Embodiments of the present disclosure relate to a card stacker for stacking card substrates and, more specifically, to a card stacker that is configured to deliver card substrates to the bottom of a stack of card substrates.
Card products include, for example, credit cards, identification cards, driver's licenses, passports, and other card products. Such card products generally include printed information, such as a photo, account numbers, identification numbers, and other personal information. Credentials can also include data that is encoded in a smartcard chip, a magnetic stripe, or a barcode, for example.
Card production devices include processing devices that process card substrates to form the final card product. Such processes generally include a printing process, a laminating or transfer process, a data reading process, a data writing process, and/or other process used to form the desired credential. Credential production devices typically include a collection unit, such as a hopper or other container, for collecting the processed card products.
Embodiments of the present disclosure are directed to a card stacker for use with a card production device, a card stacker assembly that includes a plurality of the card stackers, and methods of using the card stacker to add a card substrate to a bottom of a stack of card substrates. One embodiment of the card stacker is configured to deliver a card substrate to a bottom of a stack of card substrates and includes a stack support, a card lift mechanism, a card feed mechanism, and a retraction mechanism. The stack support is configured to hold the stack of card substrates on a top side of the stack support that is opposite a bottom side of the stack support. The card lift mechanism is configured to support the card substrate in a lowered position on the bottom side of the stack support, and drive the card substrate to a raised position, in which the card substrate is positioned at the bottom of the stack of card substrates and is supported by the top side of the stack support. The card feed mechanism includes a first transport roller having a feed position when the card substrate is in the lowered position, and a retracted position when the card substrate is in the raised position. The first transport roller engages a top surface of the card substrate that faces the bottom side of the stack support when in the feed position. The first transport roller is on the bottom side of the stack support when in the retracted position. The retraction mechanism is configured to move the first transport roller between the feed and retracted positions.
One embodiment of the card stacker assembly includes a plurality of card stackers, each card stacker configured to deliver a card substrate to a bottom of a stack of card substrates. Each of the card stackers includes a stack support, a card lift mechanism, and a card feed mechanism. The stack support includes a top side configured to hold the stack of card substrates. The card lift mechanism is configured to drive the card substrate from a lowered position on a bottom side of the stack support that is opposite the top side to a raised position, in which the card substrate is positioned at the bottom of the stack of card substrates and is supported by the top side of the stack support. The card feed mechanism includes first and second pinch roller pairs that are respectively configured to receive or discharge individual card substrates along a card path through first and second ports positioned on opposing sides of the card lift mechanism. The plurality of card stackers are positioned in a side-by-side arrangement. A card substrate discharged through the second port of one of the card stackers is received through the first port of an adjoining card stacker.
In one embodiment of a method of adding a card substrate to a bottom of a stack of card substrates supported on a top side of a stack support of a card stacker, the card substrate is received with a card feed mechanism of the card stacker. The card feed mechanism includes a transport roller. The card substrate is supported in a lowered position on a bottom side of the stack support, which includes engaging a top surface of the card substrate that faces the bottom side of the stack support with the transport roller in a feed position. The card substrate is raised from the lowered position to a raised position, in which the card substrate is positioned on the bottom of the stack of card substrates and is supported on the top side of the stack support using a card lift mechanism of the card stacker. The transport roller is moved from the feed position to a retracted position, in which the transport roller is positioned and on the bottom side of the stack support during the raising of the card substrate.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in the Background.
Embodiments of the present disclosure are directed to a card stacker that may be used with a card production device to deliver card substrates to a bottom of a stack of card substrates contained in the card stacker. In some embodiments, the card stacker is a modular device that may be combined with other card stackers to increase the card stacking capacity of the card production system.
These and other embodiments of the present disclosure are described more fully hereinafter with reference to the accompanying drawings. Elements that are identified using the same or similar reference characters refer to the same or similar elements. The various embodiments of the present disclosure may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present disclosure to those skilled in the art.
The system 100 also includes a controller 108 and one or more card processing devices 110. The controller 108 represents one or more distinct controllers of the system 100 each including at least one processor that is configured to execute program instructions stored in a computer-readable media or memory of the device 100, which may also be represented by the controller 108, or another location. Any suitable patent subject matter eligible computer readable media or memory may be utilized including, for example, hard disks, CD-ROMs, optical storage devices, flash memory, magnetic storage devices, or other suitable computer readable media or memory. Such computer readable media or memory do not include transitory waves or signals. The execution of the instructions by the controller 108 controls components of the system 100 to perform functions and method steps described herein.
The one or more card processing devices 110 are each configured to perform a process on a card substrate 112. The card processing devices may include conventional card processing devices, such as a printing device configured to print an image to a surface of the card substrate 112 through a direct or transfer printing process, a laminating device configured to apply an overlaminate to a surface of the substrate 112, a data reading and/or writing device (e.g., a chip encoder, a magnetic stripe encoder, etc.) configured to read data from, and/or write data to, the substrate 112, a card flipper configured to invert the substrate 112, and/or another conventional card processing device.
In some embodiments, individual substrates 112 may be received at an input 114 by the card production device 110 from a card substrate supply 116, as shown in
Embodiments of the card stacker 104 will be described with reference to the
In some embodiments, each card stacker 104 includes a stack housing 140 that is removably supported within a receptacle 142 of a base 144, which includes the card lift mechanism 128 and the card feed mechanism 126. The stack housing 140 defines an interior cavity 146 that is configured to contain the card stack 136, as shown in
The stack support 124 is supported at a bottom 152 of the stack housing 140 adjacent an opening 154 in the housing 140, and is configured to support the substrate stack 136 in a vertical column within the interior cavity 146 that is generally aligned with an axis 156. During a substrate lifting operation, a substrate 112 is delivered through the opening 154 in the bottom 152 of the housing 140 adjacent the stack support 124 to the bottom of the substrate stack 136 and on the stack support 124.
The stack support 124 may take on any suitable form. In one example, the stack support 124 includes multiple catch pawls 158 that may be pivoted in the direction indicated by arrows 160 (
Each card feed mechanism 126 is configured to receive substrates 112 through a port 164, feed the individual substrates 112 along the card feed path 130 to the lift position 132, in which the substrate 112 is positioned for a lifting operation using the corresponding lift mechanism 128, or deliver the substrates to an adjoining card stacker 104 through a port 166 on the opposing side of the axis 156 from the port 164. For example, with reference to
The card feed mechanism 126 of each card stacker 104 can take on any suitable form. In some embodiments, the card feed mechanism 126 includes pinch roller pairs 168, such as pinch roller pairs 168A and 168B, which are respectively positioned on opposing sides of the axis 156 adjacent the ports 164 and 166. Each of the pinch roller pairs 168 include upper and lower transport rollers 170 and 172, respectively, such as upper transport rollers 170A and 170B, and lower transport rollers 172A and 172B. While the card feed mechanism 126 is illustrated as having two pinch roller pairs 168A and 168B, embodiments of the present disclosure include the use of the single pinch roller pair or other configurations.
The pinch roller pairs 168 are configured to drive a received substrate 112 along the card feed path 130 when in a feed position, such as shown in
A motor 174 is configured to drive the pinch roller pairs 168, such as through a conventional mechanical linkage, to feed a received card substrate 112 along the card feed path 130. In some embodiments, the motor 174 is configured to drive the lower transport rollers 172, and the upper transport rollers 170 are idler motors that are not directly driven by the motor 174.
In some embodiments, the card feed mechanism 126 includes a card sensor 176 that is configured to detect reception of a card substrate 112 fed along the card feed path 130, such as from the card production device 102 or an adjoining card stacker 104, for example. In some embodiments, the card sensor 176 is used to detect a leading or trailing edge of the substrate 112 to establish a position of the substrate 112 relative to the card feed mechanism 126 along the card feed path 130. This allows the controller 108 to control the card feed mechanism 126 to position the substrate 112 in the lift position 132 along the card feed path 130, or handoff the substrate 112 to an adjoining card stacker 104. In some embodiments, the motor 174 is a stepper motor, and the detection of the leading or trailing edge of the substrate 112 using the card sensor 176 allows the controller 108 to position the substrate 112 in a desired location along the card feed path 130 relative to the card feed mechanism 126 by driving the motor 174 a predetermined number of steps.
As discussed above, the card feed mechanism 126 is configured to position a received substrate 112 in a lift position 132 (
Some embodiments of the lift mechanism 126 include a card support member 180 and a drive mechanism 182, which is driven by a motor 183 (
During a lift operation, the lift mechanism 128 delivers a card substrate 112 supported on the card support member 180 from the lift position 132 (
When the card substrate 112 is in the lift position 132 within a card stacker 104, one or more components of the card feed mechanism 126 block the desired lifting path of the substrate 112 to the bottom of the card stack 136. For example, when the substrate 112 is supported between the pinch roller pairs 168A and 168B, and the upper transport rollers 170 engage the top surface 178 of the substrate 112. As a result, the position of the upper transport rollers 170 between the substrate 112 and the opening 154 to the housing 140 prevent the delivery of the substrate 112 to the bottom of the card stack 136.
In some embodiments, each card stacker 104 includes a retraction mechanism, which is generally indicated by box 190 in
Exemplary embodiments of the retraction mechanism 190 will be described along with an exemplary lift or stacking operation with reference to
With the substrate 112 supported in the lift position 132 (
Following this initial movement of the upper transport rollers 170 from their feed positions, the upper transport rollers 170 reach a position in which they remain engaged with the card substrate 112, such as the top surface 178 or the side edges of the substrate 112, as shown in
As the lift mechanism 128 continues to raise the substrate 112 along the axis 156, the upper transport rollers 170 continue to be moved further from the axis 156 from their position in
Next, the card support member 180 is driven by the drive mechanism 182 to raise the substrate 112 along the axis 156 to the top side 192 of the stack support 124 and in engagement with the bottom of the stack 136, as shown in
The card support member 180 is then lowered along the axis 156 by the drive mechanism 182 to the lowered position, as shown in
The retraction mechanism 190 can take on any suitable form while driving movement of the upper transport rollers 170 from their feed position (
In some embodiments, the retraction mechanism 190 includes pivotable supports 200A and 200B, which are respectively attached to the card support member 180 through suitable pivotable connections 202A and 202B, such as hinges, for example. The pivotable connections 202A and 202B allow the supports 200A and 200B to respectively pivot about axes 204A and 204B, which are generally perpendicular to the direction the substrates 112 are fed along the card feed path and the axis 156. The upper transport roller 170A is connected to the support 200A and the upper roller 170B is connected to the support 200B. Thus, the transport rollers 170A and 170B move with movement of the corresponding support 200A and 200B. In some embodiments, the transport rollers 170A and 170B have a fixed position relative to the corresponding support 200A and 200B.
The support 200A may be biased to pivot about the axis 204A in the direction indicated by arrow 206A, and the support 200B may be biased to pivot about the axis 204B in the direction indicated by arrow 206B. In some embodiments, this biasing of the supports 200A and 200B is facilitated using conventional techniques, such as a coil spring or another suitable biasing mechanism. The biasing of the supports 200A and 200B about the corresponding axes 204A and 204B, also biases the upper transport rollers 170A and 170B in the same manner. As a result, when the pinch rollers 168A and 168B are in their feed position (
As discussed above, in some embodiments, the movement of the transport rollers 170A and 170B from the feed position to the retracted position is driven in response to movement of the card support member 180 from the lowered position (
In one exemplary embodiment, the transport rollers 170A and 170B are driven from the feed position to the retracted position through engagement between the supports 200A and 200B and the bottom transport rollers 172A and 172B. For example, the supports 200A and 200B may respectively include a slot 210A and 210B through which shafts 212 of the corresponding bottom rollers 172A extend. In some embodiments, the shafts 212 are supported by a frame 200 of the base 144 and have a fixed position relative to the frame 200. As a result, the card support member 180, the supports 200A and 200B, and the transport rollers 170A and 170B move relative to the shafts 212 during movement of the card support member 180 along the axis 156. Accordingly, as the card support member 180 moves along the axis 156 during a substrate lifting or stacking operation, the shafts 212 slide within the slots 210A and 210B relative to the supports 200A and 200B. The slots 210A and 210B are shaped to pivot the supports 200A and 200B and drive the transport rollers 170A and 170B from the feed position to the retracted position along a desired path in response to the relative movement between the shafts 212 and the supports 200A and 200B.
When the card support member 180 of the lift mechanism 128 is in its lowered position and the transport rollers 170A and 170B are in their feed position, a card substrate 112 may be fed along the card feed path 130 to the lift position 132, as shown in
As the card support member 180 continues to raise the substrate along the axis 156 toward the raised position, the supports 200A and 200B and the attached transport rollers 170A and 170B are driven to pivot about the corresponding axes 204A and 204B in response to the engagement between the shafts 212 and the slots 210A and 210B in the direction indicated by arrows 214 in
The card support member 180 is then lowered along the axis 156 through the opening 154 in the housing 140 and back to its lowered position shown in
In some embodiments, the card stacker 104 includes a card stack sensor 220 (
In some embodiments, the card stack sensor 220 includes a passive or mechanical sensing element 222 in the stack housing 140 and an active or electronic sensor 224 in the base 144, as shown in
In some embodiment, the passive sensing element 222 includes a mechanical switch 226 positioned at the top end 228 of the interior cavity 146 of the stack housing 140. The active sensor 224 may be any suitable active sensor, such as an optical or capacitive sensor, that is supported in the base 144 adjacent the receptacle 142 that receives the bottom 152 of the housing 140. Before the stack 136 reaches a full condition, the top substrate 112T in the stack 136 does not trigger the mechanical switch 226, as shown in
The mechanical switch 226 may take on any suitable form. For example, the mechanical switch 226 may comprise a lever arm 230 that is configured to pivot about an axis 232 from the first position to the second position in response to the rising stack of substrates 126. A rod 234 is attached to an end 236 of the lever arm 230 and generally moves along the axis 156 in response to movement of the lever arm 230 from the first position to the second position. An end 238 of the rod 234 may initially be positioned for detection by the active sensor 224 when the lever arm 230 is in the first position, as shown in
In some embodiments, the active sensor 224 may also be used to detect whether the stack housing 140 is properly installed on the base 144. For instance, when the stack housing 140 is properly installed on the base 144 and the card stack 136 is not full, the lever arm 230 is in the first position and the end 238 of the rod 234 is positioned within the detection zone of the active sensor 224, as shown in
Thus, the controller 108 may enable substrate lifting or stacking operations to be performed by the card stacker 104, when the active sensor 224 detects the end 238 of the rod 234, and disable substrate lifting or stacking operations when the active sensor 224 does not detect the end 238 of the rod 234, as this may indicate that the stack housing 140 is either not installed on the base 144, is improperly installed on the base 144, or the card stack 136 has reached a full condition. However, the controller 108 may still use the base 144 to receive and pass substrates 112 to an adjoining card stacker 104 when card lifting or stacking operations are disabled. This is generally illustrated in
In accordance with the above discussion, embodiments of the present disclosure include a card stacker 104 that is configured to deliver a card substrate 112 to a bottom of a stack 136 of card substrates 112S. In some embodiments, the card stacker 104 includes a stack support 124, a card feed mechanism 126, a card lift mechanism 128, and a retraction mechanism 190, as shown in
Embodiments of the card feed mechanism 126 include an upper transport roller 170A having a feed position (
In some embodiments, the card lift mechanism 128 includes a card support member 180 and a drive mechanism 182. The drive mechanism 182 is driven by a motor 183 and drives the card support member 180 between a lowered position (
In some embodiments, the retraction mechanism 190 includes a first pivotable support 200A that is attached to the card support member 180 and is configured to pivot the upper transport roller 170A about a support axis 204A to the retracted position in response to movement of the card support member 180 from the lowered position to the raised position, as discussed above with reference to
In some embodiments, the card feed mechanism 126 includes a lower transport roller 172A, and the card substrate 112 is pinched between the transport rollers 170A and 172A when the card substrate 112 is in the lowered position, such as shown in
In some embodiments, the card feed mechanism 126 includes a second pinch roller pair 168B that includes upper and lower transport rollers 170B and 172B, which pinch the card substrate 112 in the lowered position at a second edge 208 of the card substrate 112 that is opposite the first edge 207, as shown in
In some embodiments, the upper transport roller 170B includes a feed position when the card substrate 112 is in the lowered position, as shown in
The retraction mechanism 190 is configured to move the upper transport roller 170B between the feed and retracted positions, as discussed above with reference to
Additional embodiments are directed to a method of performing a substrate stacking operation using the card stacker 104 formed in accordance with one or more embodiments described herein. In one embodiment of the method, a card substrate 112 is received using a card feed mechanism 126 of the card stacker 104 that includes a transport roller 170, such as shown in
It is appreciated that certain features of the present disclosure, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the present disclosure, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the present disclosure. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Although the embodiments of the present disclosure have been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2595346 | Federwitz | May 1952 | A |
3870166 | Tull, III | Mar 1975 | A |
4432685 | Stauber | Feb 1984 | A |
4560293 | McCumber et al. | Dec 1985 | A |
5415519 | Lee | May 1995 | A |
6089457 | Lamanna et al. | Jul 2000 | A |
6199857 | Lien | Mar 2001 | B1 |
6431537 | Meier | Aug 2002 | B1 |
20120175836 | Meier | Jul 2012 | A1 |
20170358166 | Zaborowski et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
1396138 | Jun 1975 | GB |
S61203063 | Sep 1986 | JP |
S63171760 | Jul 1988 | JP |
Entry |
---|
“European Application Serial No. 20154281.8, Extended European Search Report dated Jul. 27, 2020”, 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20200247637 A1 | Aug 2020 | US |