The subject matter herein relates generally to card edge connector systems.
Card edge connector systems are known that include the circuit cards configured to be mated with the card edge connectors. However, known card edge connector systems fail to meet environmental and mechanical requirements for certain applications, such as military and aerospace applications, where the components are subjected to harsh environments. For example, some applications may subject the components to vibration during use. Vibration causes wear on the contacts and may lead to unintentional loss of contact. Additionally, the circuit card may cause damage to the card edge connector, such as the contacts of the card edge connector, when the circuit card moves relative to the card edge connector. As connector components are made smaller for certain applications, size constraints make electrical connection between the contacts and the circuit card difficult to achieve.
A need remains for a rugged card edge connector system.
In one embodiment, a card edge connector is provided including a housing having a mounting end configured to be mounted to a host circuit board and a mating end having a card slot configured to receive a circuit card. The housing has an upper wall above the card slot and a lower wall below the card slot. The upper wall has upper contact channels and the lower wall has lower contact channels. Upper contacts are received in the upper contact channels and lower contacts are received in the lower contact channels. The upper contacts include corresponding mounting ends and mating ends with the mounting ends extending from the housing for mounting to the host circuit board and the mating ends having a first mating interface and a second mating interface remote from the first mating interface. The first and second mating interfaces of the upper contacts define first and second points of contact with the same contact pad on an upper surface of the circuit card. The lower contacts include corresponding mounting ends and mating ends with the mounting ends extending from the housing for mounting to the host circuit board and the mating ends having a first mating interface and a second mating interface remote from the first mating interface. The first and second mating interfaces of the lower contacts define first and second points of contact with the same contact pad on a lower surface of the circuit card.
In another embodiment, a card edge connector system is provided including a circuit card having a mating end including a mating edge between an upper surface and a lower surface and having upper contact pads on the upper surface and lower contact pads on the lower surface. The card edge connector system includes a card edge connector configured to be mounted to a host circuit board. The card edge connector includes a housing having a card slot receiving the circuit card. The housing holds upper contacts and lower contacts configured to be terminated to the host circuit board. The upper contacts have mating ends mated with corresponding upper contact pads having a first mating interface and a second mating interface remote from the first mating interface defining first and second points of contact with the same upper contact pad. The lower contacts have mating ends mated with corresponding lower contact pads having a first mating interface and a second mating interface remote from the first mating interface defining first and second points of contact with the same lower contact pad. The circuit card is received in the card slot of the housing in a loading direction angled non-parallel to the host circuit board to a loaded position. The circuit card is rotated in a mating direction within the card slot toward the host circuit board to a mated position. The circuit card is held in the card slot in the mated position with the circuit card extending from the housing parallel to the host circuit board.
In a further embodiment, a card edge connector system includes a circuit card having a mating end including a mating edge between an upper surface and a lower surface having upper contact pads on the upper surface and lower contact pads on the lower surface and having a fastener opening extending therethrough. The card edge connector system includes a card edge connector configured to be mounted to a host circuit board. The card edge connector includes a housing having a card slot receiving the circuit card and having a fastener opening proximate to the card slot. The housing holds upper contacts and lower contacts configured to be terminated to the host circuit board. The upper contacts have mating ends mated with corresponding upper contact pads having a first mating interface and a second mating interface remote from the first mating interface defining first and second points of contact with the same upper contact pad. The lower contacts have mating ends mated with corresponding lower contact pads having a first mating interface and a second mating interface remote from the first mating interface defining first and second points of contact with the same lower contact pad. The circuit card is secured to the housing of the card edge connector using a fastener received in the fastener openings in the circuit card and the housing to fix the circuit card to the housing.
The card edge connector 102 includes a housing 110 having a mounting end 112 mounted to the host circuit board 104 and a mating end 114 having a card slot 116 that receives the circuit card 106. In the illustrated embodiment, the mounting end 112 is provided at a bottom 118 of the housing 110. The housing 110 includes a top 120 opposite the bottom 118. In the illustrated embodiment, the mating end 114 is provided at a front 122 of the housing 110. The housing 110 includes a rear 124 opposite the front 122. In an exemplary embodiment, the housing 110 extends between a first side 126 and a second side 128. In the illustrated embodiment, the fastener 108 is approximately centered between the first and second sides 126, 128. However, in alternative embodiments, the card edge connector system 100 may include a plurality of fasteners 108, such as proximate to the first and second sides 126, 128.
Optionally, the card edge connector system 100 may include standoffs 134 on the host circuit board 104. The standoffs 134 may support the circuit card 106 in the mated position. The standoffs 134 hold the circuit card 106 elevated above the host circuit board 104 such that a space is formed between the circuit card 106 and the host circuit board 104. Other components may occupy the space. For example, electrical components mounted to the host circuit board 104 or the bottom side of the circuit card 106 may be positioned in the space between the circuit card 106 and the host circuit board 104. Loading of the circuit card 106 into the housing 110 at the angled loading direction 130 ensures that the components do not interfere with loading the circuit card 106 into the card edge connector 102.
In an exemplary embodiment, the card edge connector 102 includes mounting tabs 154 used for mounting the housing 110 to the host circuit board 104. The mounting tabs 154 may be received in the bottom 118 of the housing 110 proximate to the first and second sides 126, 128. The mounting tabs 154 may be held in the housing 110 by an interference fit. The mounting tabs 154 have mounting legs 156 configured to be mounted to the host circuit board 104. For example, the mounting legs 156 may be solder legs configured to be soldered to the host circuit board 104. The mounting legs 156 may extend into the vias in the host circuit board 104 or may be surface mounted to the host circuit board 104.
The housing 110 includes an upper wall 160 above the card slot 116 and a lower wall 162 below the card slot 116. The upper contacts 150 may extend along the upper wall 160 and the lower contacts 152 may extend along the lower wall 162. In an exemplary embodiment, the upper wall 160 includes upper contact channels 164 (shown in
In an exemplary embodiment, the housing 110 includes a mid-wall 170 between first and second side walls at the first and second sides 126, 128, respectively. The sidewalls 172, 174 are provided at opposite sides of the card slot 116. The mid-wall 170 divides the card slot 116 into card slot portions. A first set of upper and lower contacts 150, 152 may be provided between the mid-wall 170 and the first side wall 172 and a second set of upper and lower contacts 150, 152 may be provided between the mid-wall 170 and the second side wall 174. In an exemplary embodiment, the mid-wall 170 is used to locate the circuit card 106 in the card slot 116. For example, the circuit card 106 may engage one or more sides of the mid-wall 170 to locate the circuit card 106 in the card slot 116. Optionally, the front edge of the mid-wall 170 may be chamfered to help guide loading of the circuit card 106 into the card slot 116.
Optionally, the housing 110 includes a fastener opening 176 that receive the fastener 108. The fastener opening 176 may be threaded. Optionally, the fastener opening 176 may be aligned with the mid-wall 170. Other locations are possible in alternative embodiments, such as at the first side wall 172 and/or the second side wall 174.
The upper contact 150 includes a mounting end 210 and a mating end 212 opposite the mounting end 210. The mounting end 210 is configured to be mounted to the host circuit board 104. The mating end 212 is configured to be mated with the circuit card 106. The upper contact 150 includes a base 214 between the mounting end 210 and the mating end 212. In the illustrated embodiment, the base 214 extends generally vertically; however, the base 214 may extend in other directions in alternative embodiments. The base 214 includes a mounting post 216 used to secure the upper contact 150 to the housing 110. In the illustrated embodiment, the mounting post 216 is forward facing.
In the illustrated embodiment, the mounting end 210 includes a solder tail 218 configured to be soldered to the host circuit board 104. In the illustrated embodiment, the solder tail 218 extends horizontally from the base 214. The solder tail 218 is provided at the bottom of the upper contact 150. Other types of mounting ends 210 may be provided in alternative embodiments, such as a compliant pin configured to be press-fit into the host circuit board 104.
The mating end 212 is cantilevered from the base 214 and extends forward of the base 214. For example, the mating end 212 extends from the base 214 at a corner 220. The mating end 212 includes a support arm 222 and the spring arm 224 extending from the support arm 222. The support arm 222 is provided at the top of the upper contact 150. In an exemplary embodiment, the spring arm 224 is folded under the support arm 222 at a front bend 226. The support arm 222 may extend generally horizontally and the spring arm 224 may extend generally horizontally below the support arm 222; however, the spring arm 224 may be angled nonparallel relative to the support arm 222. The spring arm 224 is deflectable relative to the support arm 222, such as at the front bend 226. The support arm 222 is deflectable relative to the base 214, such as at the corner 220.
In an exemplary embodiment, the upper contact 150 includes a first mating interface 230 and a second mating interface 232 remote from the first mating interface 230. The first and second mating interfaces 230, 232 define first and second points of contact configured to engage the same contact pad on the upper surface of the circuit card 106. In the illustrated embodiment, the first mating interface 230 is provided proximate to the front of the spring arm 224 and the second mating interface 232 is provided proximate to the rear of the spring arm 224. For example, the first mating interface 230 may be defined by a front bulge 234 and the second mating interface 232 may be defined by a rear bulge 236 along the spring arm 224. A shallow 238 may be defined between the front and rear bulges 234, 236. The bulges 234, 236 are located vertically lower than the shallow 238 to define the first and second points of contact with the circuit card 106. The spring arm 224 is deflectable and may be deflected when engaging the circuit card 106.
In an exemplary embodiment, the upper contact 150 has a higher spring rate at the first mating interface 230 and a lower spring rate at the second mating interface 232. For example, the upper contact 150 may be stiffer at the first mating interface 230 and may be more flexible at the second mating interface 232. Having different spring rates ensures that both mating interfaces 230, 232 engage and are spring loaded against the circuit card 106 when mated thereto.
The lower contact 152 includes a mounting end 250 and a mating end 252 opposite the mounting end 250. The mounting end 250 is configured to be mounted to the host circuit board 104. The mating end 252 is configured to be mated with the circuit card 106. The lower contact 152 includes a base 254 between the mounting end 250 and the mating end 252. In the illustrated embodiment, the base 254 extends generally vertically; however, the base 254 may extend in other directions in alternative embodiments. The base 254 includes a mounting post 256 used to secure the lower contact 152 to the housing 110. In the illustrated embodiment, the mounting post 256 is rearward facing.
In the illustrated embodiment, the mounting end 250 includes a solder tail 258 configured to be soldered to the host circuit board 104. In the illustrated embodiment, the solder tail 258 extends horizontally from the base 254. The solder tail 258 is provided at the bottom of the lower contact 152. Optionally, the solder tail 258 may be coplanar with the solder tail 218. Other types of mounting ends 250 may be provided in alternative embodiments, such as a compliant pin configured to be press-fit into the host circuit board 104.
The mating end 252 is cantilevered from the base 254 and extends rearward of the base 254. For example, the mating end 252 extends from the base 254 at a corner 260. The mating end 252 includes a support arm 262 and the spring arm 264 extending from the support arm 262. The spring arm 264 is provided at the top of the lower contact 152. In an exemplary embodiment, the spring arm 264 is folded over the support arm 262 at a rear bend 266. The support arm 262 may extend generally horizontally and the spring arm 264 may extend generally horizontally above the support arm 262; however, the spring arm 264 may be angled nonparallel relative to the support arm 262. The spring arm 264 is deflectable relative to the support arm 262, such as at the rear bend 266. The support arm 262 is deflectable relative to the base 254, such as at the corner 260.
In an exemplary embodiment, the lower contact 152 includes a first mating interface 270 and a second mating interface 272 remote from the first mating interface 270. The first and second mating interfaces 270, 272 define first and second points of contact configured to engage the same contact pad on the lower surface of the circuit card 106. In the illustrated embodiment, the first mating interface 270 is provided proximate to the rear of the spring arm 264 and the second mating interface 272 is provided proximate to the front of the spring arm 264. For example, the first mating interface 270 may be defined by a front bulge 274 and the second mating interface 272 may be defined by a rear bulge 276 along the spring arm 264. A shallow 278 may be defined between the front and rear bulges 274, 276. The bulges 274, 276 are located vertically higher than the shallow 278 to define the first and second points of contact with the circuit card 106. The spring arm 264 is deflectable and may be deflected when engaging the circuit card 106.
In an exemplary embodiment, the lower contact 152 has a higher spring rate at the first mating interface 270 and a lower spring rate at the second mating interface 272. For example, the lower contact 152 may be stiffer at the first mating interface 270 and may be more flexible at the second mating interface 272. Having different spring rates ensures that both mating interfaces 270, 272 engage and are spring loaded against the circuit card 106 when mated thereto.
In an exemplary embodiment, the housing 110 includes guide pads 186 along with the lower wall 162. The guide pad 186 may form part of the lower guide surface 184. The guide pad 186 is configured to lift the circuit card 106 upward off of the lower wall 162 during loading of the circuit card 106 into the card slot 116. The guide pad 186 positions the circuit card 106 above the lower wall 162 to alleviate stress on the lower contacts 152. The guide pad 186 may prevent damage to the lower contacts 152 during loading. In the illustrated embodiment, the guide pad 186 is provided at the front of the card slot 116. The guide pad includes a lead-in surface 188 at a front of the guide pad 186. The lead-in surface 188 may be curved or raft to transition the circuit card 106 to the upper guide surface 182 along the top of the guide pad 186. If the circuit card 106 is being loaded into the card slot 116 to low, the circuit card 106 engages the lead-in surface 188 and the lifted upward on to the guide pad 186 and guided into the card slot 116. The guide pad 186 is provided forward of the spring arms 264 of the lower contacts 152 to lift the circuit card 106 over the spring arms 264 of the lower contacts 152. The guide pads 186 prevent damage to the lower contacts 152. For example, the guide pads 186 prevent the edge of the circuit card 106 from bottoming out against the distal ends of the spring arms 264 and thus prevent buckling or bending of the lower contacts 152. A rear end 190 of the guide pad 186 drops downward into the guide channel 180 to allow the circuit card 106 to lower into the lower contacts 152 for mating to the lower contacts 152.
Optionally, the housing 110 may include guide wings 192 extending forward from the front 122 of the housing 110. The guide wings 192 extend forward of the guide channel 180. The guide wings 192 have interior surfaces 194 that are configured to engage the circuit card 106 and align the circuit card 106 with the card slot 116. The guide wings 192 prevent loading of the circuit card 106 askew. The guide wings 192 ensure that the circuit card 106 is loaded straight into the card slot 116 and is not over rotated in either direction.
In an exemplary embodiment, the circuit card 106 includes an alignment slot 310 for aligning the circuit card 106 in the card slot 116. The alignment slot 310 is configured to receive the mid-wall 170 (shown in
In an exemplary embodiment, the lower contact channel 166 is oversized to allow space for the lower contact 152 to deflect when mated with the circuit card 106. For example, space is provided below the support arm 264 to allow the support arm 264 to deflect downward. Space is provided behind the rear band 266 to allow deflection of the mating end 252.
In an exemplary embodiment, the upper contact channel 164 is oversized to allow space for the upper contact 150 to deflect when mated with the circuit card 106. For example, space is provided above the support arm 224 to allow the support arm 224 to deflect upward.
During loading (
The guide pads 186 may define a portion of the lower guide surface 184. The guide pads 186 elevate the circuit card 106 off of the lower wall 162 to prevent damage to the lower contacts 152 during loading of the circuit card 106 into the card slot 116.
When the pockets 320, 322 are aligned with the guide pads 186 (
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.