mar 2013 A1
20130126708 Blanquart May 2013 A1
20130127934 Chiang May 2013 A1
20130135589 Curtis et al. May 2013 A1
20130144120 Yamazaki Jun 2013 A1
20130155215 Shimada et al. Jun 2013 A1
20130155305 Shintani Jun 2013 A1
20130158346 Soper et al. Jun 2013 A1
20130184524 Shimada et al. Jul 2013 A1
20130211217 Yamaguchi et al. Aug 2013 A1
20130242069 Kobayashi Sep 2013 A1
20130244453 Sakamoto Sep 2013 A1
20130274597 Byrne et al. Oct 2013 A1
20130289347 Ito et al. Oct 2013 A1
20130292571 Mukherjee et al. Nov 2013 A1
20130296651 Ito et al. Nov 2013 A1
20130296652 Farr Nov 2013 A1
20130300837 DiCarlo et al. Nov 2013 A1
20130342690 Williams et al. Dec 2013 A1
20140012078 Coussa Jan 2014 A1
20140022365 Koshino Jan 2014 A1
20140031623 Kagaya Jan 2014 A1
20140005532 Choi et al. Feb 2014 A1
20140052004 D'Alfonso et al. Feb 2014 A1
20140066711 Farin et al. Mar 2014 A1
20140073852 Banik et al. Mar 2014 A1
20140073853 Swisher et al. Mar 2014 A1
20140078278 Lei Mar 2014 A1
20140088363 Sakai et al. Mar 2014 A1
20140094649 Ito Apr 2014 A1
20140104466 Fossum Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140142383 Blumenzweig et al. May 2014 A1
20140160318 Blanquart et al. Jun 2014 A1
20140163319 Blanquart et al. Jun 2014 A1
20140198249 Tanaka et al. Jul 2014 A1
20140203084 Wang Jul 2014 A1
20140225215 Chien et al. Aug 2014 A1
20140267655 Richardson et al. Sep 2014 A1
20140267851 Rhoads Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140268860 Talbert et al. Sep 2014 A1
20140275764 Shen et al. Sep 2014 A1
20140288365 Henley et al. Sep 2014 A1
20140300698 Wany Oct 2014 A1
20140316197 St. George et al. Oct 2014 A1
20140316199 Kucklick Oct 2014 A1
20140354788 Vano Dec 2014 A1
20140364689 Adair et al. Dec 2014 A1
20150023611 Salvador et al. Jan 2015 A1
20150237245 Renard et al. Aug 2015 A1
20150271370 Henley et al. Sep 2015 A1
20160072989 Kennedy, II Mar 2016 A1
20160183775 Blanquart et al. Jun 2016 A1
20170085853 Blanquart et al. Mar 2017 A1
20170230574 Richardson et al. Aug 2017 A1
20190028621 Henley et al. Jan 2019 A1
20190133416 Henley et al. May 2019 A1
20190174058 Richardson et al. Jun 2019 A1
20190197712 Talbert et al. Jun 2019 A1
20190200906 Shelton, IV et al. Jul 2019 A1
20190253685 Blanquart et al. Aug 2019 A1
20200292160 Talbert et al. Sep 2020 A1
Foreign Referenced Citations (66)
Number Date Country
1520696 Aug 2004 CN
101079966 Nov 2007 CN
201239130 May 2009 CN
101449575 Jun 2009 CN
101634749 Jan 2010 CN
101755448 Jun 2010 CN
102469932 May 2012 CN
103185960 Jul 2013 CN
0660616 Jun 1995 EP
0904725 Mar 1999 EP
1079255 Feb 2001 EP
1116473 Jul 2001 EP
1637062 Mar 2006 EP
1712177 Oct 2006 EP
1819151 Aug 2007 EP
2478693 Mar 2011 EP
2359739 Aug 2011 EP
2371268 Aug 2011 EP
3459431 Mar 2019 EP
236893 Aug 2020 IL
H04-039789 Apr 1992 JP
H07240931 Sep 1995 JP
09-061200 Mar 1997 JP
2000-051150 Feb 2000 JP
2000-199863 Jul 2000 JP
2000-270230 Sep 2000 JP
2001-190489 Jul 2001 JP
2001-308531 Nov 2001 JP
2002-020816 Jan 2002 JP
2002-028125 Jan 2002 JP
2002-045329 Feb 2002 JP
2002-112961 Apr 2002 JP
2005-204741 Aug 2005 JP
2007-029746 Feb 2007 JP
2007-143963 Jun 2007 JP
2007-240931 Sep 2007 JP
2008514304 May 2008 JP
2008-153313 Jul 2008 JP
2008-264539 Nov 2008 JP
2008-295929 Dec 2008 JP
2009-537283 Oct 2009 JP
2010-017377 Jan 2010 JP
2010-068992 Apr 2010 JP
2010-125284 Jun 2010 JP
2010-158415 Jul 2010 JP
2011-055327 Mar 2011 JP
2011514605 May 2011 JP
2012-000160 Jan 2012 JP
2012-024450 Feb 2012 JP
2013-027432 Feb 2013 JP
2011-267098 Jun 2013 JP
2013119091 Jun 2013 JP
2014514782 Jun 2014 JP
5682812 Jan 2015 JP
2015525642 Sep 2015 JP
5804488 Dec 2020 JP
2015001195 Jan 2016 MX
346174 Mar 2017 MX
1996005693 Feb 1996 WO
2006037034 Apr 2006 WO
2009018613 Feb 2009 WO
2009045235 Apr 2009 WO
2009115885 Sep 2009 WO
2009120228 Oct 2009 WO
2012043771 Apr 2012 WO
2012137845 Oct 2012 WO
Non-Patent Literature Citations (2)
Entry
Blumenfeld, et al. Three-dimensional image registration of MR proximal femur images for the analysis of trabecular bone parameters. Oct. 2008. [retrieved on Jul. 30, 2014] Retrieved from the internet: <URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673590/>.
Jack, Keith “Video Demystified: A Handbook for the Digitial Engineer” 2007, Fifth Edition, p. 21.
Related Publications (1)
Number Date Country
20210160407 A1 May 2021 US
Provisional Applications (1)
Number Date Country
61968959 Mar 2014 US
Continuations (2)
Number Date Country
Parent 16140125 Sep 2018 US
Child 17164625 US
Parent 14666210 Mar 2015 US
Child 16140125 US