The present invention relates to the field of playing card shufflers and particularly to the use of a gravity feed system for assisting entry of the cards into a transportation system or card moving system of a playing card shuffling system.
In the gaming industry, certain games require that batches of randomly shuffled cards be provided to players and sometimes to dealers in live card games. It is important that the cards are shuffled thoroughly and randomly to prevent players from having an advantage by knowing the position of specific cards or groups of cards in the final mass of cards delivered in the play of the game. At the same time, it is advantageous to have the deck(s) shuffled in a very short period of time so that there is minimal down time in the play of the game.
U.S. Pat. No. 5,944,310 describes a card handling apparatus comprising: a loading station for receiving cards to be shuffled; a chamber to receive a main stack of cards; delivery means for delivering individual cards from the loading station to the chamber; a dispensing station to dispense individual cards for a card game; transfer means for transferring a lowermost card from the main stack to the dispensing station; and a dispensing sensor for sensing one of the presence and absence of a card in the dispensing station. The dispensing sensor is coupled to the transfer means to cause a transfer of a card to the dispensing station Individual cards delivered from the loading station are randomly inserted by insertion means into different, randomly selected positions in the main stack to obtain a randomly shuffled main stack from which cards are individually dispensed. The insertion means includes vertically adjustable gripping means to separate the main stack into two spaced substacks to enable insertion of a card between the substacks by the insertion means. The gripping means is positionable vertically along the edges of the main stack. After gripping, the top portion of the stack is lifted, forming two sub-stacks. At this time, a gap is created between the stacks.
Similarly, U.S. Pat. No. 5,683,085 describes apparatus for shuffling or handling cards including a chamber in which a main stack of cards are supported, a loading station for holding a secondary stack of cards, and a card separating mechanism for separating cards at a series of positions along the main stack to allow the introduction of cards from the secondary stack into the main stack at those positions. The separating mechanism grips cards at the series of positions along the stack and lifts those cards at and above the separation mechanism to define spaces in the main stack for introduction of cards from the secondary stack.
U.S. Pat. No. 5,676,372 describes an automated playing card shuffler, comprising: a frame; an unshuffled stack holder for holding an unshuffled stack of playing cards; a shuffled stack receiver for holding a shuffled stack of playing cards; at least one ejector carriage mounted adjacent to the unshuffled stack holder, the at least one ejector carriage and the unshuffled stack holder mounted to provide relative movement between the unshuffled stack holder and the at least one ejector carriage; a plurality of ejectors mounted upon the at least one ejector carriage adjacent the unshuffled stack holder, for ejecting playing cards from the unshuffled stack, the ejecting occurring at various random positions along the unshuffled stack.
U.S. Pat. Nos. 6,139,014 and 6,068,258 describe a machine for shuffling multiple decks of playing cards in a batch process. The device includes a first vertically extending magazine for holding a stack of unshuffled playing cards, and second and third vertically extending magazines each for holding a stack of cards, the second and third magazines being horizontally spaced from and adjacent to the first magazine. A first card mover is positioned at the top of the first magazine for moving cards from the top of the stack of cards in the first magazine to the second and third magazines to cut the stack of unshuffled playing cards into two unshuffled stacks. Second and third card movers are at the top of the second and third magazines, respectively, for randomly moving cards from the top of the stack of cards in the second and third magazines, respectively, back to the first magazine, thereby interleaving the cards to form a vertically registered stack of shuffled cards in the first magazine. Elevators are provided in the magazines to bring the cards into contact with the card movers.
U.S. Pat. No. 6,019,368 describes a playing card shuffler having an unshuffled stack holder that holds an infeed array of playing cards. One or more ejectors are mounted adjacent the unshuffled stack holder to eject cards from the infeed array at various random positions. Multiple ejectors are preferably mounted on a movable carriage. Extractors are advantageously used to assist in removing playing cards from the infeed array. Removal resistors are used to provide counteracting forces resisting displacement of cards, to thereby provide more selective ejection of cards from the infeed array. The automated playing card shuffler comprises a frame; an unshuffled stack holder for holding an unshuffled array of playing cards in a stacked configuration with adjacent cards in physical contact with each other and forming an unshuffled stack; a shuffled array receiver for holding a shuffled array of playing cards; at least one ejector for ejecting playing cards located at different positions within the unshuffled stack; and a drive which is controllable to achieve a plurality of different relative positions between the unshuffled stack holder and the at least one ejector.
U.S. Pat. No. 6,149,154 describes an apparatus for moving playing cards from a first group of cards into plural groups, each plural group containing a random arrangement of cards, the apparatus comprising: a card receiver for receiving the first group of unshuffled cards; a single stack of card-receiving compartments generally adjacent to the card receiver, the stack generally adjacent to and movable with respect to the first group of cards; and a drive mechanism that moves the stack by means of translation relative to the first group of unshuffled cards; a card-moving mechanism between the card receiver and the stack; and a processing unit that controls the card-moving mechanism and the drive mechanism so that a selected quantity of cards is moved into a selected number of compartments.
U.S. Pat. No. 6,254,096 describes an apparatus for continuously shuffling playing cards, the apparatus comprising: a card receiver for receiving a first group of cards; a single stack of card-receiving compartments generally adjacent to the card receiver, the stack being generally vertically movable, wherein the compartments translate substantially vertically, and means for moving the stack; a card-moving mechanism between the card receiver and the stack; a processing unit that controls the card-moving mechanism and the means for moving the stack so that cards placed in the card receiver are moved into selected compartments; a second card receiver for receiving cards from the compartments; and a second card-moving mechanism between the compartments and the second card receiver for moving cards from the compartments to the second card receiver.
U.S. Pat. No. 6,267,248 describes an apparatus for arranging playing cards in a desired order, the apparatus including: a housing; a sensor to sense playing cards prior to arranging; a feeder for feeding the playing cards sequentially past the sensor; a storage assembly having a plurality of storage locations in which playing cards may be arranged in groups in a desired order, wherein the storage assembly is adapted for movement in at least two directions during shuffling; a selectively programmable computer coupled to the sensor and to the storage assembly to assemble in the storage assembly groups of playing cards in a desired order; a delivery mechanism for selectively delivering playing cards located in selected storage locations of the storage assembly; and a collector for collecting arranged groups of playing cards.
U.S. Pat. No. 4,586,712 describes a card shuffling apparatus that comprises an input apparatus, an output storage means and an interposed shuffling storage means. The cards are inserted via a narrow gap into the shuffling storage means. Sensors (photoelectric cells) check whether the respective compartments of the shuffling storage means are free for receiving cards, with the status of each compartment being stored in an electronic register.
EP 0 777 514 B1 describes a card shuffling apparatus that conveys the cards from an input apparatus to a shuffling storage means and from there to the output storage means. The introduction into the shuffling storage means occurs via guide elements that press the currently drawn card against draw-in rollers. Sensors detect whether cards are conveyed out of the input apparatus into the shuffling container and from there out again in order to enable the control of the respective motors for driving the draw-in rollers and the shuffling storage means.
U.S. Pat. No. 6,889,979 suggests that the teachings in the art of playing card shufflers relates to technical solutions for shuffling playing cards and that little emphasis is placed on a continual verification of the number of used playing cards situated in the card shuffler. That patent asserts that this disadvantage is avoided by providing a card shuffler that is capable of continuously displaying the number of playing cards situated in the card shuffler or in the shuffling storage means and, thus, giving the operator the opportunity to have certainty at all times about the complete number of playing cards. The described shuffling system offers an error-free possibility of detecting the number of the cards situated in the shuffling storage means, thus reducing the possibility of unauthorized and unnoticed removal of cards from a game. The introduction of a card into the shuffling storage means and the removal of the cards from the shuffling storage means can be detected in a contact free manner.
There are essentially four or five types of automatic playing card shuffler formats known in the art, and those formats include 1) a riffling or interleaving action in which cards are separated into approximately two stacks of cards and shuffled together (riffled) to combine the two sets into a single set, 2) a system wherein two stacks of cards are provided with a central stack of cards, and cards are randomly moved from the top of the two stacks into a central stack (and some of the cards from the central stack may also be moved randomly back into the two stacks) until a final single stack of cards is formed, 3) a single set of cards is moved one card at a time randomly into compartments (carousels, fans, wheel, stacks, etc.) and the cards in the compartments are delivered to a final card collection area, and 4) a set of cards has cards randomly ejected from within the set and transported to a collection area (or compartments and then a collection area). These shuffler systems are taught in the above cited references, all of which are herein incorporated in their entireties by reference.
In feeding a single deck or a single set of cards into shufflers where a single deck or single set of cards is initially provided, and cards are removed from the single deck or single set, one at a time from the single set to another function in the shuffler, a number of problems tend to arise. Among the more common problems are the ability to consistently feed a single card (rather than multiple cards) from the single set into the shuffler, the ability to assure that the last of the playing cards in the first set placed into the input area are moved out of the system, and preventing premature activation of the removal of cards by the shuffler as the first set of playing cards are inserted into the input area.
A gravity feed system is provided for assisting playing card shuffling devices in moving an initial set of cards first placed into the shuffling device and then moved into a card handling region of the shuffler. The system is referred to as a gravity feed because it is primarily gravity that motivates or moves the cards toward mechanical elements that further move and direct playing cards within the shuffler, such as pick-off rollers. The gravity feed system has a critical and narrow angle of slope on which the cards are seated and may be provided with extendable/retractable barriers to prevent premature movement of the first set of cards by mechanical elements that move playing cards out of the card input area toward the shuffling system.
The invention is now explained in closer detail by reference to the enclosed drawings, wherein:
The description of the practice of the present technology will be generally described with regard to one particular format of playing card shuffling device as previously described in U.S. Pat. No. 6,889,979, which has been incorporated by reference herein. Even though the descriptions and examples focus on that particular construction, as noted above, the technology originally described herein is useful in any playing card shuffling device where cards are to be moved from one stack of cards into a card moving system. In
The disks 3 are each shown in
A prior art system for input of cards (according to the teachings of U.S. Pat. No. 6,889,979) is shown with its playing card storage container or playing card input compartment 10 for the playing cards to be randomized, shuffled or sorted (e.g., played cards) 13. This card input compartment 10 is provided as part of a playing card input apparatus 106. The card input compartment 10 comprises a wedge 11 that rolls by way of a roller 12, which is arranged rotatably in the same on an inclined floor 107 of the playing card storage container 10 against two elastic rollers 14 (
In
The electronic control advances the cards 13 so that they are inserted one by one into the individual compartments 69 of the shuffling storage means 2′ and stores the information in an electronic register and then the electronic control subtracts the cards 13 taken from individual compartments 69 according to their number from the electronic register with the goal of keeping a continual inventory on the playing cards 13 situated in the shuffling storage means 2′.
A jam in the card path is recognized when the rollers 14, 15 or 19 are stopped and thus the motors 17 and 20 show an increased current consumption. Alternatively, a jam can be recognized when the playing card 13 covers the sensor 24 for a longer period than that time which corresponds to the conveying speed of rollers 14 and 15 with respect to the conveyance of a playing card 13 or when the sensor 24 remains uncovered for a longer period than is standard for an active shuffling mode for the device while the electronic control triggers the drive of the rollers 14 and 15 and the playing cards 13 are located in the storage container 10. This jamming event or fact can also be verified through a sensor (not shown) in floor 107.
The roller pair 19 and roller pair 18, which touches the other pair on their circumferences, and which pair of rollers 18 are each situated on a shaft 30 can be driven in the same manner by motor 20 as described above.
Two levers 21 are shown in
At least two variants of an output storage means 42, 42′ are provided for the shuffled cards 13, which output storage means can be fastened optionally on the base plate 1 and can be exchanged easily for each other.
A card storage means or card receiving means 42 comprising a support area, such as a U-shaped table 43 is provided that comprises two alignment pins 100 which are inserted into the base plate 1 and on which the card storage means 42 (
The output of the cards 13 from the compartments 69 to a card storage means 42, 42′ may be effected or occurs by means of a pushing or ejection device, such as two swiveling arms 35 which are swivelably mounted on the two legs 9 and are oscillatingly drivable via lever 37 and via an eccentric disk 38 seated on a motor. Pins, bars, shafts, plates, compressed air, rollers and other physical systems may also be used to remove cards from the slots 69. The two swiveling arms 35 shown each carry at their upper end an inwardly projecting rail 36 (
The clamping or transporting nip rollers 40 convey the respectively moved cards 13 to the card storage means 42 as shown in
A card storage means 42 is shown as formed substantially by a U-shaped table 43 in which the cards 13 are deposited in a stack 44. The cards can be upwardly removed from the U-shaped table 43 by the croupier in an optionally stack-wise manner.
The card storage means 42′ according to
As is shown in
As is shown in
The springs 51, according to
The output of the cards 13 of a compartment 69 occurs in such a way that the card 13 or a package of up to nine cards 13, for example, is ejected as a group. This occurs by means of the swiveling arms 35 and the rails 36, as has already been described above with regard to
As is shown in
The drum 2 can be placed in a security container 63 (
In order to continually check the number of cards 13 situated in the shuffling storage means 2′, it is necessary to detect the number of all cards 13 that were placed in the compartments 69 of the shuffling storage means 2′. At the same time, it is necessary to detect the number of cards 13 that were removed from the compartments 69. For this purpose it must be ensured at first that the cards 13 are inserted into the compartments 69 one by one. It is provided for this purpose in accordance with one embodiment of the invention that the cards 13 are guided through a gap-like draw-in zone 105 (see
After the card 13 has passed draw-in zone 105 (again, see
When cards 13 are removed from the compartments 69 of the shuffling storage means 2′, this occurs via the withdrawing apparatus, including swiveling arms 35, lever 37, and eccentric disk 38, as described above. In the present embodiment, a compartment 69 can only be emptied completely. Since the electronic control system is informed at all times about the number of cards 13 per compartment (card value) it is thus easy to determine how many cards are taken from the shuffling storage means 2′.
A sensor detects actuation of the withdrawing apparatus, including swiveling arms 35, lever 37 that ejects all cards from a compartment as a group. An internal sensor facing the front side of playing cards (not shown) may be positioned within the device where cards are stationary or where cards are moving to read the rank and suit of cards so that such rank and/or suit information may be passed to a processor that can use that information for various legitimate purposes within the venue of a casino.
The sum total of the cards 13 situated in the shuffling storage means 2′ is thus obtained in a simple manner by the addition of the cards 13 inserted in the shuffling storage means 2′ and the subtraction of the cards 13 removed therefrom.
It is understood that the method can also be applied to a card shuffler, which allows the removal of individual cards 13 from the shuffling storage means 2′, i.e., an entire compartment 69 is therefore not completely emptied. In this case it is not necessary that the electronic control system stores the number of cards 13 per compartment 69, because after the removal of the individual cards 13 from the shuffling storage means 2′ the same can be moved past a sensor again. As a result, the electronic control system is informed at all times about the cards 13 individually supplied to and removed from the shuffling storage means 2′, as a result of which the sum total of the cards 13 situated in the shuffling storage means 2′ is always known.
Improved Gravity Feed System
The use of a gravity feed system, without sliding weights and without mechanical springs, glides or other forward moving or downward pressing weights and devices simplifies the manufacture and operation of the movement of playing cards within and out of the playing card input compartment. The use of slides, glides, rollers, weights and other mechanical devices also provides a basis for complications in the initial movement of cards out of the playing card input compartment by way of jamming or forcing multiple cards into or through the exit slot from the compartment. The sloped angle has been found to be important and even critical within the narrow defined range for the operation of the gravity feed system.
As repeatedly noted herein, although specific examples are shown for illustrative purposes, these specific examples are not intended to be limiting in the definition of the technology and inventions described herein, but are merely representative of specifics within the generic scope of the technology described.
This application is a continuation of U.S. patent application Ser. No. 13/171,360, filed Jun. 28, 2011, which will issue as U.S. Pat. No. 8,210,536 on Jul. 3, 2012, which is a continuation of U.S. patent application Ser. No. 12/498,297, filed Jul. 6, 2009, now U.S. Pat. No. 7,967,294, issued Jun. 28, 2011, which, in turn, is a continuation of U.S. patent application Ser. No. 11/389,524, filed Mar. 24, 2006, now U.S. Pat. No. 7,556,266, issued Jul. 7, 2009. The disclosure of each of the foregoing documents is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1885276 | McKay | Nov 1932 | A |
2016030 | Woodruff et al. | Oct 1935 | A |
2159958 | Sachs | May 1939 | A |
2717782 | Droll | Sep 1955 | A |
4497488 | Plevyak et al. | Feb 1985 | A |
4512580 | Matviak | Apr 1985 | A |
4586712 | Lorber et al. | May 1986 | A |
4659082 | Greenberg | Apr 1987 | A |
4667959 | Pfeiffer et al. | May 1987 | A |
4832342 | Plevyak et al. | May 1989 | A |
4969648 | Hollinger et al. | Nov 1990 | A |
5240140 | Huen | Aug 1993 | A |
5275411 | Breeding | Jan 1994 | A |
5431399 | Kelley | Jul 1995 | A |
5676372 | Sines et al. | Oct 1997 | A |
5683085 | Johnson et al. | Nov 1997 | A |
5692748 | Frisco et al. | Dec 1997 | A |
5695189 | Breeding et al. | Dec 1997 | A |
5722893 | Hill et al. | Mar 1998 | A |
5944310 | Johnson et al. | Aug 1999 | A |
5989122 | Roblejo | Nov 1999 | A |
6019368 | Sines et al. | Feb 2000 | A |
6068258 | Breeding et al. | May 2000 | A |
6139014 | Breeding et al. | Oct 2000 | A |
6149154 | Grauzer et al. | Nov 2000 | A |
6165069 | Sines et al. | Dec 2000 | A |
6254096 | Grauzer et al. | Jul 2001 | B1 |
6267248 | Johnson et al. | Jul 2001 | B1 |
6270404 | Sines et al. | Aug 2001 | B2 |
6299534 | Breeding et al. | Oct 2001 | B1 |
6325373 | Breeding et al. | Dec 2001 | B1 |
6454266 | Breeding et al. | Sep 2002 | B1 |
6568678 | Breeding et al. | May 2003 | B2 |
6582301 | Hill | Jun 2003 | B2 |
6588750 | Grauzer et al. | Jul 2003 | B1 |
6588751 | Grauzer et al. | Jul 2003 | B1 |
6629889 | Mothwurf | Oct 2003 | B2 |
6637622 | Robinson | Oct 2003 | B1 |
6651985 | Sines et al. | Nov 2003 | B2 |
6655684 | Grauzer et al. | Dec 2003 | B2 |
6659460 | Blaha et al. | Dec 2003 | B2 |
6663490 | Soltys et al. | Dec 2003 | B2 |
6688979 | Soltys et al. | Feb 2004 | B2 |
6712696 | Soltys et al. | Mar 2004 | B2 |
6722974 | Sines et al. | Apr 2004 | B2 |
6758751 | Soltys et al. | Jul 2004 | B2 |
6889979 | Blaha et al. | May 2005 | B2 |
7556266 | Blaha et al. | Jul 2009 | B2 |
7967294 | Blaha et al. | Jun 2011 | B2 |
20020163125 | Grauzer et al. | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
0 777 514 | Feb 2000 | EP |
10-063933 | Mar 1998 | JP |
2000-251031 | Sep 2000 | JP |
2003-250950 | Sep 2003 | JP |
9952611 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20120267851 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13171360 | Jun 2011 | US |
Child | 13540434 | US | |
Parent | 12498297 | Jul 2009 | US |
Child | 13171360 | US | |
Parent | 11389524 | Mar 2006 | US |
Child | 12498297 | US |