This application claims the priority benefit of Taiwan application serial no. 94202428, filed on Feb. 5, 2005. All disclosure of the Taiwan application is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an electronic connector, and more particularly to a card edge connector.
2. Description of the Related Art
A card edge connector has been widely used in a personal computer or an electronic apparatus to form mechanical and electrical connections between electronic cards and motherboards. The above electronic card is a dual inline memory modules (DIMMs), for example. One of the functions of the card edge connector is to accommodate the electronic card so that conductive terminals in the card edge connector electrically connect with corresponding contact pads of the electronic card. Through the electrical connection of the conductive terminals and the motherboard, signals are transmitted between the electronic card and the motherboard. It should be noted that since the connection of the contact pads of the electronic card and the conductive terminals of the card edge connector are subject to disconnection due to vibration, the card edge connector should comprise the function of securing the electronic card in a fixed position. Therefore, a card edge connector generally comprises a pair of latch mechanisms to prevent the disconnection of the conductive terminals of the card edge connector and the contact pads of the electronic card due to vibration.
Generally, a conventional card edge connector comprises an insulating housing, a plurality of conductive terminals, and a pair of latches. The insulating housing comprises a slot and a pair of supporting beams. These conductive terminals are disposed in and through the insulating housing. The conductive terminals extend to the bottom of the insulating housing through the body of the insulating housing. The supporting beams extend outwardly from two ends of the insulating housing respectively and along a direction which is orthogonal to the longitudinal direction of the insulating housing. The latches are pivotally connected to the corresponding supporting beams respectively.
When the contact pads of the electronic card are inserted in the slot of the card edge connector, the conductive terminals of the electronic card contact and electrically connect with the contact pads respectively by the structure interference between the contact pads of the electronic card and the conductive terminals in the slot. Then, the latches firmly fasten the electronic card on the insulating housing of the card edge connector to prevent the disconnection of the contact pads and the conductive terminals caused by vibration. The latches also comprise ejecting portions. When each latch rotates around the corresponding pivot, the ejecting portions eject the electronic card from the slot so that removal of the electronic card becomes easier.
In order to maintain the electrical connection of the conductive terminals in the slot and the contact portions of the electronic card, when the contact pads of the electronic card are inserted in the slot of the card edge connector, the contact pads of the electronic card should hold the conductive terminals open and are inserted to the correct location in the slot by the interference-fit method. Since a metal protection layer, such as a gold layer, covers the contact pads, i.e., gold fingers, of the electronic card, the metal protection layer is worn because of friction between the conductive terminals and the contact pads due to frequent insertions and removals of the electronic card and the card edge connector. Meanwhile, since the contact pads of the electronic card should hold the conductive terminals open so as to be inserted into the correct location, an excessive force must be applied to the edge of the electronic card manually. Further, it may generate a pressure back to the user's fingertips.
Accordingly, the present invention is directed to a card edge connector. The card edge connector reduces the friction on the metal protection layer of the contact pad of the electronic card while the electronic card is inserted or removed.
Additionally, the present invention is directed to a card edge connector to reduce the force applied to the electronic card while the electronic card is inserted into the card edge connector.
According to the objects described above or other objects of the present invention, the present invention provides a card edge connector, which comprises a first insulating housing, a second insulating housing, a pair of latches, and a plurality of conductive terminals. The first insulting housing comprises a first elongated base and a pair of supporting beams. The supporting beams individually and vertically extend from two opposite ends of the first elongated base, and each of the supporting beams comprises a first sliding portion. The second insulating housing comprises a second elongated base and a pair of second sliding portions. The second elongated base comprises a slot extending along a longitudinal direction of the second elongated base, and a guiding block, which is disposed in the slot. The pair of the second sliding portions individually and vertically extends from two opposite ends of the second elongated base. Each of the second sliding portions connects with, and makes a relative sliding to the corresponding first sliding portion. Each of the paired latches individually pivotally connects with one of the supporting beams to latch the electronic card. The plurality of conductive terminals is disposed in and through the first elongated base. Each of the conductive terminals comprises a guiding portion and a contact portion. The guiding portion is adapted to be moved by the guiding block so as to move the contact portion. When the electronic card is inserted in the slot, and the second elongated base is far away from the first elongated base, the guiding portions moved by the guiding block move the contact portions so that the contact portions are not in contact with the electronic card. When the electronic card is inserted in the slot, and the second elongated base is close to the first elongated base, the guiding portions not moved by the guiding block move the contact portions so that the contact portions are in contact with the electronic card.
Accordingly, the first insulating housing and the second insulating housing slide relatively to each other. The guiding block leads the contact portions of the conductive terminals to be, or not be, in contact with the electronic card. Thus, during the procedure of electrically connecting the electronic card and the conductive terminals, compared with the conventional card edge connector, the card edge connector of the present invention reduces the friction caused while the electronic card is being inserted or removed from the card edge connector. Moreover, while the electronic card is inserted in the slot of the card edge connector, the user is not required to apply an excessive force to the edge of the electronic card. Thus, a pressure force feedback to the user's fingertips can be reduced.
The above and other features of the present invention will be better understood from the following detailed description of the preferred embodiments of the invention that is provided in communication with the accompanying drawings.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
While the conductive terminals 140 electrically connect with the electronic card 200, each of the latches 130 rotates around the corresponding pivot 134 along the direction L to latch the hole at the edge of the electronic card 200 to restrain the relative moving of the electronic card 200 to the card edge connector 100. In addition, in order to move the second elongated base 122 close to the first elongated base 112, i.e., move the second elongated base 122 to the second location, the latch 130 further comprises the pressing surface 136 shown in
After the electronic card 200 is inserted in the card edge connector 100, following are descriptions of removing the electronic card 200 from the card edge connector 100. Referring to
During the process that the second elongated base 122 moves away from the first elongated base 112 until reaching the preset distance d, i.e., the second elongated base 122 moves from the second location to the first location, the guiding portions 142 are moved by the guiding block 122b so as to move the contact portions 144. As a result, the contact portions 144 are drawn back to the original location where there is no structure interference between the contact portions 144 and the electronic card 200. While the latches 130 rotate around the pivots 134 and along the directions R respectively, the pushing surfaces 138 of the latches 130 push the bottom edge of the sliding blocks 124 to move the second elongated base 122 upward, and then the ejecting portions 132 of the latches 130 shown in
Referring to
Referring to
Although the present invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be constructed broadly to include other variants and embodiments of the invention that may be made by those skilled in the field of this art without departing from the scope and range of equivalents of the invention.
Number | Date | Country | Kind |
---|---|---|---|
94202428 | Feb 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4047782 | Yeager | Sep 1977 | A |
4468073 | Machcinski | Aug 1984 | A |
4695111 | Grabbe et al. | Sep 1987 | A |
4734047 | Krumme | Mar 1988 | A |
5037315 | Collier et al. | Aug 1991 | A |
5606594 | Register et al. | Feb 1997 | A |
5709562 | Kourimsky | Jan 1998 | A |
6887095 | Simon et al. | May 2005 | B1 |