Cardiac conduction system evaluation

Information

  • Patent Grant
  • 11813464
  • Patent Number
    11,813,464
  • Date Filed
    Tuesday, June 29, 2021
    2 years ago
  • Date Issued
    Tuesday, November 14, 2023
    5 months ago
Abstract
Systems, interfaces, and methods are described herein related to the evaluation of a patient's cardiac conduction system and evaluation of cardiac conduction system pacing therapy being delivered to the patient's cardiac conduction system. Evaluation of the patient's cardiac conduction system may utilize a plurality of breakthrough maps to determine where a cardiac conduction system block may be located. Evaluation of cardiac conduction system pacing therapy may utilize various electrical heterogeneity information monitored before and during delivery of cardiac conduction system pacing therapy.
Description
SUMMARY

The illustrative systems and methods described herein may be configured to assist a user (e.g., a physician) in evaluating a patient's cardiac conduction system and in evaluating cardiac conduction system pacing therapy being delivered to a patient. In particular, the illustrative systems and methods may determine a cardiac conduction system block location based on breakthrough maps generated by monitoring cardiac electrical activity of a patient using a plurality of external electrodes disposed proximate the patient's skin. Further, the illustrative systems and methods may evaluate cardiac conduction system pacing therapy being delivered to a patient by comparing electrical heterogeneity information (EHI) acquired prior to delivery of cardiac conduction system pacing therapy to EHI acquired during delivery of cardiac conduction system pacing therapy.


In one or more embodiments, the systems and methods may be described as being noninvasive. For example, in some embodiments, the systems and methods may not need, or include, implantable devices such as leads, probes, sensors, catheters, implantable electrodes, etc. to monitor, or acquire, electrical activity (e.g., a plurality of cardiac signals) from tissue of the patient for use in evaluating the patient's cardiac conduction system and cardiac conduction system pacing therapy delivered to the patient's cardiac conduction system. Instead, the systems and methods may use electrical measurements taken noninvasively using, e.g., a plurality of external electrodes attached to the skin of a patient about the patient's torso. Additionally, it is be understood that both invasive and non-invasive apparatus and processes may be used at the same time or simultaneously in some embodiments.


It may be described that illustrative systems and methods (e.g., including electrode apparatus or ECG belt) may be used with cardiac conduction system pacing, various CRT procedures involving use of conduction system pacing with or without traditional coronary sinus left ventricular pacing. Additionally, the illustrative systems and methods can be used for intraprocedural planning and guidance on choice of conduction system pacing/device/leads to personalize therapy and provide the best resynchronization in every patient. Further, it may be described that the illustrative systems and methods provide multi-electrode ECGs that provides activation times, metrics of electrical dyssynchrony like standard deviation of activation times (SDAT), dispersion of left ventricular activation times, average left ventricular activation time, with or without combination of other metrics derived from ECG morphology.


The illustrative systems and methods may analyze, or evaluate, cardiac conduction system pacing leads implanted in locations close to the left bundle branch area, left ventricular septum, triangle of Koch in the right atrium, or His Bundle. Cardiac conduction system pacing may be delivered from those locations with varying pacing locations/parameters, and the illustrative systems and methods may determine a degree of efficacy of resynchronization and engagement of the cardiac conduction system or parts of the cardiac conduction system (e.g. left bundle, right bundle, etc.) based on change (e.g., from baseline to cardiac conduction system pacing) and absolute values (e.g., during cardiac conduction system pacing) of at least one of the metrics derived from electrical activity monitored by a plurality of external electrodes as described herein. If an adequate degree of resynchronization and/or engagement of the cardiac conduction system or parts of the cardiac conduction system is not achieved, then a traditional pacing lead (e.g., coronary sinus left ventricular lead) may be implanted and a degree of efficacy of resynchronization and engagement of the cardiac conduction system may be re-evaluated with pacing alone from that lead and in combination with the cardiac conduction system pacing lead. The decision of which lead to implant may be based on activation time maps during pacing alone from the cardiac conduction system pacing lead and/or the baseline/intrinsic activation maps. In particular, the location of the delay on the anterior map in both intrinsic and paced rhythm may be identified. If a dominant and persistent delay is identified in the right ventricular activation indicating a right bundle branch block, then a traditional right ventricular pacing lead may be implanted in the right ventricle. If a dominant and persistent delay is identified in the left ventricular activation indicating a left bundle branch block, then a traditional left ventricular pacing lead may be implanted in the coronary sinus. Further, a final implant decision may be taken based on resynchronization and efficacy of engagement of conduction system from both leads with different parameters, which also feeds into post-implant optimization.


One illustrative system may include an electrode apparatus comprising a plurality of external electrodes to be disposed proximate a patient's skin and computing apparatus comprising processing circuitry and coupled to the electrode apparatus. The computer apparatus may be configured to monitor intrinsic electrical activity of the patient using the plurality of external electrodes of the electrode apparatus, generate baseline electrical heterogeneity information (EHI) based on the monitored intrinsic electrical activity, monitor paced electrical activity of the patient using the plurality of external electrodes of the electrode apparatus during delivery of cardiac conduction system pacing therapy, generate paced EHI based on the monitored paced electrical activity, and determine whether the cardiac conduction system pacing therapy is effective based on the baseline and the paced EHI.


One illustrative method may include monitoring intrinsic electrical activity of the patient using a plurality of external electrodes disposed proximate the patient's skin, generating baseline electrical heterogeneity information (EHI) based on the monitored intrinsic electrical activity, monitoring paced electrical activity of the patient using the plurality of external electrodes of the electrode apparatus during delivery of cardiac conduction system pacing therapy, generating paced EHI based on the monitored paced electrical activity, and determining whether the cardiac conduction system pacing therapy is effective based on the baseline and the paced EHI.


The illustrative systems and methods may be described as surface mapping potential breakthroughs for determining locations of conduction block in cardiac conduction system disease. Proximal His-bundle pacing or more distal left bundle branch area pacing has been shown to be effective for resynchronization in patients with proximal conduction system disease (PCSD). However, not all left bundle block patients have a proximal block. Instead, there are patients where the block may be located more distally. The illustrative systems and methods may utilize ECG surface mapping that provides simultaneous measurements of depolarization complexes over multiple electrodes over the body-surface covering anterior as well as posterior locations. While the primary output is often activation times, alternative visualization of electrical activity may include spatial maps of potentials or voltages for each millisecond over multiple electrodes during the depolarization process. Location of left-sided breakthrough during intrinsic rhythm may help identify whether the block in a left bundle patient is proximal or more distal. Accordingly, a patient may receive therapy using leads targeting His or left bundle pacing (in the case of PCSD) or more distal pacing (e.g., mid-septal or apical septal or even traditional lateral wall pacing) in case the block is more distal. The illustrative systems and methods may utilize the location of left-sided potential breakthroughs from ECG belt maps to determine the location of conduction block in left bundle branch blocs, and accordingly, select therapy options for the patient.


In one or more embodiments, the illustrative systems and methods may provide spatial maps of potentials over anterior and posterior surfaces that are presented for every millisecond (ms) from QRS onset to QRS offset. The left side of the torso may be defined by regions to the left of the sternum and posteriorly to the left of the spine. The location of the first potential breakthrough on the left side may be recorded on the map. First potential breakthrough may be defined by a negative gradient of −0.5 millivolts (mV) over a given electrode over one ms during the depolarization process. The first potential breakthrough identifies the location where electrical activity first appears on the surface of the patient. If the location of the earliest left sided breakthrough is in the left anterior region of the torso, it will be determined that the patient has a more distal cardiac conduction system disease and may not be suitable for His bundle or left bundle area pacing for correction of left bundle. Conversely, if breakthrough occurs on the left posterior aspect of the torso, then the block in the cardiac conduction system may be more proximal and the patient may be amenable to correction of left bundle branch block by pacing from His bundle or left bundle branch area pacing. Thus, it may be described that noninvasive mapping of cardiac conduction system blocks to assist in planning therapy for correcting cardiac conduction system disorders.


One illustrative system may include an electrode apparatus comprising a plurality of external electrodes to be disposed proximate a patient's skin and a computing apparatus comprising processing circuitry and operably coupled to the electrode apparatus. The computing apparatus may be configured to monitor intrinsic electrical activity of the patient using the plurality of external electrodes of the electrode apparatus and generate a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period, where each cardiac breakthrough map is a spatial representation of electrocardiographic potential. The computing apparatus may be further configured to determine a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps.


One illustrative method may include monitoring intrinsic electrical activity of the patient using a plurality of external electrodes disposed proximate a patient's skin, generating a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period, where each cardiac breakthrough map is a spatial representation of electrocardiographic potential, and determining a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps.


One illustrative system may include an electrode apparatus comprising a plurality of external electrodes to be disposed proximate a patient's skin, a display comprising a graphical user interface, and a computing apparatus comprising processing circuitry and operably coupled to the electrode apparatus and the display. The computing apparatus may be configured to monitor intrinsic electrical activity of the patient using the plurality of external electrodes of the electrode apparatus, generate a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period, where each cardiac breakthrough map is a spatial representation of electrocardiographic potential, and display the plurality of generated cardiac breakthrough maps on the graphical user interface.


The above summary is not intended to describe each embodiment or every implementation of the present disclosure. A more complete understanding will become apparent and appreciated by referring to the following detailed description and claims taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram of an illustrative system including electrode apparatus, display apparatus, and computing apparatus.



FIGS. 2-3 are diagrams of illustrative external electrode apparatus for measuring torso-surface potentials.



FIG. 4A depicts a patient's cardiac conduction network including a cardiac conduction system block positioned between the atrioventricular node and the bundle of His.



FIG. 4B depicts a patient's cardiac conduction network including a cardiac conduction system block positioned in the left branch.



FIG. 5 is a block diagram of an illustrative method of evaluating a patient's cardiac conduction system.



FIGS. 6A-6B depict illustrative anterior and posterior cardiac breakthrough maps.



FIG. 6C depicts illustrative graphical user interface including the anterior and posterior cardiac breakthrough maps of FIG. 6B.



FIG. 7 is a block diagram of an illustrative method of evaluating cardiac conduction system pacing therapy.



FIG. 8 is a conceptual diagram of an illustrative cardiac therapy system including an intracardiac medical device implanted in a patient's heart and a separate medical device positioned outside of the patient's heart.



FIG. 9 is an enlarged conceptual diagram of the intracardiac medical device of FIG. 8 and anatomical structures of the patient's heart.



FIG. 10 is a conceptual diagram of a map of a patient's heart in a standard 17 segment view of the left ventricle showing various electrode implantation locations for use with the illustrative systems and devices described herein.



FIG. 11 is a block diagram of illustrative circuitry that may be enclosed within the housing of the medical devices of FIGS. 8-9, for example, to provide the functionality and therapy described herein.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In the following detailed description of illustrative embodiments, reference is made to the accompanying figures of the drawing which form a part hereof, and in which are shown, by way of illustration, specific embodiments which may be practiced. It is to be understood that other embodiments may be utilized, and structural changes may be made without departing from (e.g., still falling within) the scope of the disclosure presented hereby.


Illustrative systems and methods shall be described with reference to FIGS. 1-11. It will be apparent to one skilled in the art that elements or processes from one embodiment may be used in combination with elements or processes of the other embodiments, and that the possible embodiments of such systems and methods using combinations of features set forth herein is not limited to the specific embodiments shown in the Figures and/or described herein. Further, it will be recognized that the embodiments described herein may include many elements that are not necessarily shown to scale. Still further, it will be recognized that timing of the processes and the size and shape of various elements herein may be modified but still fall within the scope of the present disclosure, although certain timings, one or more shapes and/or sizes, or types of elements, may be advantageous over others.


Various illustrative systems, methods, and graphical user interfaces may be configured to use electrode apparatus including external electrodes, display apparatus, and computing apparatus to noninvasively assist a user (e.g., a physician) in the evaluation of a patient's cardiac conduction system and the evaluation cardiac conduction system pacing therapy and/or the configuration (e.g., optimization) thereof, and potentially, in conjunction with traditional cardiac pacing therapy. An illustrative system 100 including electrode apparatus 110, computing apparatus 140, and a remote computing device 160 is depicted in FIG. 1.


The electrode apparatus 110 as shown includes a plurality of electrodes incorporated, or included, within a band wrapped around the chest, or torso, of a patient 114. The electrode apparatus 110 is operatively coupled to the computing apparatus 140 (e.g., through one or wired electrical connections, wirelessly, etc.) to provide electrical signals from each of the electrodes to the computing apparatus 140 for analysis, evaluation, etc. Illustrative electrode apparatus may be described in U.S. Pat. No. 9,320,446 entitled “Bioelectric Sensor Device and Methods” filed Mar. 27, 2014 and issued on Mar. 26, 2016, which is incorporated herein by reference in its entirety. Further, illustrative electrode apparatus 110 will be described in more detail in reference to FIGS. 2-3.


The computing apparatus 140 and the remote computing device 160 may each include display apparatus 130, 170, respectively, that may be configured to display data such as, e.g., electrical signals (e.g., electrocardiogram data), cardiac breakthrough maps, surface electrocardiographic potential maps, electrical activation times, electrical heterogeneity information, etc. For example, one cardiac cycle, or one heartbeat, of a plurality of cardiac cycles, or heartbeats, represented by the electrical signals collected or monitored by the electrode apparatus 110 may be analyzed and evaluated for one or more metrics including activation times and electrical heterogeneity information that may be pertinent to the assessment and evaluation of a patient's cardiac conduction system and/or cardiac conduction system pacing therapy delivered thereto. More specifically, for example, the QRS complex of a single cardiac cycle may be evaluated for one or more metrics such as, e.g., QRS onset, QRS offset, QRS peak, various electrical heterogeneity information (EHI) such as electrical activation times, left ventricular or thoracic standard deviation of electrical activation times (LVED), left ventricular dispersion, standard deviation of activation times (SDAT), average left ventricular or thoracic surrogate electrical activation times (LVAT), and referenced to earliest activation time, QRS duration (e.g., interval between QRS onset to QRS offset), difference between average left surrogate and average right surrogate activation times, relative or absolute QRS morphology, differences between a higher percentile and a lower percentile of activation times (higher percentile may be 90%, 80%, 75%, 70%, etc. and lower percentile may be 10%, 15%, 20%, 25% and 30%, etc.), other statistical measures of central tendency (e.g., median or mode), dispersion (e.g., mean deviation, standard deviation, variance, interquartile deviations, range), etc. Further, each of the one or more metrics may be location specific. For example, some metrics may be computed from signals recorded, or monitored, from electrodes positioned about a selected area of the patient such as, e.g., the left side of the patient, the right side of the patient, etc.


In at least one embodiment, one or both of the computing apparatus 140 and the remote computing device 160 may be a server, a personal computer, or a tablet computer. The computing apparatus 140 may be configured to receive input from input apparatus 142 (e.g., a keyboard) and transmit output to the display apparatus 130, and the remote computing device 160 may be configured to receive input from input apparatus 162 (e.g., a touchscreen) and transmit output to the display apparatus 170. One or both of the computing apparatus 140 and the remote computing device 160 may include data storage that may allow for access to processing programs or routines and/or one or more other types of data, e.g., for analyzing a plurality of electrical signals captured by the electrode apparatus 110, for determining cardiac breakthrough maps, a spatial representation of electrocardiographic potential, EHI, QRS onsets, QRS offsets, medians, modes, averages, peaks or maximum values, valleys or minimum values, electrical activation times, location of cardiac conduction system blocks along the cardiac conduction system (e.g., more proximal, more distal, etc.), whether the patient has left or right ventricular delays or blocks, whether one or more adjustments to pacing settings of cardiac therapy may provide effective therapy (e.g., provide improvement in cardiac resynchronization, provide improvement in cardiac heterogeneity), for driving a graphical user interface configured to noninvasively assist a user in configuring cardiac conduction system pacing therapy with or without traditional pacing therapy, one or more pacing parameters, or settings, related to such cardiac conduction system pacing therapy and/or traditional pacing therapy such as, e.g., pacing rate, ventricular pacing rate, A-V interval, V-V interval, pacing pulse width, pacing vector, multipoint pacing vector (e.g., left ventricular vector quad lead), pacing voltage, pacing configuration (e.g., biventricular pacing, right ventricle only pacing, left ventricle only pacing, etc.), and for arrhythmia detection and treatment, etc.


The computing apparatus 140 may be operatively coupled to the input apparatus 142 and the display apparatus 130 to, e.g., transmit data to and from each of the input apparatus 142 and the display apparatus 130, and the remote computing device 160 may be operatively coupled to the input apparatus 162 and the display apparatus 170 to, e.g., transmit data to and from each of the input apparatus 162 and the display apparatus 170. For example, the computing apparatus 140 and the remote computing device 160 may be electrically coupled to the input apparatus 142, 162 and the display apparatus 130, 170 using, e.g., analog electrical connections, digital electrical connections, wireless connections, bus-based connections, network-based connections, internet-based connections, etc. As described further herein, a user may provide input to the input apparatus 142, 162 to view and/or select one or more of a plurality of cardiac breakthrough maps over time and electrical heterogeneity information.


Although as depicted the input apparatus 142 is a keyboard and the input apparatus 162 is a touchscreen, it is to be understood that the input apparatus 142, 162 may include any apparatus capable of providing input to the computing apparatus 140 and the computing device 160 to perform the functionality, methods, and/or logic described herein. For example, the input apparatus 142, 162 may include a keyboard, a mouse, a trackball, a touchscreen (e.g., capacitive touchscreen, a resistive touchscreen, a multi-touch touchscreen, etc.), etc. Likewise, the display apparatus 130, 170 may include any apparatus capable of displaying information to a user, such as a graphical user interface 132, 172 including electrode status information, graphical maps of cardiac breakthrough, graphical maps of electrocardiographic potential, graphical maps of electrical activation, indications of location of cardiac conduction system block (e.g., proximally along the cardiac conduction system, distally along the cardiac conduction system, etc.), a plurality of signals for the external electrodes over one or more heartbeats, QRS complexes, various cardiac therapy scenario selection regions, various rankings of cardiac therapy scenarios, various pacing parameters, electrical heterogeneity information (EHI), textual instructions, graphical depictions of anatomy of a human heart, images or graphical depictions of the patient's heart, graphical depictions of locations of one or more electrodes, graphical depictions of a human torso, images or graphical depictions of the patient's torso, graphical depictions or actual images of implanted electrodes and/or leads, etc. Further, the display apparatus 130, 170 may include a liquid crystal display, an organic light-emitting diode screen, a touchscreen, a cathode ray tube display, etc.


It is to be understood that the computing apparatus 140 and the remote computing device 160 may be operatively coupled to each other in a plurality of different ways so as to perform, or execute, the functionality described herein. For example, in the embodiment depicted, the computing device 140 may be wireless operably coupled to the remote computing device 160 as depicted by the wireless signal lines emanating therebetween. Additionally, as opposed to wireless connections, one or more of the computing apparatus 140 and the remoting computing device 160 may be operably coupled through one or wired electrical connections.


The processing programs or routines stored and/or executed by the computing apparatus 140 and the remote computing device 160 may include programs or routines for computational mathematics, matrix mathematics, decomposition algorithms, compression algorithms (e.g., data compression algorithms), calibration algorithms, image construction algorithms, signal processing algorithms (e.g., various filtering algorithms, Fourier transforms, fast Fourier transforms, etc.), standardization algorithms, comparison algorithms, vector mathematics, or any other processing used to implement one or more illustrative methods and/or processes described herein. Data stored and/or used by the computing apparatus 140 and the remote computing device 160 may include, for example, electrical signal/waveform data from the electrode apparatus 110 (e.g., electrocardiographic potential or voltage over time, a plurality of QRS complexes, etc.), electrical activation times from the electrode apparatus 110, cardiac sound/signal/waveform data from acoustic sensors, graphics (e.g., graphical elements, icons, buttons, windows, dialogs, pull-down menus, graphic areas, graphic regions, 3D graphics, etc.), graphical user interfaces, results from one or more processing programs or routines employed according to the disclosure herein (e.g., electrical signals, electrical heterogeneity information, etc.), or any other data that may be used for executing, or performing, the one and/or more processes or methods described herein.


In one or more embodiments, the illustrative systems, methods, and interfaces may be implemented using one or more computer programs executed on programmable computers, such as computers that include, for example, processing capabilities, data storage (e.g., volatile or non-volatile memory and/or storage elements), input devices, and output devices. Program code and/or logic described herein may be applied to input data to perform the functionality described herein and generate desired output information. The output information may be applied as input to one or more other devices and/or methods as described herein or as would be applied in a known fashion.


The one or more programs used to implement the systems, methods, and/or interfaces described herein may be provided using any programmable language, e.g., a high-level procedural and/or object orientated programming language that is suitable for communicating with a computer system. Any such programs may, for example, be stored on any suitable device, e.g., a storage media, that is readable by a general or special purpose program running on a computer system (e.g., including processing apparatus) for configuring and operating the computer system when the suitable device is read for performing the procedures described herein. In other words, at least in one embodiment, the illustrative systems, methods, and interfaces may be implemented using a computer readable storage medium, configured with a computer program, where the storage medium so configured causes the computer to operate in a specific and predefined manner to perform functions described herein. Further, in at least one embodiment, the illustrative systems, methods, and interfaces may be described as being implemented by logic (e.g., object code) encoded in one or more non-transitory media that includes code for execution and, when executed by a processor or processing circuitry, is operable to perform operations such as the methods, processes, and/or functionality described herein.


The computing apparatus 140 and the remote computing device 160 may be, for example, any fixed or mobile computer system (e.g., a controller, a microcontroller, a personal computer, minicomputer, tablet computer, etc.). The exact configurations of the computing apparatus 140 and the remote computing device 160 are not limiting, and essentially any device capable of providing suitable computing capabilities and control capabilities (e.g., signal analysis, mathematical functions such as medians, modes, averages, maximum value determination, minimum value determination, slope determination, minimum slope determination, maximum slope determination, graphics processing, etc.) may be used. As described herein, a digital file may be any medium (e.g., volatile or non-volatile memory, a CD-ROM, a punch card, magnetic recordable tape, etc.) containing digital bits (e.g., encoded in binary, trinary, etc.) that may be readable and/or writeable by the computing apparatus 140 and the remote computing device 160 described herein. Also, as described herein, a file in user-readable format may be any representation of data (e.g., ASCII text, binary numbers, hexadecimal numbers, decimal numbers, graphically, etc.) presentable on any medium (e.g., paper, a display, etc.) readable and/or understandable by a user.


In view of the above, it will be readily apparent that the functionality as described in one or more embodiments according to the present disclosure may be implemented in any manner as would be known to one skilled in the art. As such, the computer language, the computer system, or any other software/hardware which is to be used to implement the processes described herein shall not be limiting on the scope of the systems, processes, or programs (e.g., the functionality provided by such systems, processes, or programs) described herein.


The illustrative electrode apparatus 110 may be configured to measure body-surface potentials of a patient 114 and, more particularly, torso-surface potentials of a patient 114. As shown in FIG. 2, the illustrative electrode apparatus 110 may include a set, or array, of external electrodes 112, a strap 113, and interface/amplifier circuitry 116. The electrodes 112 may be attached, or coupled, to the strap 113 and the strap 113 may be configured to be wrapped around the torso of a patient 114 such that the electrodes 112 surround the patient's heart. As further illustrated, the electrodes 112 may be positioned around the circumference of a patient 114, including the posterior, lateral, posterolateral, anterolateral, and anterior locations of the torso of a patient 114.


The illustrative electrode apparatus 110 may be further configured to measure, or monitor, sounds from the patient 114 (e.g., heart sounds from the torso of the patient). As shown in FIG. 2, the illustrative electrode apparatus 110 may include a set, or array, of acoustic sensors 120 attached, or coupled, to the strap 113. The strap 113 may be configured to be wrapped around the torso of a patient 114 such that the acoustic sensors 120 surround the patient's heart. As further illustrated, the acoustic sensors 120 may be positioned around the circumference of a patient 114, including the posterior, lateral, posterolateral, anterolateral, and anterior locations of the torso of a patient 114.


Further, the electrodes 112 and the acoustic sensors 120 may be electrically connected to interface/amplifier circuitry 116 via wired connection 118. The interface/amplifier circuitry 116 may be configured to amplify the signals from the electrodes 112 and the acoustic sensors 120 and provide the signals to one or both of the computing apparatus 140 and the remote computing device 160. Other illustrative systems may use a wireless connection to transmit the signals sensed by electrodes 112 and the acoustic sensors 120 to the interface/amplifier circuitry 116 and, in turn, to one or both of the computing apparatus 140 and the remote computing device 160, e.g., as channels of data. In one or more embodiments, the interface/amplifier circuitry 116 may be electrically coupled to one or both of the computing apparatus 140 and the remote computing device 160 using, e.g., analog electrical connections, digital electrical connections, wireless connections, bus-based connections, network-based connections, internet-based connections, etc.


Although in the example of FIG. 2 the electrode apparatus 110 includes a strap 113, in other examples any of a variety of mechanisms, e.g., tape or adhesives, may be employed to aid in the spacing and placement of electrodes 112 and the acoustic sensors 120. In some examples, the strap 113 may include an elastic band, strip of tape, or cloth. Further, in some examples, the strap 113 may be part of, or integrated with, a piece of clothing such as, e.g., a t-shirt. In other examples, the electrodes 112 and the acoustic sensors 120 may be placed individually on the torso of a patient 114. Further, in other examples, one or both of the electrodes 112 (e.g., arranged in an array) and the acoustic sensors 120 (e.g., also arranged in an array) may be part of, or located within, patches, vests, and/or other manners of securing the electrodes 112 and the acoustic sensors 120 to the torso of the patient 114. Still further, in other examples, one or both of the electrodes 112 and the acoustic sensors 120 may be part of, or located within, two sections of material or two patches. One of the two patches may be located on the anterior side of the torso of the patient 114 (to, e.g., monitor electrical signals representative of the anterior side of the patient's heart, measure surrogate cardiac electrical activation times representative of the anterior side of the patient's heart, monitor or measure sounds of the anterior side of the patient, etc.) and the other patch may be located on the posterior side of the torso of the patient 114 (to, e.g., monitor electrical signals representative of the posterior side of the patient's heart, measure surrogate cardiac electrical activation times representative of the posterior side of the patient's heart, monitor or measure sounds of the posterior side of the patient, etc.). And still further, in other examples, one or both of the electrodes 112 and the acoustic sensors 120 may be arranged in a top row and bottom row that extend from the anterior side of the patient 114 across the left side of the patient 114 to the posterior side of the patient 114. Yet still further, in other examples, one or both of the electrodes 112 and the acoustic sensors 120 may be arranged in a curve around the armpit area and may have an electrode/sensor-density that is less dense on the right thorax that the other remaining areas.


The electrodes 112 may be configured to surround the heart of the patient 114 and record, or monitor, the electrical signals associated with the depolarization and repolarization of the heart after the signals have propagated through the torso of a patient 114. Each of the electrodes 112 may be used in a unipolar configuration to sense the torso-surface potentials that reflect the cardiac signals. The interface/amplifier circuitry 116 may also be coupled to a return or indifferent electrode (not shown) that may be used in combination with each electrode 112 for unipolar sensing.


In some examples, there may be about 12 to about 50 electrodes 112 and about 12 to about 50 acoustic sensors 120 spatially distributed around the torso of a patient. Other configurations may have more or fewer electrodes 112 and more or fewer acoustic sensors 120. It is to be understood that the electrodes 112 and acoustic sensors 120 may not be arranged or distributed in an array extending all the way around or completely around the patient 114. Instead, the electrodes 112 and acoustic sensors 120 may be arranged in an array that extends only part of the way or partially around the patient 114. For example, the electrodes 112 and acoustic sensors 120 may be distributed on the anterior, posterior, and left sides of the patient with less or no electrodes and acoustic sensors proximate the right side (including posterior and anterior regions of the right side of the patient).


One or both of the computing apparatus 140 and the remote computing device 160 may record and analyze the torso-surface potential signals sensed by electrodes 112 and the sound signals sensed by the acoustic sensors 120, which are amplified/conditioned by the interface/amplifier circuitry 116. Further, one or both of the computing apparatus 140 and the remote computing device 160 may be configured to analyze the electrical signals from the electrodes 112 to provide electrocardiogram (ECG) signals, information such as EHI, or data from the patient's heart as will be further described herein. Still further, one or both of the computing apparatus 140 and the remote computing device 160 may be configured to analyze the electrical signals from the acoustic sensors 120 to provide sound signals, information, or data from the patient's body and/or devices implanted therein (such as a left ventricular assist device).


Additionally, the computing apparatus 140 and the remote computing device 160 may be configured to provide graphical user interfaces 132, 172 depicting various information related to the electrode apparatus 110 and the data gathered, or sensed, using the electrode apparatus 110. For example, the graphical user interfaces 132, 172 may depict cardiac breakthrough maps, electrocardiographic potential maps, electrical activation maps, and EHI obtained using the electrode apparatus 110. For example, the graphical user interfaces 132, 172 may depict ECGs including QRS complexes obtained using the electrode apparatus 110 and sound data including sound waves obtained using the acoustic sensors 120 as well as other information related thereto. Illustrative systems and methods may noninvasively use the electrical information collected using the electrode apparatus 110 and the sound information collected using the acoustic sensors 120 to evaluate a patient's cardiac health and to evaluate and configure cardiac therapy being delivered to the patient. More specifically, the illustrative systems and methods may noninvasively use the electrical information collected using the electrode apparatus 110 to determine a cardiac conduction system block location and/or to evaluate cardiac conduction system pacing therapy with or without being used in conjunction with traditional pacing therapy.


Further, the electrode apparatus 110 may further include reference electrodes and/or drive electrodes to be, e.g. positioned about the lower torso of the patient 114, that may be further used by the system 100. For example, the electrode apparatus 110 may include three reference electrodes, and the signals from the three reference electrodes may be combined to provide a reference signal. Further, the electrode apparatus 110 may use three caudal reference electrodes (e.g., instead of standard reference electrodes used in a Wilson Central Terminal) to get a “true” unipolar signal with less noise from averaging three caudally located reference signals.



FIG. 3 illustrates another illustrative electrode apparatus 110 that includes a plurality of electrodes 112 configured to surround the heart of the patient 114 and record, or monitor, the electrical signals associated with the depolarization and repolarization of the heart after the signals have propagated through the torso of the patient 114 and a plurality of acoustic sensors 120 configured to surround the heart of the patient 114 and record, or monitor, the sound signals associated with the heart after the signals have propagated through the torso of the patient 114. The electrode apparatus 110 may include a vest 114 upon which the plurality of electrodes 112 and the plurality of acoustic sensors 120 may be attached, or to which the electrodes 112 and the acoustic sensors 120 may be coupled. In at least one embodiment, the plurality, or array, of electrodes 112 may be used to collect electrical information such as, e.g., surrogate electrical activation times. Similar to the electrode apparatus 110 of FIG. 2, the electrode apparatus 110 of FIG. 3 may include interface/amplifier circuitry 116 electrically coupled to each of the electrodes 112 and the acoustic sensors 120 through a wired connection 118 and be configured to transmit signals from the electrodes 112 and the acoustic sensors 120 to computing apparatus 140. As illustrated, the electrodes 112 and the acoustic sensors 120 may be distributed over the torso of a patient 114, including, for example, the posterior, lateral, posterolateral, anterolateral, and anterior locations of the torso of a patient 114.


The vest 114 may be formed of fabric with the electrodes 112 and the acoustic sensors 120 attached to the fabric. The vest 114 may be configured to maintain the position and spacing of electrodes 112 and the acoustic sensors 120 on the torso of the patient 114. Further, the vest 114 may be marked to assist in determining the location of the electrodes 112 and the acoustic sensors 120 on the surface of the torso of the patient 114. In some examples, there may be about 25 to about 256 electrodes 112 and about 25 to about 256 acoustic sensors 120 distributed around the torso of the patient 114, though other configurations may have more or fewer electrodes 112 and more or fewer acoustic sensors 120.


A patient's cardiac conduction network 200 is depicted in FIGS. 4A-4B. As shown, the cardiac conduction network 200 extends from a proximal region 222 to a distal region 224. The cardiac conduction network 200 includes a specialized network of cells comprising the left and right bundle branches as well as a highly-branched network of specialized Purkinje fibers that aids in rapid propagation of electrical activation across the ventricles, which may lead to a very synchronized activation of the heart. The cardiac conduction system is part of the natural pathway of electrical conduction that extends from the sinoatrial node 230 to the ventricles via the atrioventricular node 232. Further, the electrical impulses that trigger depolarization of the myocardial tissue of the patient's heart to effectively “beat” traverse the cardiac conduction network 200 from the sinoatrial node 230 to the Purkinje fibers 239.


As described, herein, the proximal region 222 of the cardiac conduction network 200 may include the sinoatrial node 230 and the atrioventricular node 232 and the intermodal pathways therebetween, and the distal region 224 of the cardiac conduction network 200 may include the right bundle branch 238, the left posterior bundle 236, and the Purkinje fibers 239. In particular, the most distal area of the cardiac conduction network 200 may be the ends of the Purkinje fibers 239 and the most proximal area of the cardiac conduction network 200 may be the sinoatrial node 230. Thus, the cardiac conduction network 200 may be described as extending from the sinoatrial node 230 to the Purkinje fibers 239.


In FIG. 4A, a cardiac conduction system block 240 is positioned just distal of the atrioventricular node 232 but prior to the bundle of His 234 branching to the left and right bundles. Thus, it may be described that the cardiac conduction system block 240 is positioned relatively proximally along the cardiac conduction network 220. Using the illustrative systems and methods as will be described further herein, a plurality of breakthrough maps may be used determine where the cardiac conduction system block 240 is positioned as shown in FIG. 4A. Since the cardiac conduction system block 240 is located relatively proximally (e.g., closer to the proximal region 222 than the distal region 224), it may be a good candidate for cardiac conduction system pacing therapy because, e.g., cardiac conduction system pacing therapy may be delivered to a position, or location, within the cardiac conduction system distal of the cardiac conduction system block 240. For example, cardiac conduction system pacing therapy may be delivered to the bundle of His 234 and/or one of both of the right and left branches.


In FIG. 4B, a cardiac conduction system block 241 is positioned along the left branch just distal of the left posterior bundle. Thus, it may be described that the cardiac conduction system block 241 is positioned relatively distally along the cardiac conduction network 220. Using the illustrative systems and methods as will be described further herein, a plurality of breakthrough maps may be used determine where the cardiac conduction system block 241 is positioned as shown in FIG. 4B. Since the cardiac conduction system block 241 is located relatively distally (e.g., closer to the distal region 224 than the proximal region 222), the cardiac conduction system block 241 may not be a good candidate for cardiac conduction system pacing therapy because, e.g., cardiac conduction system pacing therapy likely could not be positioned more distal than the cardiac conduction system block 241, and if the cardiac conduction system pacing therapy were positioned proximal to the cardiac conduction system block 241 (such as, e.g., at the bundle of his 234), any such cardiac conduction system pacing therapy may be blocked, or stopped, by the cardiac conduction system block 241. Therefore, when comparing the cardiac conduction system blocks 240, 241 of FIGS. 4A-4B, the more proximal cardiac conduction system block 240 is likely more correctable using cardiac conduction system pacing therapy than the more distal cardiac conduction system block 241 of FIG. 4B.


The illustrative systems, methods, and interfaces described herein may be used to provide noninvasive assistance to a user in the evaluation and assessment patients cardiac conduction system, and in particular, the location of a cardiac conduction system block along the cardiac conduction system. For instance, the illustrative systems, methods, and interfaces may utilize a plurality of cardiac breakthrough maps to determine an approximate location along the cardiac conduction system where a cardiac conduction system block is located.


Further, the illustrative systems and methods described herein may provide users a useful tool to determine where a cardiac conduction system block is located or relatively positioned within the cardiac conduction network of a patient. For example, the illustrative systems and methods may determine how proximal or distal a cardiac conduction system block is located along the cardiac conduction network of the patient. The location of the cardiac conduction system block may be helpful in determining whether cardiac conduction system pacing therapy and/or another cardiac therapy may be successful in treating the patient.


An illustrative method 300 of evaluating a patient's cardiac conduction system is depicted in FIG. 5. Generally, it may be described that the illustrative method 300 may be used to analyze external electrical activity (e.g., from the skin of the torso of the patient) prior to delivery of any cardiac pacing therapy and use such electrical activity to determine where along the cardiac conduction system are block is located, which may guide a clinician in determining where to deliver therapy.


The method 300 may include monitoring electrical activity 302. In one embodiment, the electrical activity may be measured externally from the patient. In other words, the electrical activity may be measured from tissue outside the patient's body (e.g., skin). For example, the method 300 may include monitoring, or measuring, electrical activity 302 using a plurality of external electrodes such as, e.g., shown and described with respect to FIGS. 1-3. In one embodiment, the plurality of external electrodes may be part, or incorporated into, a vest or band that is located about a patient's torso. More specifically, the plurality of electrodes may be described as being external surface electrodes positioned in an array configured to be located proximate the skin of the torso of a patient. It may be described that when using a plurality of external electrodes, the monitoring process 302 may provide a plurality electrocardiograms (ECGs), electrocardiographic potential or voltage, signals representative of the depolarization and repolarization of the patient's heart, and/or a plurality of activation times.


In particular in method 300, the monitored electrical activity 302 may be used to generate a plurality of cardiac breakthrough maps 304. Each of the plurality of cardiac breakthrough maps is a spatial representation of electrocardiographic potential of the patient's heart. The plurality of cardiac breakthrough maps when viewed or depicted in sequence show the spatial representation of electrocardiographic potential of the patient's heart over time. In this way, the plurality of cardiac breakthrough maps may be described as a video of the spatial representation of electrocardiographic potential of the patient's heart (e.g., during a cardiac cycle), that can be traversed forward and backward.


Illustrative anterior and posterior cardiac breakthrough maps are depicted in FIGS. 6A-6B. Each cardiac breakthrough map includes an anterior region corresponding to the electrical activity (e.g., electrocardiographic potential) measured from the anterior of the patient's torso and a posterior region corresponding to the electrical activity (e.g., electrocardiographic potential) measured from the posterior of the patient's torso. As shown, the anterior region extends from a right side of the patient to a left side of the patient and the posterior region extends from the left side of the patient to the right side of the patient so as to depict the breakthrough map wrapping around the torso of the patient.


As described, the cardiac breakthrough maps depict the electrocardiographic potential across the skin of the patient (which corresponds to the heart of the patient) for a given or selected time. For example, the cardiac breakthrough maps of each of FIGS. 6A-6B are depicted at 25 milliseconds (ms) after QRS onset. The illustrative method 230, however, generates a plurality of cardiac breakthrough maps 304 according to a sample interval. The sampling interval may be between about 0.5 ms and 10 ms. In at least one embodiment, the sampling interval is 5 ms. In other embodiments, the sampling interval may greater than or equal to 0.5 ms, greater than or equal to 0.75 ms, greater than or equal to 1 ms, greater than or equal to 2.5 ms, etc. and/or less than or equal to about 10 ms, less than or equal to about 7 ms, less than or equal to about 5 ms, less than or equal to about 3 ms, less than or equal to about 2 ms, etc. Thus, for example, if the sampling interval is 5 ms and breakthrough maps are generated for 500 ms following QRS onset, 100 breakthrough maps may be generated.


Although QRS onset is described herein as the triggering, or initiating, event for generating cardiac breakthrough maps, it is be understood that any triggering, or initiating, event may be used to begin generating cardiac breakthrough maps. In at least one embodiment, the triggering, or initiating, event may be selected such that ventricular depolarization is captured so that cardiac breakthrough may be identified within the cardiac breakthrough maps.


Additionally, the plurality of cardiac breakthrough maps may be generated and analyzed for a single heartbeat at time. For example, the illustrative systems and methods described herein may determine the cardiac conduction system block location during a single heartbeat. It is to be understood, however, that the cardiac conduction system block location may be determined for multiple heartbeats, but only a single heartbeat may be analyzed at a time.


The illustrative method 300 may further include determining a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps 306. In other words, the plurality of generated cardiac breakthrough maps may be used to determine a cardiac conduction system block location. Generally, it may be described that, if the spatial location of the cardiac breakthrough is located in a left anterior region according to the plurality of cardiac breakthrough maps, then it may be determined that the cardiac conduction system block is located distally along the cardiac conduction system, and conversely, if the spatial location of the cardiac breakthrough is not located in a left anterior region according to the plurality of cardiac breakthrough maps, then it may be determined that the cardiac conduction system block is located proximally along the cardiac conduction system.


More specifically, determining a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps 306 may include first determining the spatial location of the cardiac breakthrough within the plurality of cardiac breakthrough maps 308. Determination of the spatial location of the cardiac breakthrough within the plurality of cardiac breakthrough maps 308 may be performed or executed in a variety of different manners. Generally, determination of the spatial location of the cardiac breakthrough within the plurality of cardiac breakthrough maps 308 is looking for the first surface location where ventricular depolarization substantively occurs and accordingly infer the location of the first myocardial breakthrough proximate to the first surface location (e.g., underneath the first surface location on the heart).


In one example, a breakthrough threshold may be utilized to determine the spatial location of the cardiac breakthrough. An illustrative breakthrough threshold may be between about −0.2 millivolts (mV) and about −1.5 mV. In at least one embodiment, the breakthrough threshold may be −1 mV. When utilizing the breakthrough threshold, the first location or region that generates a cardiac potential that less than or equal to the breakthrough threshold may be identified as the spatial location of the cardiac breakthrough.


For example, each of the cardiac breakthrough maps depicted in FIGS. 6A-6B utilize the breakthrough threshold of −1 mV and are gray scaled (or color coded) accordingly with any electrocardiographic potential less than or equal to −1 mV depicted in a first gray scale (or color code) and any electrocardiographic potential greater than −1 mV depicted in a second gray scale (or color code) different than the first gray scale (or color code). In this way, when traversing a plurality of cardiac breakthrough maps, it may be apparent which cardiac breakthrough map first depicts the cardiac breakthrough. In both examples depicted in FIGS. 6A-6B, the cardiac breakthrough occurs at 25 ms after QRS onset.


Determining a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps 306 may further include determining whether the cardiac breakthrough is located in a left anterior region of the cardiac breakthrough maps 310. The left anterior region of the cardiac breakthrough maps may be captured from a left anterior subset of external positioned generally on the anterior of the patient's torso between the sternum and left side. An illustrative left anterior region is depicted by a dashed line box 316 in FIGS. 6A-6B.


If the cardiac breakthrough is located in the left anterior region such as shown in FIG. 6A, it may be determined that the cardiac conduction system block is distally located along the cardiac conduction system 312. Conversely, if the cardiac breakthrough is not located in the left anterior region such as shown in FIG. 6B, it may be determined that the cardiac conduction system block is proximally located along the cardiac conduction system 314.


As described herein, the cardiac conduction network 200 extends from a proximal region 222 to a distal region 224 as shown in FIGS. 4A-4B. When the method 300 determines that the cardiac conduction system block is proximally located along the cardiac conduction system 314, the cardiac conduction system block may be located closer to the proximal region 222 than the distal region 224. Conversely, when the method 300 determines that the cardiac conduction system block is distally located along the cardiac conduction system 314, the cardiac conduction system block may be located closer to the distal region 224 than the proximal region 222.


The plurality of cardiac breakthrough maps may be further used with an illustrative graphical user interface 311 as shown in FIG. 6C. As shown, the graphical user interface 311 includes a map region 313 for displaying cardiac breakthrough maps including anterior and posterior regions and a timeline region 315. The timeline region 315 may be used by a user to move through, or traverse through, the plurality of breakthrough maps time depicted in the map region 313. The timeline region 315 includes a marker 317 indicating the position along the timeline of the plurality of breakthrough maps generated over time based on the monitored electrical activity over time. A user may select the marker 317 and “drag” the marker 317 left to move to previous breakthrough maps corresponding to earlier time periods or “drag” the marker 317 right to move to later breakthrough maps corresponding to later time periods. As shown, the marker 317 is located at 25 ms after QRS onset. The breakthrough maps of FIG. 6B are depicted in the map region 313 of the graphical user interface 311 of FIG. 6C, which, as described herein, do not include a cardiac breakthrough located in the left anterior region thereby indicating the cardiac conduction system is located proximally along the cardiac conduction system. Thus, the graphical user interface 311 further includes a cardiac conduction system block indication 301 of whether the cardiac conduction system block location is proximally located or distally located along the cardiac conduction system. In this example, the cardiac conduction system block indication 301 indicates that the cardiac conduction system block location is proximally located.


The illustrative systems, methods, and interfaces described herein may be used to provide noninvasive assistance to a user in the evaluation and assessment of cardiac conduction system pacing therapy (e.g., by an implantable medical device such as a VfA pacing device) with or without being used in conjunction with traditional pacing therapy (e.g., left ventricular pacing lead in the coronary sinus to pace the left ventricle, a right ventricular pacing lead located in the right ventricle to pace the base of the right ventricle, etc.). Further, the illustrative systems, methods, and interfaces described herein may be able to assist a user in the improvement and configuration of cardiac conduction system pacing therapy.


An illustrative method 400 of evaluating cardiac conduction system pacing therapy is depicted in FIG. 7. The method 400 may include monitoring electrical activity 402 to generate a plurality of electrical signals (e.g., ECG or cardiac signals). The electrical activity may be monitored during intrinsic heart rhythm of the patient without delivery of any cardiac therapy. Thus, the electrical activity may be monitored 402 prior to the implantation of any implantable cardiac therapy device. For example, the monitoring 402 may be performed during an initial consultation prior to any invasive procedures to treat the present condition. Additionally, as described herein, monitoring electrical activity 402 using a plurality of external electrodes is a noninvasive process since, e.g., the external electrodes are attached to the skin of the patient as opposed to inserting or implanting any electrodes to acquire electrical activity or data. Additionally, however, if an implantable cardiac therapy device is already implanted in the patient, the monitoring 402 may be performed with any cardiac therapy provided by the implantable cardiac therapy device disabled (or “turned off”).


According to various embodiments, the electrical activity is monitored 402 using a plurality of electrodes. The plurality of electrodes may be external surface electrodes configured in a band or a vest similar to as described herein with respect to FIGS. 1-3. Each of the electrodes may be positioned or located about the torso of the patient so as to monitor electrical activity (e.g., acquire torso-potentials) from a plurality of different locations about the torso of the patient. Each of the different locations where the electrodes are located may correspond to the electrical activation of different portions or regions of cardiac tissue of the patient's heart. Thus, for example, the plurality of electrodes may record, or monitor, the electrical signals associated with the depolarization and repolarization of a plurality of different locations of, or about, the heart after the signals have propagated through the torso of a patient. According to various embodiments, the plurality of external electrodes may include, or comprise, a plurality of anterior electrodes that are located proximate skin of the anterior of the patient's torso, left lateral or left side electrodes that are located proximate skin of the left lateral or left side of the patient's torso, and posterior electrodes that are located proximate skin of the posterior of the patient's torso.


It may be described that, when using a plurality of external electrodes, the monitoring process 402 may provide a plurality electrocardiograms (ECGs), signals representative of the depolarization and repolarization of the patient's heart. The plurality of ECGs may, in turn, be used to generate surrogate cardiac electrical activation times representative of the depolarization of the heart. As described herein, surrogate cardiac electrical activation times may be, for example, representative of actual, or local, electrical activation times of one or more regions of the patient's heart. Measurement of activation times can be performed by picking an appropriate fiducial point (e.g., peak values, minimum values, minimum slopes, maximum slopes, zero crossings, threshold crossings, etc. of a near or far-field EGM) and measuring time between the onset of cardiac depolarization (e.g., onset of QRS complexes) and the appropriate fiducial point (e.g., within the electrical activity). The activation time between the onset of the QRS complex (or the peak Q wave) to the fiducial point may be referred to as q-LV time. In at least one embodiment, the earliest QRS onset from all of the plurality of electrodes may be utilized as the starting point for each activation time for each electrode, and the maximum slope following the onset of the QRS complex may be utilized as the end point of each activation time for each electrode.


The monitored electrical activity 402 and, in turn, the electrical activation times may be used to generate baseline (or intrinsic) electrical heterogeneity information (EHI) 404. The EHI (e.g., data) may be defined as information indicative of at least one of mechanical synchrony or dyssynchrony of the heart and/or electrical synchrony or dyssynchrony of the heart. In other words, EHI may represent a surrogate of actual mechanical and/or electrical functionality of a patient's heart. As will be further described herein, relative changes in EHI (e.g., from baseline heterogeneity information to paced, or therapy, heterogeneity information, from a first set of heterogeneity information to a second set of therapy heterogeneity information, etc.) may be used to determine a surrogate value representative of the changes in hemodynamic response (e.g., acute changes in LV pressure gradients). Left ventricular pressure may be typically monitored invasively with a pressure sensor located in the left ventricular of a patient's heart. As such, the use of EHI to determine a surrogate value representative of the left ventricular pressure may avoid invasive monitoring using a left ventricular pressure sensor.


In at least one embodiment, the EHI may include a standard deviation of ventricular activation times measured using some or all of the external electrodes, e.g., of the electrode apparatus 110 described herein with respect FIGS. 1-3. Further, local, or regional, EHI may include standard deviations and/or averages of activation times measured using electrodes located in certain anatomic areas of the torso. For example, external electrodes on the left side of the torso of a patient may be used to compute local, or regional, left EHI.


The EHI may be generated using one or more various systems and/or methods. For example, EHI may be generated using an array, or a plurality, of surface electrodes and/or imaging systems as described in U.S. Pat. No. 9,510,763 B2 issued on Dec. 6, 2016, and entitled “ASSESSING INTRACARDIAC ACTIVATION PATTERNS AND ELECTRICAL DYSSYNCHRONY,” U.S. Pat. No. 8,972,228 B2 issued Mar. 3, 2015, and entitled “ASSESSING INTRACARDIAC ACTIVATION PATTERNS”, and U.S. Pat. No. 8,180,428 B2 issued May 15, 2012 and entitled “METHODS AND SYSTEMS FOR USE IN SELECTING CARDIAC PACING SITES,” each of which is incorporated herein by reference in its entirety.


EHI may include one or more metrics or indices. For example, one of the metrics, or indices, of electrical heterogeneity may be a standard deviation of activation times (SDAT) measured using some or all of the electrodes on the surface of the torso of a patient. In some examples, the SDAT may be calculated using the surrogate, or estimated, cardiac activation times over the surface of a model heart.


In this example, the EHI comprises one or more left, or left-sided, metrics generated based on left-sided activation times of the surrogate cardiac electrical activation times measured using a plurality of left external electrodes. The left external electrodes may include a plurality of left external electrodes positioned to the left side of the patient's torso.


One left, or left-sided metric, or index, of electrical heterogeneity, or dyssynchrony, may be a left-sided metric of dispersion such as, for example, a left standard deviation of surrogate cardiac electrical activation times (LVED) monitored by external electrodes located proximate the left side of a patient. Further, another left, or left-sided metric, or index, of electrical heterogeneity may include an average of surrogate cardiac electrical activation times (LVAT) monitored by external electrodes located proximate the left side of a patient. The LVED and LVAT may be determined (e.g., calculated, computed, etc.) from electrical activity measured only by electrodes proximate the left side of the patient, which may be referred to as “left” electrodes. Activation time determined, or measured, from the left electrodes may be described as being left-sided activation times. The left electrodes may be defined as any surface electrodes located proximate the left ventricle, which includes the body or torso regions to the left of the patient's sternum and spine (e.g., toward the left arm of the patient, the left side of the patient, etc.). In one embodiment, the left electrodes may include all anterior electrodes on the left of the sternum and all posterior electrodes to the left of the spine. In another embodiment, the left electrodes may include all anterior electrodes on the left of the sternum and all posterior electrodes. In yet another embodiment, the left electrodes may be designated based on the contour of the left and right sides of the heart as determined using imaging apparatus (e.g., x-ray, fluoroscopy, etc.).


The illustrative method 400 may then deliver cardiac conduction pacing therapy 406 using a cardiac conduction system pacing device. The cardiac conduction system pacing therapy may include pacing therapy that is configured to pace the cardiac conduction system of the patient. For example, the cardiac conduction system pacing therapy may include ventricle-from-atrium (VfA) pacing, which is further described herein with respect to FIGS. 8-11. Further, for example, the cardiac conduction system pacing therapy may include His bundle pacing therapy such as described in, for example, U.S. Pat. App. Pub. No. 2019/0111270 A1 entitled “His Bundle and Bundle Branch Pacing Adjustment” published on Apr. 18, 2019, which is incorporated herein by reference in its entirety. Still further, for example, the cardiac conduction system pacing therapy may include intraseptal left ventricular endocardial pacing such as described in, for example, U.S. patent application Ser. No. 16/521,000 entitled “AV Synchronous Septal Pacing” filed on Jul. 24, 2019, which is incorporated herein by reference in its entirety.


The cardiac conduction system pacing therapy may be delivered according to various basic or nominal parameters. For example, the cardiac conduction system pacing therapy may be delivered at a paced AV delay that between 40% to 80% of an intrinsic AV delay. The paced AV delay is a time period between a sensed atrial event and delivery of cardiac conduction system pacing therapy, and the intrinsic AV delay is a time period between a sensed atrial event and an intrinsic ventricular event. The intrinsic AV delay may be monitored or measured prior the delivery of cardiac conduction system pacing therapy or during a pause in the delivery of cardiac conduction system pacing therapy.


During the delivery of cardiac conduction system pacing therapy 406, the method 400 may further include monitoring paced electrical activity of the patient using a plurality of external electrodes 407 and generating paced EHI 408 based on the monitored paced electrical activity. The electrical activity may be monitored 407 in the same or similar fashion as described herein with respect to process 402 except that it is monitored during the delivery of cardiac conduction system pacing therapy. Likewise, the paced EHI 408 may be generated 408 in the same or similar fashion as described herein with respect to process 404 except that the electrical activity used to generate the paced EHI was monitored during the delivery of cardiac conduction system pacing therapy.


As a result, the method 400 may now be described as having baseline EHI and paced EHI, which may be used to determine whether the cardiac conduction system pacing therapy is effective 410. One or more metrics of EHI may be used to determine whether the cardiac conduction system pacing therapy is effective.


For example, SDAT may be utilized to determine whether the cardiac conduction system pacing therapy is effective 410. More specifically, generating baseline EHI may include generating a baseline SDAT based on the monitored intrinsic electrical activity, and generating paced EHI may include generating a paced SDAT based on the monitored paced electrical activity. The baseline SDAT and the paced SDAT may then be utilized (e.g., compared) to determine whether the cardiac conduction system pacing therapy is effective 412. For instance, a reduction in SDAT from baseline to paced may be analyzed. In at least one embodiment, if the paced SDAT is less than 90% of the baseline SDAT, then it may be determined that the cardiac conduction system pacing therapy is effective 412. Conversely, if the paced SDAT is greater than or equal to 90% of the baseline SDAT, then it may be determined that the cardiac conduction system pacing therapy is not effective. In other words, a threshold SDAT percentage of paced SDAT to baseline SDAT may be used to determine whether the cardiac conduction system pacing therapy is effective or not effective. The threshold SDAT percentage may between about 70% and about 95%. As described earlier, the threshold SDAT percentage may be 90%. In other embodiments, the threshold SDAT percentage may be greater than or equal to 70%, greater than or equal to 80%, greater than or equal to 85%, etc. and/or less than or equal to 95%, less than or equal to 90%, etc.


Further, for example, an EHI metric of ventricular dispersion may be utilized to determine whether the cardiac conduction system pacing therapy is effective 410. More specifically, generating paced EHI may include generating a paced LVED based on the monitored paced electrical activity. The paced LVED may then be utilized (e.g., compared) to determine whether the cardiac conduction system pacing therapy is effective 412. For instance, the LVED may compared to a LVED threshold value. In at least one embodiment, if the paced LVED is greater than 25 milliseconds, then it may be determined that the cardiac conduction system pacing therapy is effective 412. Conversely, if the paced LVED is less than or equal to 25 ms, then it may be determined that the cardiac conduction system pacing therapy is not effective. In other words, a threshold LVED value may be used to determine whether the cardiac conduction system pacing therapy is effective or not effective. The threshold LVED value may between about 15 ms and about 40 ms. As described earlier, the threshold LVED value may be 25 ms. In other embodiments, the threshold LVED value may be greater than or equal to 15 ms, greater than or equal to 20 ms, greater than or equal to 30%, etc. and/or less than or equal to 40%, less than or equal to 35%, etc.


As described herein, one or more metrics of EHI may be used to determine whether the cardiac conduction system pacing therapy is effective 410. In at least one embodiment, change in SDAT from baseline to pacing (or therapy) and paced LVED may both be utilized to determine whether the cardiac conduction system pacing therapy is effective 412. For example, if the paced SDAT is less than 90% of the baseline SDAT and if the paced LVED is greater than 25 milliseconds less than the intrinsic LVED, then it may be determined that the cardiac conduction system pacing therapy is effective 412. Conversely, if the paced SDAT is greater than or equal to 90% of the baseline SDAT or if the paced LVED is less than or equal to 25 ms, then it may be determined that the cardiac conduction system pacing therapy is not effective. In other words, such test may be dependent on both metrics indicating effective cardiac conduction system pacing therapy to move forward and ultimately determine that the cardiac conduction system pacing therapy is effective; if one or none of the metrics do not indicate that the cardiac conduction system pacing therapy is effective, then it may be ultimately determined that the ccs pacing therapy is ineffective.


It is to be understood that when cardiac conduction system pacing therapy is described as being effective that the cardiac conduction system pacing therapy is acceptable to provide cardiac therapy without utilizing additional therapy such as traditional myocardial tissue cardiac pacing therapy (e.g., using a left ventricular lead in the coronary sinus to paced the myocardial tissue of the left ventricle, using a right ventricular lead in the right ventricle to pace the myocardial tissue of the right ventricle). Thus, if cardiac conduction system pacing therapy is not determined to be effective, it may mean that the cardiac conduction system pacing therapy is partially effective or not effective at all. In either case, additional cardiac therapy may need to be delivered to provide acceptable cardiac therapy to the patient.


Thus, the method 400 may further analyze the location of cardiac activation delay 414 if it is determined the cardiac conduction system pacing therapy is not effective. In particular, whether the cardiac activation delay is located on the right side or left side of the patient's heart, and in particular, the left ventricle, based on the monitored electrical activity may be determined 414. In other words, whether cardiac activation delay is located on the left or right side of the left ventricle based on the monitored paced electrical activity may be determined in response to determining that the cardiac conduction system pacing therapy is not effective.


For example, surrogate cardiac activation time maps may be generated for the anterior and posterior of the patient based on the monitoring intrinsic electrical activation and/or the monitored paced electrical activity, and the activation times, or delays, therein may be compared to an activation threshold. If the activation times are later than the activation threshold, then the area of the surrogate cardiac activation time maps corresponding to such late activation times may be determined to have cardiac activation delay. The activation threshold may be between about 25 ms and about 75 ms. In at least one embodiment, the activation threshold is 50 ms. In other embodiments, the activation threshold may be greater than or equal to 25 ms, greater than or equal to 35 ms, greater than or equal to 45 ms, greater than or equal to 55 ms, etc. and/or less than or equal to 75 ms, less than or equal to 65 ms, less than or equal to 60 ms, less than or equal to 50 ms, etc. For instance, if delayed activation occurs more on the anterior map in both intrinsic and paced rhythm, a dominant and persistent delay in right ventricular activation may be identified (e.g., a right bundle branch block patient) in which case the traditional pacing lead implanted may be a right ventricular pacing lead.


Thus, if the cardiac activation delay is located predominately on the left side, a left ventricular lead to pace the myocardial tissue of the left ventricle may be implanted 216. And, if the cardiac activation delay is located predominately on the right side, a right ventricular lead to pace the myocardial tissue of the right ventricle may be implanted 218.


The method 400 may then continue monitoring paced electrical activity 408 during delivery of cardiac conduction system pacing therapy and traditional pacing therapy using a right or left ventricular lead. In other words, cardiac conduction system pacing therapy may be delivered in conjunction with traditional pacing therapy, and electrical activity may be monitored during the delivery of such combined therapy. The monitored electrical activity may then be used to configure the right or left pacing lead 420. For example, combined paced EHI may be generated based on the monitored combined paced electrical activity. The combined EHI may then be used to determine the effectiveness of the combined pacing therapy. For example, the SDAT and/or LVED generated from electrical activity monitored during combined pacing therapy may be compared to baseline SDAT and/or baseline LVED and/or compared to various threshold values similar to as described herein with respect to process 410.


Additionally, during configuration of the pacing lead 420, one or more paced parameters may be adjusted such as, for example, pacing lead location, pacing amplitude or voltage, number of pulses, pacing burst length, pacing frequency, single or multiple electrode pacing vectors, etc. Each different parameter may be adjusted while monitoring the electrical activity of the combined pacing therapy and evaluating the EHI generated therefrom to determine the optimal set of pacing parameters. Further illustrative systems, methods, and processes for optimizing the cardiac pacing therapy may be described in U.S. patent application Ser. No. 15/934,517 filed on Mar. 23, 2019 entitled “Evaluation of Ventricle from Atrium Pacing Therapy” and U.S. Prov. Pat. App. Ser. No. 62/725,763 filed on Aug. 31, 2018 entitled “Adaptive VFA Cardiac Therapy,” each of which is incorporated herein by reference in its entirety.


An illustrative ventricle from atrium (VfA) cardiac therapy system is depicted in FIG. 8 that may be configured to be used with, for example, the systems and methods described herein with respect to FIGS. 1-7. Although it is to be understood that the present disclosure may utilize one or both of leadless and leaded implantable medical devices, the illustrative cardiac therapy system of FIG. 8 includes a leadless intracardiac medical device 10 that may be configured for single or dual chamber therapy and implanted in a patient's heart 8. In some embodiments, the device 10 may be configured for single chamber pacing and may, for example, switch between single chamber and multiple chamber pacing (e.g., dual or triple chamber pacing). As used herein, “intracardiac” refers to a device configured to be implanted entirely within a patient's heart, for example, to provide cardiac therapy. The device 10 is shown implanted in the right atrium (RA) of the patient's heart 8 in a target implant region 4. The device 10 may include one or more fixation members 20 that anchor a distal end of the device 10 against the atrial endocardium in a target implant region 4. The target implant region 4 may lie between the Bundle of His 5 and the coronary sinus 3 and may be adjacent, or next to, the tricuspid valve 6. The device 10 may be described as a ventricle-from-atrium device because, for example, the device 10 may perform, or execute, one or both of sensing electrical activity from and providing therapy to one or both ventricles (e.g., right ventricle, left ventricle, or both ventricles, depending on the circumstances) while being generally disposed in the right atrium. In particular, the device 10 may include a tissue-piercing electrode that may be implanted in the basal and/or septal region of the left ventricular myocardium of the patient's heart from the triangle of Koch region of the right atrium through the right atrial endocardium and central fibrous body.


The device 10 may be described as a leadless implantable medical device. As used herein, “leadless” refers to a device being free of a lead extending out of the patient's heart 8. Further, although a leadless device may have a lead, the lead would not extend from outside of the patient's heart to inside of the patient's heart or would not extend from inside of the patient's heart to outside of the patient's heart. Some leadless devices may be introduced through a vein, but once implanted, the device is free of, or may not include, any transvenous lead and may be configured to provide cardiac therapy without using any transvenous lead. Further, a leadless VfA device, in particular, does not use a lead to operably connect to an electrode in the ventricle when a housing of the device is positioned in the atrium. Additionally, a leadless electrode may be coupled to the housing of the medical device without using a lead between the electrode and the housing.


The device 10 may include a dart electrode assembly 12 defining, or having, a straight shaft extending from a distal end region of device 10. The dart electrode assembly 12 may be placed, or at least configured to be placed, through the atrial myocardium and the central fibrous body and into the ventricular myocardium 14, or along the ventricular septum, without perforating entirely through the ventricular endocardial or epicardial surfaces. The dart electrode assembly 12 may carry, or include, an electrode at a distal end region of the shaft such that the electrode may be positioned within the ventricular myocardium for sensing ventricular signals and delivering ventricular pacing pulses (e.g., to depolarize the left ventricle and/or right ventricle to initiate a contraction of the left ventricle and/or right ventricle). In some examples, the electrode at the distal end region of the shaft is a cathode electrode provided for use in a bipolar electrode pair for pacing and sensing. While the implant region 4 as illustrated may enable one or more electrodes of the dart electrode assembly 12 to be positioned in the ventricular myocardium, it is recognized that a device having the aspects disclosed herein may be implanted at other locations for multiple chamber pacing (e.g., dual or triple chamber pacing), single chamber pacing with multiple chamber sensing, single chamber pacing and/or sensing, or other clinical therapy and applications as appropriate.


It is to be understood that although device 10 is described herein as including a single dart electrode assembly, the device 10 may include more than one dart electrode assembly placed, or configured to be placed, through the atrial myocardium and the central fibrous body, and into the ventricular myocardium 14, or along the ventricular septum, without perforating entirely through the ventricular endocardial or epicardial surfaces. Additionally, each dart electrode assembly may carry, or include, more than a single electrode at the distal end region, or along other regions (e.g., proximal or central regions), of the shaft.


The cardiac therapy system 2 may also include a separate medical device 50 (depicted diagrammatically in FIG. 8), which may be positioned outside the patient's heart 8 (e.g., subcutaneously) and may be operably coupled to the patient's heart 8 to deliver cardiac therapy thereto. In one example, separate medical device 50 may be an extravascular ICD. In some embodiments, an extravascular ICD may include a defibrillation lead including, or carrying, a defibrillation electrode. A therapy vector may exist between the defibrillation electrode on the defibrillation lead and a housing electrode of the ICD. Further, one or more electrodes of the ICD may also be used for sensing electrical signals related to the patient's heart 8. The ICD may be configured to deliver shock therapy including one or more defibrillation or cardioversion shocks. For example, if an arrhythmia is sensed, the ICD may send a pulse via the electrical lead wires to shock the heart and restore its normal rhythm. In some examples, the ICD may deliver shock therapy without placing electrical lead wires within the heart or attaching electrical wires directly to the heart (subcutaneous ICDs). Examples of extravascular, subcutaneous ICDs that may be used with the system 2 described herein may be described in U.S. Pat. No. 9,278,229 (Reinke et al.), issued 8 Mar. 2016, which is incorporated herein by reference in its entirety.


In the case of shock therapy (e.g., defibrillation shocks provided by the defibrillation electrode of the defibrillation lead), the separate medical device 50 (e.g., extravascular ICD) may include a control circuit that uses a therapy delivery circuit to generate defibrillation shocks having any of a number of waveform properties, including leading-edge voltage, tilt, delivered energy, pulse phases, and the like. The therapy delivery circuit may, for instance, generate monophasic, biphasic, or multiphasic waveforms. Additionally, the therapy delivery circuit may generate defibrillation waveforms having different amounts of energy. For example, the therapy delivery circuit may generate defibrillation waveforms that deliver a total of between approximately 60-80 Joules (J) of energy for subcutaneous defibrillation.


The separate medical device 50 may further include a sensing circuit. The sensing circuit may be configured to obtain electrical signals sensed via one or more combinations of electrodes and to process the obtained signals. The components of the sensing circuit may include analog components, digital components, or a combination thereof. The sensing circuit may, for example, include one or more sense amplifiers, filters, rectifiers, threshold detectors, analog-to-digital converters (ADCs), or the like. The sensing circuit may convert the sensed signals to digital form and provide the digital signals to the control circuit for processing and/or analysis. For example, the sensing circuit may amplify signals from sensing electrodes and convert the amplified signals to multi-bit digital signals by an ADC, and then provide the digital signals to the control circuit. In one or more embodiments, the sensing circuit may also compare processed signals to a threshold to detect the existence of atrial or ventricular depolarizations (e.g., P- or R-waves) and indicate the existence of the atrial depolarization (e.g., P-waves) or ventricular depolarizations (e.g., R-waves) to the control circuit.


The device 10 and the separate medical device 50 may cooperate to provide cardiac therapy to the patient's heart 8. For example, the device 10 and the separate medical device 50 may be used to detect tachycardia, monitor tachycardia, and/or provide tachycardia-related therapy. For example, the device 10 may communicate with the separate medical device 50 wirelessly to trigger shock therapy using the separate medical device 50. As used herein, “wirelessly” refers to an operative coupling or connection without using a metal conductor between the device 10 and the separate medical device 50. In one example, wireless communication may use a distinctive, signaling, or triggering electrical pulse provided by the device 10 that conducts through the patient's tissue and is detectable by the separate medical device 50. In another example, wireless communication may use a communication interface (e.g., an antenna) of the device 10 to provide electromagnetic radiation that propagates through patient's tissue and is detectable, for example, using a communication interface (e.g., an antenna) of the separate medical device 50.



FIG. 9 is an enlarged conceptual diagram of the intracardiac medical device 10 of FIG. 8 and anatomical structures of the patient's heart 8. In particular, the device 10 is configured to sense cardiac signals and/or deliver pacing therapy. The intracardiac device 10 may include a housing 30. The housing 30 may define a hermetically-sealed internal cavity in which internal components of the device 10 reside, such as a sensing circuit, therapy delivery circuit, control circuit, memory, telemetry circuit, other optional sensors, and a power source as generally described in conjunction with FIG. 11. The housing 30 may include (e.g., be formed of or from) an electrically conductive material such as, e.g., titanium or titanium alloy, stainless steel, MP35N (a non-magnetic nickel-cobalt-chromium-molybdenum alloy), platinum alloy, or other bio-compatible metal or metal alloy. In other examples, the housing 30 may include (e.g., be formed of or from) a non-conductive material including ceramic, glass, sapphire, silicone, polyurethane, epoxy, acetyl co-polymer plastics, polyether ether ketone (PEEK), a liquid crystal polymer, or other biocompatible polymer.


In at least one embodiment, the housing 30 may be described as extending between a distal end region 32 and a proximal end region 34 and as defining a generally-cylindrical shape, e.g., to facilitate catheter delivery. In other embodiments, the housing 30 may be prismatic or any other shape to perform the functionality and utility described herein. The housing 30 may include a delivery tool interface member 26, e.g., defined, or positioned, at the proximal end region 34, for engaging with a delivery tool during implantation of the device 10.


All or a portion of the housing 30 may function as a sensing and/or pacing electrode during cardiac therapy. In the example shown, the housing 30 includes a proximal housing-based electrode 24 that circumscribes a proximal portion (e.g., closer to the proximal end region 34 than the distal end region 32) of the housing 30. When the housing 30 is (e.g., defines, formed from, etc.) an electrically-conductive material, such as a titanium alloy or other examples listed above, portions of the housing 30 may be electrically insulated by a non-conductive material, such as a coating of parylene, polyurethane, silicone, epoxy, or other biocompatible polymer, leaving one or more discrete areas of conductive material exposed to form, or define, the proximal housing-based electrode 24. When the housing 30 is (e.g., defines, formed from, etc.) a non-conductive material, such as a ceramic, glass or polymer material, an electrically-conductive coating or layer, such as a titanium, platinum, stainless steel, or alloys thereof, may be applied to one or more discrete areas of the housing 30 to form, or define, the proximal housing-based electrode 24. In other examples, the proximal housing-based electrode 24 may be a component, such as a ring electrode, that is mounted or assembled onto the housing 30. The proximal housing-based electrode 24 may be electrically coupled to internal circuitry of the device 10, e.g., via the electrically-conductive housing 30 or an electrical conductor when the housing 30 is a non-conductive material.


In the example shown, the proximal housing-based electrode 24 is located nearer to the housing proximal end region 34 than the housing distal end region 32, and therefore, may be referred to as a proximal housing-based electrode 24. In other examples, however, the proximal housing-based electrode 24 may be located at other positions along the housing 30, e.g., more distal relative to the position shown.


At the distal end region 32, the device 10 may include a distal fixation and electrode assembly 36, which may include one or more fixation members 20 and one or more dart electrode assemblies 12 of equal or unequal length. In one such example as shown, a single dart electrode assembly 12 includes a shaft 40 extending distally away from the housing distal end region 32 and one or more electrode elements, such as a tip electrode 42 at or near the free, distal end region of the shaft 40. The tip electrode 42 may have a conical or hemi-spherical distal tip with a relatively narrow tip-diameter (e.g., less than about 1 millimeter (mm)) for penetrating into and through tissue layers without using a sharpened tip or needle-like tip having sharpened or beveled edges.


The dart electrode assembly 12 may be configured to pierce through one or more tissue layers to position the tip electrode 42 within a desired tissue layer such as, e.g., the ventricular myocardium. As such, the height 47, or length, of the shaft 40 may correspond to the expected pacing site depth, and the shaft 40 may have a relatively-high compressive strength along its longitudinal axis to resist bending in a lateral or radial direction when pressed against and into the implant region 4. If a second dart electrode assembly 12 is employed, its length may be unequal to the expected pacing site depth and may be configured to act as an indifferent electrode for delivering of pacing energy to and/or sensing signals from the tissue. In one embodiment, a longitudinal axial force may be applied against the tip electrode 42, e.g., by applying longitudinal pushing force to the proximal end 34 of the housing 30, to advance the dart electrode assembly 12 into the tissue within the target implant region.


The shaft 40 may be described as longitudinally non-compressive and/or elastically deformable in lateral or radial directions when subjected to lateral or radial forces to allow temporary flexing, e.g., with tissue motion, but may return to its normally straight position when lateral forces diminish. Thus, the dart electrode assembly 12 including the shaft 40 may be described as being resilient. When the shaft 40 is not exposed to any external force, or to only a force along its longitudinal central axis, the shaft 40 may retain a straight, linear position as shown.


In other words, the shaft 40 of the dart electrode assembly 12 may be a normally straight member and may be rigid. In other embodiments, the shaft 40 may be described as being relatively stiff but still possessing limited flexibility in lateral directions. Further, the shaft 40 may be non-rigid to allow some lateral flexing with heart motion. However, in a relaxed state, when not subjected to any external forces, the shaft 40 may maintain a straight position as shown to hold the tip electrode 42 spaced apart from the housing distal end region 32 at least by a height, or length, 47 of the shaft 40.


The one or more fixation members 20 may be described as one or more “tines” having a normally curved position. The tines may be held in a distally extended position within a delivery tool. The distal tips of tines may penetrate the heart tissue to a limited depth before elastically, or resiliently, curving back proximally into the normally curved position (shown) upon release from the delivery tool. Further, the fixation members 20 may include one or more aspects described in, for example, U.S. Pat. No. 9,675,579 (Grubac et al.), issued 13 Jun. 2017, and U.S. Pat. No. 9,119,959 (Rys et al.), issued 1 Sep. 2015, each of which is incorporated herein by reference in its entirety.


In some examples, the distal fixation and electrode assembly 36 includes a distal housing-based electrode 22. In the case of using the device 10 as a pacemaker for multiple chamber pacing (e.g., dual or triple chamber pacing) and sensing, the tip electrode 42 may be used as a cathode electrode paired with the proximal housing-based electrode 24 serving as a return anode electrode. Alternatively, the distal housing-based electrode 22 may serve as a return anode electrode paired with tip electrode 42 for sensing ventricular signals and delivering ventricular pacing pulses. In other examples, the distal housing-based electrode 22 may be a cathode electrode for sensing atrial signals and delivering pacing pulses to the atrial myocardium in the target implant region 4. When the distal housing-based electrode 22 serves as an atrial cathode electrode, the proximal housing-based electrode 24 may serve as the return anode paired with the tip electrode 42 for ventricular pacing and sensing and as the return anode paired with the distal housing-based electrode 22 for atrial pacing and sensing.


As shown in this illustration, the target implant region 4 in some pacing applications is along the atrial endocardium 18, generally inferior to the AV node 15 and the His bundle 5. The dart electrode assembly 12 may at least partially define the height 47, or length, of the shaft 40 for penetrating through the atrial endocardium 18 in the target implant region 4, through the central fibrous body 16, and into the ventricular myocardium 14 without perforating through the ventricular endocardial surface 17. When the height 47, or length, of the dart electrode assembly 12 is fully advanced into the target implant region 4, the tip electrode 42 may rest within the ventricular myocardium 14, and the distal housing-based electrode 22 may be positioned in intimate contact with or close proximity to the atrial endocardium 18. The dart electrode assembly 12 may have a total combined height 47, or length, of tip electrode 42 and shaft 40 from about 3 mm to about 8 mm in various examples. The diameter of the shaft 40 may be less than about 2 mm, and may be about 1 mm or less, or even about 0.6 mm or less.



FIG. 10 is a two-dimensional (2D) ventricular map 319 of a patient's heart (e.g., a top-down view) showing the left ventricle 320 in a standard 17 segment view and the right ventricle 322. The map 319 defines, or includes, a plurality of areas 326 corresponding to different regions of a human heart. As illustrated, the areas 326 are numerically labeled 1-17 (which, e.g., correspond to a standard 17 segment model of a human heart, correspond to 17 segments of the left ventricle of a human heart, etc.). Areas 326 of the map 319 may include basal anterior area 1, basal anteroseptal area 2, basal inferoseptal area 3, basal inferior area 4, basal inferolateral area 5, basal anterolateral area 6, mid-anterior area 7, mid-anteroseptal area 8, mid-inferoseptal area 9, mid-inferior area 10, mid-inferolateral area 11, mid-anterolateral area 12, apical anterior area 13, apical septal area 14, apical inferior area 15, apical lateral area 16, and apex area 17. The inferoseptal and anteroseptal areas of the right ventricle 322 are also illustrated, as well as the right bunch branch (RBB) 25 and left bundle branch (LBB) 27.


In some embodiments, any of the tissue-piercing electrodes of the present disclosure may be implanted in the basal and/or septal region of the left ventricular myocardium of the patient's heart. In particular, the tissue-piercing electrode may be implanted from the triangle of Koch region of the right atrium through the right atrial endocardium and central fibrous body. Once implanted, the tissue-piercing electrode may be positioned in the target implant region 4 (FIGS. 8-9), such as the basal and/or septal region of the left ventricular myocardium. With reference to map 319, the basal region includes one or more of the basal anterior area 1, basal anteroseptal area 2, basal inferoseptal area 3, basal inferior area 4, mid-anterior area 7, mid-anteroseptal area 8, mid-inferoseptal area 9, and mid-inferior area 10. With reference to map 319, the septal region includes one or more of the basal anteroseptal area 2, basal anteroseptal area 3, mid-anteroseptal area 8, mid-inferoseptal area 9, and apical septal area 14.


In some embodiments, the tissue-piercing electrode may be positioned in the basal septal region of the left ventricular myocardium when implanted. The basal septal region may include one or more of the basal anteroseptal area 2, basal inferoseptal area 3, mid-anteroseptal area 8, and mid-inferoseptal area 9.


In some embodiments, the tissue-piercing electrode may be positioned in the high inferior/posterior basal septal region of the left ventricular myocardium when implanted. The high inferior/posterior basal septal region of the left ventricular myocardium may include a portion of one or more of the basal inferoseptal area 3 and mid-inferoseptal area 9 (e.g., the basal inferoseptal area only, the mid-inferoseptal area only, or both the basal inferoseptal area and the mid-inferoseptal area). For example, the high inferior/posterior basal septal region may include region 324 illustrated generally as a dashed-line boundary. As shown, the dashed line boundary represents an approximation of where the high inferior/posterior basal septal region is located, which may take a somewhat different shape or size depending on the particular application.


A block diagram of circuitry is depicted in FIG. 11 that may be enclosed within the housings 30 of the device 10 to provide the functions of sensing cardiac signals, determining capture, and/or delivering pacing therapy according to one example or within the housings of any other medical devices described herein. The separate medical device 50 as shown in FIG. 8 may include some or all the same components, which may be configured in a similar manner. The electronic circuitry enclosed within the housing 30 may include software, firmware, and hardware that cooperatively monitor atrial and ventricular electrical cardiac signals, determine whether cardiac system capture has occurred, determine when a cardiac therapy is necessary, and/or deliver electrical pulses to the patient's heart according to programmed therapy mode and pulse control parameters. The electronic circuitry may include a control circuit 80 (e.g., including processing circuitry), a memory 82, a therapy delivery circuit 84, a sensing circuit 86, and/or a telemetry circuit 88. In some examples, the device 10 includes one or more sensors 90 for producing signals that are correlated to one or more physiological functions, states, or conditions of the patient. For example, the sensor(s) 90 may include a patient activity sensor, for use in determining a need for pacing therapy and/or controlling a pacing rate. In other words, the device 10 may include other sensors 90 for sensing signals from the patient for use in determining whether to deliver and/or controlling electrical stimulation therapies delivered by the therapy delivery circuit 84.


The power source 98 may provide power to the circuitry of the device 10 including each of the components 80, 82, 84, 86, 88, 90 as needed. The power source 98 may include one or more energy storage devices, such as one or more rechargeable or non-rechargeable batteries. The connections (not shown) between the power source 98 and each of the components 80, 82, 84, 86, 88, 90 may be understood from the general block diagram illustrated to one of ordinary skill in the art. For example, the power source 98 may be coupled to one or more charging circuits included in the therapy delivery circuit 84 for providing the power used to charge holding capacitors included in the therapy delivery circuit 84 that are discharged at appropriate times under the control of the control circuit 80 for delivering pacing pulses, e.g., according to a dual chamber pacing mode such as DDI®. The power source 98 may also be coupled to components of the sensing circuit 86, such as sense amplifiers, analog-to-digital converters, switching circuitry, etc., sensors 90, the telemetry circuit 88, and the memory 82 to provide power to the various circuits.


The functional blocks shown in FIG. 11 represent functionality included in the device 10 and may include any discrete and/or integrated electronic circuit components that implement analog, and/or digital circuits capable of producing the functions attributed to the medical device 10 described herein. The various components may include processing circuitry, such as an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group), and memory that execute one or more software or firmware programs, a combinational logic circuit, state machine, or other suitable components or combinations of components that provide the described functionality. The particular form of software, hardware, and/or firmware employed to implement the functionality disclosed herein will be determined primarily by the particular system architecture employed in the medical device and by the particular detection and therapy delivery methodologies employed by the medical device.


The memory 82 may include any volatile, non-volatile, magnetic, or electrical non-transitory computer readable storage media, such as random-access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, or any other memory device. Furthermore, the memory 82 may include a non-transitory computer readable media storing instructions that, when executed by one or more processing circuits, cause the control circuit 80 and/or other processing circuitry to determine posterior left bundle branch engagement and/or perform a single, dual, or triple chamber calibrated pacing therapy (e.g., single or multiple chamber pacing), or other cardiac therapy functions (e.g., sensing or delivering therapy), attributed to the device 10. The non-transitory computer-readable media storing the instructions may include any of the media listed above.


The control circuit 80 may communicate, e.g., via a data bus, with the therapy delivery circuit 84 and the sensing circuit 86 for sensing cardiac electrical signals and controlling delivery of cardiac electrical stimulation therapies in response to sensed cardiac events, e.g., P-waves and R-waves, or the absence thereof. The tip electrode 42, the distal housing-based electrode 22, and the proximal housing-based electrode 24 may be electrically coupled to the therapy delivery circuit 84 for delivering electrical stimulation pulses to the patient's heart and to the sensing circuit 86 and for sensing cardiac electrical signals.


The sensing circuit 86 may include an atrial (A) sensing channel 87 and a ventricular (V) sensing channel 89. The distal housing-based electrode 22 and the proximal housing-based electrode 24 may be coupled to the atrial sensing channel 87 for sensing atrial signals, e.g., P-waves attendant to the depolarization of the atrial myocardium. In examples that include two or more selectable distal housing-based electrodes, the sensing circuit 86 may include switching circuitry for selectively coupling one or more of the available distal housing-based electrodes to cardiac event detection circuitry included in the atrial sensing channel 87. Switching circuitry may include a switch array, switch matrix, multiplexer, or any other type of switching device suitable to selectively couple components of the sensing circuit 86 to selected electrodes. The tip electrode 42 and the proximal housing-based electrode 24 may be coupled to the ventricular sensing channel 89 for sensing ventricular signals, e.g., R-waves attendant to the depolarization of the ventricular myocardium.


Each of the atrial sensing channel 87 and the ventricular sensing channel 89 may include cardiac event detection circuitry for detecting P-waves and R-waves, respectively, from the cardiac electrical signals received by the respective sensing channels. The cardiac event detection circuitry included in each of the channels 87 and 89 may be configured to amplify, filter, digitize, and rectify the cardiac electrical signal received from the selected electrodes to improve the signal quality for detecting cardiac electrical events. The cardiac event detection circuitry within each channel 87 and 89 may include one or more sense amplifiers, filters, rectifiers, threshold detectors, comparators, analog-to-digital converters (ADCs), timers, or other analog or digital components. A cardiac event sensing threshold, e.g., a P-wave sensing threshold and an R-wave sensing threshold, may be automatically adjusted by each respective sensing channel 87 and 89 under the control of the control circuit 80, e.g., based on timing intervals and sensing threshold values determined by the control circuit 80, stored in the memory 82, and/or controlled by hardware, firmware, and/or software of the control circuit 80 and/or the sensing circuit 86.


Upon detecting a cardiac electrical event based on a sensing threshold crossing, the sensing circuit 86 may produce a sensed event signal that is passed to the control circuit 80. For example, the atrial sensing channel 87 may produce a P-wave sensed event signal in response to a P-wave sensing threshold crossing. The ventricular sensing channel 89 may produce an R-wave sensed event signal in response to an R-wave sensing threshold crossing. The sensed event signals may be used by the control circuit 80 for setting pacing escape interval timers that control the basic time intervals used for scheduling cardiac pacing pulses. A sensed event signal may trigger or inhibit a pacing pulse depending on the particular programmed pacing mode. For example, a P-wave sensed event signal received from the atrial sensing channel 87 may cause the control circuit 80 to inhibit a scheduled atrial pacing pulse and schedule a ventricular pacing pulse at a programmed atrioventricular (A-V) pacing interval. If an R-wave is sensed before the A-V pacing interval expires, the ventricular pacing pulse may be inhibited. If the A-V pacing interval expires before the control circuit 80 receives an R-wave sensed event signal from the ventricular sensing channel 89, the control circuit 80 may use the therapy delivery circuit 84 to deliver the scheduled ventricular pacing pulse synchronized to the sensed P-wave.


In some examples, the device 10 may be configured to deliver a variety of pacing therapies including bradycardia pacing, cardiac resynchronization therapy, post-shock pacing, and/or tachycardia-related therapy, such as ATP, among others. For example, the device 10 may be configured to detect non-sinus tachycardia and deliver ATP. The control circuit 80 may determine cardiac event time intervals, e.g., P-P intervals between consecutive P-wave sensed event signals received from the atrial sensing channel 87, R-R intervals between consecutive R-wave sensed event signals received from the ventricular sensing channel 89, and P-R and/or R-P intervals received between P-wave sensed event signals and R-wave sensed event signals. These intervals may be compared to tachycardia detection intervals for detecting non-sinus tachycardia. Tachycardia may be detected in a given heart chamber based on a threshold number of tachycardia detection intervals being detected.


The therapy delivery circuit 84 may include atrial pacing circuit 83 and ventricular pacing circuit 85. Each pacing circuit 83, 85 may include charging circuitry, one or more charge storage devices such as one or more low voltage holding capacitors, an output capacitor, and/or switching circuitry that controls when the holding capacitor(s) are charged and discharged across the output capacitor to deliver a pacing pulse to the pacing electrode vector coupled to respective pacing circuits 83, 85. The tip electrode 42 and the proximal housing-based electrode 24 may be coupled to the ventricular pacing circuit 85 as a bipolar cathode and anode pair for delivering ventricular pacing pulses, e.g., upon expiration of an A-V or V-V pacing interval set by the control circuit 80 for providing atrial-synchronized ventricular pacing and a basic lower ventricular pacing rate.


The atrial pacing circuit 83 may be coupled to the distal housing-based electrode 22 and the proximal housing-based electrode 24 to deliver atrial pacing pulses. The control circuit 80 may set one or more atrial pacing intervals according to a programmed lower pacing rate or a temporary lower rate set according to a rate-responsive sensor indicated pacing rate. Atrial pacing circuit may be controlled to deliver an atrial pacing pulse if the atrial pacing interval expires before a P-wave sensed event signal is received from the atrial sensing channel 87. The control circuit 80 starts an A-V pacing interval in response to a delivered atrial pacing pulse to provide synchronized multiple chamber pacing (e.g., dual or triple chamber pacing).


Charging of a holding capacitor of the atrial or ventricular pacing circuit 83, 85 to a programmed pacing voltage amplitude and discharging of the capacitor for a programmed pacing pulse width may be performed by the therapy delivery circuit 84 according to control signals received from the control circuit 80. For example, a pace timing circuit included in the control circuit 80 may include programmable digital counters set by a microprocessor of the control circuit 80 for controlling the basic pacing time intervals associated with various single chamber or multiple chamber pacing (e.g., dual or triple chamber pacing) modes or anti-tachycardia pacing sequences. The microprocessor of the control circuit 80 may also set the amplitude, pulse width, polarity, or other characteristics of the cardiac pacing pulses, which may be based on programmed values stored in the memory 82.


Control parameters utilized by the control circuit 80 for sensing cardiac events and controlling pacing therapy delivery may be programmed into the memory 82 via the telemetry circuit 88, which may also be described as a communication interface. The telemetry circuit 88 includes a transceiver and antenna for communicating with an external device, such as a programmer or home monitor, using radio frequency communication or other communication protocols. The control circuit 80 may use the telemetry circuit 88 to receive downlink telemetry from and send uplink telemetry to the external device. In some cases, the telemetry circuit 88 may be used to transmit and receive communication signals to/from another medical device implanted in the patient.


The techniques described in this disclosure, including those attributed to the IMD 10, device 50, the computing apparatus 140, and the computing device 160 and/or various constituent components, may be implemented, at least in part, in hardware, software, firmware, or any combination thereof. For example, various aspects of the techniques may be implemented within one or more processors, including one or more microprocessors, DSPs, ASICs, FPGAs, or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components, embodied in programmers, such as physician or patient programmers, stimulators, image processing devices, or other devices. The term “module,” “processor,” or “processing circuitry” may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, or any other equivalent circuitry.


Such hardware, software, and/or firmware may be implemented within the same device or within separate devices to support the various operations and functions described in this disclosure. In addition, any of the described units, modules, or components may be implemented together or separately as discrete but interoperable logic devices. Depiction of different features as modules or units is intended to highlight different functional aspects and does not necessarily imply that such modules or units must be realized by separate hardware or software components. Rather, functionality associated with one or more modules or units may be performed by separate hardware or software components or integrated within common or separate hardware or software components.


When implemented in software, the functionality ascribed to the systems, devices and techniques described in this disclosure may be embodied as instructions on a computer-readable medium such as RAM, ROM, NVRAM, EEPROM, FLASH memory, magnetic data storage media, optical data storage media, or the like. The instructions may be executed by processing circuitry and/or one or more processors to support one or more aspects of the functionality described in this disclosure.


All references and publications cited herein are expressly incorporated herein by reference in their entirety for all purposes, except to the extent any aspect incorporated directly contradicts this disclosure.


All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.


Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims may be understood as being modified either by the term “exactly” or “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein or, for example, within typical ranges of experimental error.


The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range. Herein, the terms “up to” or “no greater than” a number (e.g., up to 50) includes the number (e.g., 50), and the term “no less than” a number (e.g., no less than 5) includes the number (e.g., 5).


The terms “coupled” or “connected” refer to elements being attached to each other either directly (in direct contact with each other) or indirectly (having one or more elements between and attaching the two elements). Either term may be modified by “operatively” and “operably,” which may be used interchangeably, to describe that the coupling or connection is configured to allow the components to interact to carry out at least some functionality (for example, a first medical device may be operatively coupled to another medical device to transmit information in the form of data or to receive data therefrom).


Terms related to orientation, such as “top,” “bottom,” “side,” and “end,” are used to describe relative positions of components and are not meant to limit the orientation of the embodiments contemplated. For example, an embodiment described as having a “top” and “bottom” also encompasses embodiments thereof rotated in various directions unless the content clearly dictates otherwise.


Reference to “one embodiment,” “an embodiment,” “certain embodiments,” or “some embodiments,” etc., means that a particular feature, configuration, composition, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of such phrases in various places throughout are not necessarily referring to the same embodiment of the disclosure. Furthermore, the particular features, configurations, compositions, or characteristics may be combined in any suitable manner in one or more embodiments.


As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


As used herein, “have,” “having,” “include,” “including,” “comprise,” “comprising” or the like are used in their open-ended sense, and generally mean “including, but not limited to.” It will be understood that “consisting essentially of,” “consisting of,” and the like are subsumed in “comprising,” and the like.


The term “and/or” means one or all the listed elements or a combination of at least two of the listed elements. The phrases “at least one of,” “comprises at least one of,” and “one or more of” followed by a list refers to any one of the items in the list and any combination of two or more items in the list.


ILLUSTRATIVE EXAMPLES

Example 1: A system comprising:

    • an electrode apparatus comprising a plurality of external electrodes to be disposed proximate a patient's skin; and
    • a computing apparatus comprising processing circuitry and operably coupled to the electrode apparatus, the computing apparatus configured to:
      • monitor intrinsic electrical activity of the patient using the plurality of external electrodes of the electrode apparatus,
      • generate a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period, wherein each cardiac breakthrough map is a spatial representation of electrocardiographic potential; and
      • determine a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps.


Example 2: A method comprising:

    • monitoring intrinsic electrical activity of the patient using a plurality of external electrodes disposed proximate a patient's skin;
    • generating a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period, wherein each cardiac breakthrough map is a spatial representation of electrocardiographic potential; and
    • determining a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps.


Example 3: The system of Example 1 or method of Example 2, wherein each of the plurality of cardiac breakthrough maps are generated according to a sampling interval following QRS onset of a single heartbeat.


Example 4: The system or method of Example 3, wherein the sampling interval is less than or equal to 5 milliseconds.


Example 5: The system or method as in any one of Examples 1-4, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining a spatial location of a breakthrough within the plurality of cardiac breakthrough maps where the cardiac potential is less than or equal to a breakthrough threshold.


Example 6: The system or method of Example 5, wherein the breakthrough threshold is less than or equal to −1 millivolts.


Example 7: The system or method as in any one of Examples 5-6, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is distally located along the cardiac conduction system if the spatial location of the breakthrough is located within a left anterior region of the generated cardiac breakthrough maps.


Example 8: The system or method as in any one of Examples 1-7, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is proximally located along the cardiac conduction system if the spatial location of the breakthrough is not located within a left anterior region of the generated cardiac breakthrough maps.


Example 9: The system or method as in any one of Examples 1-8, wherein the system is further configured to execute or the method further comprises displaying the plurality of cardiac breakthrough maps on a graphical user interface.


Example 10: The system or method as in any one of Examples 1-9, wherein the plurality of cardiac breakthrough maps comprise:

    • an anterior region spatially representing cardiac potential of the anterior of the patient's heart; and
    • a posterior region spatially representing cardiac potential of the posterior of the patient's heart.


Example 11: A system comprising:

    • an electrode apparatus comprising a plurality of external electrodes to be disposed proximate a patient's skin;
    • a display comprising a graphical user interface; and
    • a computing apparatus comprising processing circuitry and operably coupled to the electrode apparatus and the display, the computing apparatus configured to:
      • monitor intrinsic electrical activity of the patient using the plurality of external electrodes of the electrode apparatus,
      • generate a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period, wherein each cardiac breakthrough map is a spatial representation of electrocardiographic potential; and
      • display the plurality of generated cardiac breakthrough maps on the graphical user interface.


Example 12: The system of Example 11, wherein displaying the plurality of cardiac breakthrough maps on the graphical user interface comprises displaying each of the plurality of cardiac breakthrough maps on the graphical user interface sequentially.


Example 13: The system of Example 12, wherein the computing apparatus is further configured to allow a user to interact with the graphical user interface to selectively traverse the sequentially displayed plurality of cardiac breakthrough maps on the graphical user interface.


Example 14: The system as in any one of Examples 11-13, wherein the plurality of cardiac breakthrough maps comprise:

    • an anterior region spatially representing cardiac potential of the anterior of the patient's heart; and
    • a posterior region spatially representing cardiac potential of the posterior of the patient's heart.


Example 15: The system as in any one of Examples 11-14, wherein the computing apparatus is further configured determine a spatial location of a breakthrough based on the plurality of cardiac breakthrough maps, wherein displaying the plurality of cardiac breakthrough maps on the graphical user interface comprises displaying at least one cardiac breakthrough map comprises the spatial location of the breakthrough.


Example 16: The system as in any one of Examples 11-15, wherein the computing apparatus is further configured to:

    • determine whether the cardiac conduction system block location is proximally located or distally located along the cardiac conduction system based on the plurality of generated cardiac breakthrough maps on the graphical user interface; and
    • display on the graphical user interface an indication of whether the cardiac conduction system block location is proximally located or distally located along the cardiac conduction system.


Example 17: A system comprising:

    • an electrode apparatus comprising a plurality of external electrodes to be disposed proximate a patient's skin; and
    • computing apparatus comprising processing circuitry and coupled to the electrode apparatus, the computer apparatus configured to:
      • monitor intrinsic electrical activity of the patient using the plurality of external electrodes of the electrode apparatus;
      • generate baseline electrical heterogeneity information (EHI) based on the monitored intrinsic electrical activity;
      • monitor paced electrical activity of the patient using the plurality of external electrodes of the electrode apparatus during delivery of cardiac conduction system pacing therapy;
      • generate paced EHI based on the monitored paced electrical activity; and
      • determine whether the cardiac conduction system pacing therapy is effective based on the baseline and the paced EHI.


Example 18: A method comprising:

    • monitoring intrinsic electrical activity of the patient using a plurality of external electrodes disposed proximate the patient's skin;
    • generating baseline electrical heterogeneity information (EHI) based on the monitored intrinsic electrical activity;
    • monitoring paced electrical activity of the patient using the plurality of external electrodes of the electrode apparatus during delivery of cardiac conduction system pacing therapy;
    • generating paced EHI based on the monitored paced electrical activity; and
    • determining whether the cardiac conduction system pacing therapy is effective based on the baseline and the paced EHI.


Example 19: The system of Example 17 or the method of Example 18, wherein the cardiac conduction system pacing therapy is delivered at a paced AV delay that between 40% to 80% of an intrinsic AV delay, wherein the paced AV delay is a time period between a sensed atrial event and delivery of cardiac conduction system pacing therapy, wherein the intrinsic AV delay is a time period between a sensed atrial event and an intrinsic ventricular event.


Example 20: The system or method as set forth in any one of Examples 17-19, wherein generating baseline EHI comprises generating a baseline standard deviation of surrogate cardiac electrical activation times (SDAT) based on the monitored intrinsic electrical activity, wherein generating paced EHI comprises generating a paced SDAT based on the monitored paced electrical activity.


Example 22: The system or method of Example 21, wherein determining whether the cardiac conduction system pacing therapy is effective based on the baseline and the paced EHI comprises determining that the cardiac conduction system pacing therapy is effective if the paced SDAT is less than 90% of the baseline SDAT.


Example 22: The system or method as set forth in any one of Examples 17-21, wherein the plurality of external electrodes comprise a plurality of left external electrodes positioned to the left side of the patient's torso, wherein generating paced EHI comprises generating a paced left-sided standard deviation of surrogate cardiac electrical activation times (LVED) based on the monitored paced electrical activity using the plurality of left external electrodes.


Example 23: The system or method of Example 22, wherein determining whether the cardiac conduction system pacing therapy is effective based on the baseline and the paced EHI comprises determining that the cardiac conduction system pacing therapy is effective if the paced LVED is less than 25 milliseconds.


Example 24: The system or method as set forth in any one of Examples 17-21, wherein the computing apparatus is further configured to execute or the method further comprises:

    • determining whether cardiac activation delay is located on the left or right side of the left ventricle based on the monitored paced electrical activity in response to determining that the cardiac conduction system pacing therapy is not effective;
    • indicating that a left ventricular lead will assist the cardiac conduction system pacing therapy if the cardiac activation delay is located on the left side of the left ventricle; and
    • indicating that a right ventricular lead will assist the cardiac conduction system pacing therapy if the cardiac activation delay is located on the right side of the left ventricle.


Example 25: The system or method of Example 24, wherein the computing apparatus is further configured to execute or the method further comprises:

    • monitoring combined paced electrical activity of the patient using the plurality of external electrodes of the electrode apparatus during delivery of cardiac conduction system pacing therapy and pacing therapy using a right or left ventricular lead;
    • generating combined paced EHI based on the monitored combined paced electrical activity; and
    • determining whether a location of the right or lead ventricular lead is effective is effective based on the combined paced EHI and the baseline EHI.


Example 26: The system or method as set forth in any one of Examples 17-25, wherein the cardiac conduction system pacing therapy comprises one or more of ventricle-from-atrium (VfA) pacing therapy, His bundle pacing therapy, and intraseptal left ventricular endocardial pacing.


This disclosure has been provided with reference to illustrative embodiments and examples and is not meant to be construed in a limiting sense. As described previously, one skilled in the art will recognize that other various illustrative applications may use the techniques as described herein to take advantage of the beneficial characteristics of the systems, devices, and methods described herein. Various modifications of the illustrative embodiments and examples will be apparent upon reference to this description.

Claims
  • 1. A system comprising: an electrode apparatus comprising a plurality of external electrodes configured to be disposed proximate a patient's skin;a display depicting a graphical user interface; anda computing apparatus comprising processing circuitry and operably coupled to the electrode apparatus and the display, the computing apparatus configured to: monitor intrinsic cardiac electrical activity of the patient using the plurality of external electrodes of the electrode apparatus;determine a QRS onset of a single heartbeat based on the monitored intrinsic electrical activity;generate a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period comprising generating each of the plurality of cardiac breakthrough maps according to a sampling interval following the determined QRS onset of the single heartbeat, wherein each cardiac breakthrough map is a spatial representation of electrocardiographic voltage across the skin of the patient corresponding to electrocardiographic voltage of the heart at a different time within the time period;determine a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps; anddisplay the plurality of cardiac breakthrough maps on the graphical user interface of the display.
  • 2. The system of claim 1, wherein the sampling interval is less than or equal to 5 milliseconds.
  • 3. The system of claim 1, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining a spatial location of a breakthrough within the plurality of cardiac breakthrough maps where the electrocardiographic voltage is less than or equal to a breakthrough threshold.
  • 4. The system of claim 3, wherein the breakthrough threshold is less than or equal to −1 millivolts.
  • 5. The system of claim 3, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is distally located along the cardiac conduction system when the spatial location of the breakthrough is located within a left anterior region of the generated cardiac breakthrough maps.
  • 6. The system of claim 3, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is proximally located along the cardiac conduction system when the spatial location of the breakthrough is not located within a left anterior region of the generated cardiac breakthrough maps.
  • 7. The system of claim 1, wherein the plurality of cardiac breakthrough maps comprise: an anterior region spatially representing electrocardiographic voltage of the anterior of the patient's heart; anda posterior region spatially representing electrocardiographic voltage of the posterior of the patient's heart.
  • 8. A method comprising: monitoring intrinsic cardiac electrical activity of a patient using a plurality of external electrodes disposed proximate the patient's skin;determining a QRS onset of a single heartbeat based on the monitored intrinsic electrical activity;generating a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period comprises generating each of the plurality of cardiac breakthrough maps according to a sampling interval following the determined QRS onset of the single heartbeat, wherein each cardiac breakthrough map is a spatial representation of electrocardiographic voltage across the skin of the patient corresponding to electrocardiographic voltage of the heart at a different time within the time period;determining a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps; anddisplaying the plurality of cardiac breakthrough maps on a graphical user interface of a display.
  • 9. The method of claim 8, wherein the sampling interval is less than or equal to 5 milliseconds.
  • 10. The method of claim 8, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining a spatial location of a breakthrough within the plurality of cardiac breakthrough maps where the electrocardiographic voltage is less than or equal to a breakthrough threshold.
  • 11. The method of claim 10, wherein the breakthrough threshold is less than or equal to −1 millivolts.
  • 12. The method of claim 10, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is distally located along the cardiac conduction system when the spatial location of the breakthrough is located within a left anterior region of the generated cardiac breakthrough maps.
  • 13. The method of claim 10, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is proximally located along the cardiac conduction system when the spatial location of the breakthrough is not located within a left anterior region of the generated cardiac breakthrough maps.
  • 14. The method of claim 8, wherein the plurality of cardiac breakthrough maps comprise: an anterior region spatially representing electrocardiographic voltage of the anterior of the patient's heart; anda posterior region spatially representing electrocardiographic voltage of the posterior of the patient's heart.
  • 15. A system comprising: an electrode apparatus comprising a plurality of external electrodes configured to be disposed proximate a patient's skin;a display depicting a graphical user interface; anda computing apparatus comprising processing circuitry and operably coupled to the electrode apparatus and the display, the computing apparatus configured to: monitor intrinsic cardiac electrical activity of the patient using the plurality of external electrodes of the electrode apparatus;generate a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period, wherein each cardiac breakthrough map is a spatial representation of electrocardiographic voltage across the skin of the patient corresponding to electrocardiographic voltage of the heart at a different time within the time period;determine a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps comprising determining a spatial location of a breakthrough within the plurality of cardiac breakthrough maps where the electrocardiographic voltage is less than or equal to a breakthrough threshold; anddisplay the plurality of cardiac breakthrough maps on the graphical user interface of the display.
  • 16. The system of claim 15, wherein the breakthrough threshold is less than or equal to −1 millivolts.
  • 17. The system of claim 15, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is distally located along the cardiac conduction system when the spatial location of the breakthrough is located within a left anterior region of the generated cardiac breakthrough maps.
  • 18. The system of claim 15, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is proximally located along the cardiac conduction system when the spatial location of the breakthrough is not located within a left anterior region of the generated cardiac breakthrough maps.
  • 19. The system of claim 15, wherein the plurality of cardiac breakthrough maps comprise: an anterior region spatially representing electrocardiographic voltage of the anterior of the patient's heart; anda posterior region spatially representing electrocardiographic voltage of the posterior of the patient's heart.
  • 20. A method comprising: monitoring intrinsic cardiac electrical activity of a patient using a plurality of external electrodes disposed proximate the patient's skin;generating a plurality of cardiac breakthrough maps based on the monitored intrinsic activity over a time period, wherein each cardiac breakthrough map is a spatial representation of electrocardiographic voltage across the skin of the patient corresponding to electrocardiographic voltage of the heart at a different time within the time period;determining a cardiac conduction system block location based on the plurality of generated cardiac breakthrough maps comprising determining a spatial location of a breakthrough within the plurality of cardiac breakthrough maps where the electrocardiographic voltage is less than or equal to a breakthrough threshold; anddisplaying the plurality of cardiac breakthrough maps on a graphical user interface of a display.
  • 21. The method of claim 20, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining a spatial location of a breakthrough within the plurality of cardiac breakthrough maps where the electrocardiographic voltage is less than or equal to a breakthrough threshold.
  • 22. The method of claim 20, wherein the breakthrough threshold is less than or equal to −1 millivolts.
  • 23. The method of claim 20, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is distally located along the cardiac conduction system when the spatial location of the breakthrough is located within a left anterior region of the generated cardiac breakthrough maps.
  • 24. The method of claim 20, wherein determining the cardiac conduction system block location based on the generated cardiac breakthrough maps comprises determining the cardiac conduction system block location is proximally located along the cardiac conduction system when the spatial location of the breakthrough is not located within a left anterior region of the generated cardiac breakthrough maps.
  • 25. The method of claim 20, wherein the plurality of cardiac breakthrough maps comprise: an anterior region spatially representing electrocardiographic voltage of the anterior of the patient's heart; anda posterior region spatially representing electrocardiographic voltage of the posterior of the patient's heart.
Parent Case Info

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 63/059,472 filed on Jul. 31, 2020, and entitled “Cardiac Conduction System Evaluation,” which is incorporated by reference herein in its entirety. The disclosure herein relates to systems and methods for use in evaluating cardiac conduction system pacing therapy and cardiac conduction system block locations. Implantable medical devices (IMDs), such as implantable pacemakers, cardioverters, defibrillators, or pacemaker-cardioverter-defibrillators, provide therapeutic electrical stimulation to the heart. IMDs may provide pacing to address bradycardia, or pacing or shocks in order to terminate tachyarrhythmia, such as tachycardia or fibrillation. In some cases, the medical device may sense intrinsic depolarizations of the heart, detect arrhythmia based on the intrinsic depolarizations (or absence thereof), and control delivery of electrical stimulation to the heart if arrhythmia is detected based on the intrinsic depolarizations. IMDs may also provide cardiac resynchronization therapy (CRT), which is a form of pacing. CRT involves the delivery of pacing to the left ventricle, or both the left and right ventricles. The timing and location of the delivery of pacing pulses to the ventricle(s) may be selected to improve the coordination and efficiency of ventricular contraction. Systems for implanting medical devices may include workstations or other equipment in addition to the implantable medical device itself. In some cases, these other pieces of equipment assist the physician or other technician with placing the intracardiac leads at particular locations on or in the heart. In some cases, the equipment provides information to the physician about the electrical activity of the heart and the location of the intracardiac lead.

US Referenced Citations (1840)
Number Name Date Kind
3672353 Crovella et al. Jun 1972 A
3835864 Rasor et al. Sep 1974 A
3865118 Bures Feb 1975 A
3943936 Rasor et al. Mar 1976 A
3949757 Sabel Apr 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4233987 Feingold Nov 1980 A
4243045 Mass Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4280502 Baker, Jr. et al. Jul 1981 A
4289144 Gilman Sep 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4332259 McCorkle, Jr. Jun 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4374382 Markowitz et al. Feb 1983 A
4393883 Smyth et al. Jul 1983 A
4402323 White Sep 1983 A
4428378 Anderson et al. Jan 1984 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4479500 Smits Oct 1984 A
4497326 Curry Feb 1985 A
4522208 Buffet Jun 1985 A
4530204 Mortara Jul 1985 A
4537200 Widrow Aug 1985 A
4546777 Groch et al. Oct 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4566456 Koning et al. Jan 1986 A
4574814 Buffet Mar 1986 A
4593702 Kepski Jun 1986 A
4593955 Leiber Jun 1986 A
4630204 Mortara Dec 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4674511 Cartmell Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4763660 Kroll et al. Aug 1988 A
4776338 Lekholm et al. Oct 1988 A
4777955 Brayten et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4830006 Haluska et al. May 1989 A
4858610 Callaghan et al. Aug 1989 A
4865037 Chin et al. Sep 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole, Jr. Dec 1989 A
4928688 Mower May 1990 A
4953564 Berthelsen Sep 1990 A
4967746 Vandegriff Nov 1990 A
4979507 Heinz et al. Dec 1990 A
4979598 John Dec 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5052388 Sivula et al. Oct 1991 A
5054496 Wen et al. Oct 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5107850 Olive Apr 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grievous et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5154170 Bennett et al. Oct 1992 A
5170784 Ramon et al. Dec 1992 A
5174289 Cohen Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5255692 Neubauer et al. Oct 1993 A
5259387 dePinto Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5311873 Savard et al. May 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318594 Limousin et al. Jun 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331960 Lavine Jul 1994 A
5331966 Bennett et al. Jul 1994 A
5334220 Sholder Aug 1994 A
5334222 Salo et al. Aug 1994 A
5342408 Decoriolis et al. Aug 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5443492 Stokes et al. Aug 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5485849 Panescu et al. Jan 1996 A
5487758 Hoegnelid et al. Jan 1996 A
5507802 Imran Apr 1996 A
5514163 Markowitz et al. May 1996 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5552645 Weng Sep 1996 A
5554177 Kieval et al. Sep 1996 A
5562711 Yerich et al. Oct 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5601615 Markowitz et al. Feb 1997 A
5620466 Haefner et al. Apr 1997 A
5628778 Kruse et al. May 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5671752 Sinderby et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683429 Mehra Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5687737 Branham et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720770 Nappholz et al. Feb 1998 A
5728140 Salo et al. Mar 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5749909 Schroeppel et al. May 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grievous et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5810740 Paisner Sep 1998 A
5814089 Stokes et al. Sep 1998 A
5817130 Cox et al. Oct 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Goyal et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5876336 Swanson et al. Mar 1999 A
5891045 Albrecht et al. Apr 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5922014 Warman et al. Jul 1999 A
5928271 Hess et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 dePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055448 Anderson et al. Apr 2000 A
6055454 Heemels Apr 2000 A
6070104 Hine et al. May 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115628 Stadler et al. Sep 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6128535 Maarse et al. Oct 2000 A
6132456 Sommer et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6187032 Ohyu et al. Feb 2001 B1
6201993 Kruse et al. Mar 2001 B1
6205357 Ideker et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6212434 Scheiner et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6226542 Reisfeld May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6243603 Ideker et al. Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6256534 Dahl Jul 2001 B1
6256537 Stoop et al. Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285903 Rosenthal et al. Sep 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6301496 Reisfeld Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6311089 Mann et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6330476 Ben-Haim et al. Dec 2001 B1
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6358214 Tereschouk Mar 2002 B1
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6377856 Carson Apr 2002 B1
6381493 Stadler et al. Apr 2002 B1
6393316 Gillberg et al. May 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6418346 Nelson et al. Jul 2002 B1
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6442433 Linberg Aug 2002 B1
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6456867 Reisfeld Sep 2002 B2
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6473638 Ferek-Petric Oct 2002 B2
6480745 Nelson et al. Nov 2002 B2
6484118 Govari Nov 2002 B1
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507756 Heynen et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6508771 Padmanabhan et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6532379 Stratbucker Mar 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6544270 Zhang Apr 2003 B1
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584343 Ransbury et al. Jun 2003 B1
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6599250 Webb et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6623518 Thompson et al. Sep 2003 B2
6625482 Panescu et al. Sep 2003 B1
6628985 Sweeney et al. Sep 2003 B2
6640136 Helland et al. Oct 2003 B1
6647292 Bardy et al. Nov 2003 B1
6650927 Keidar Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6754528 Bardy et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6766189 Yu et al. Jul 2004 B2
6772004 Rudy Aug 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804555 Warkentin Oct 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847836 Sujdak Jan 2005 B1
6847844 Sun et al. Jan 2005 B2
6856830 He Feb 2005 B2
6869404 Schulhauser et al. Mar 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6871096 Hill Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6882882 Struble et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6915149 Ben-Haim Jul 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6931286 Sigg et al. Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6941169 Pappu Sep 2005 B2
6957107 Rogers et al. Oct 2005 B2
6968237 Doan et al. Nov 2005 B2
6975900 Rudy et al. Dec 2005 B2
6978176 Lattouf Dec 2005 B2
6978184 Marcus et al. Dec 2005 B1
6980675 Evron et al. Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6988007 Morgan et al. Jan 2006 B1
6990375 Kloss et al. Jan 2006 B2
6993389 Ding et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013176 Ding et al. Mar 2006 B2
7013178 Reinke et al. Mar 2006 B2
7016719 Rudy et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7031711 Brown et al. Apr 2006 B2
7031771 Brown et al. Apr 2006 B2
7031777 Hine et al. Apr 2006 B2
7033350 Bahk et al. Apr 2006 B2
7035684 Lee et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7058443 Struble Jun 2006 B2
7060031 Webb et al. Jun 2006 B2
7062315 Koyrakh et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7092759 Nehls et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7142922 Spinelli et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7177704 Laske et al. Feb 2007 B2
7181284 Burnes et al. Feb 2007 B2
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7184835 Kramer et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7215998 Wesselink et al. May 2007 B2
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7231248 Kramer et al. Jun 2007 B2
7231253 Tidemand et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7238158 Abend Jul 2007 B2
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7286866 Okerlund et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7307321 Avanzino Dec 2007 B1
7308297 Reddy et al. Dec 2007 B2
7308299 Burrell et al. Dec 2007 B2
7310556 Bulkes Dec 2007 B2
7313444 Pianca et al. Dec 2007 B2
7317950 Lee Jan 2008 B2
7319905 Morgan et al. Jan 2008 B1
7321677 Evron et al. Jan 2008 B2
7321798 Muhlenberg et al. Jan 2008 B2
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7346381 Okerlund et al. Mar 2008 B2
7346393 Spinelli et al. Mar 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7386351 Hine et al. Jun 2008 B2
7392090 Sweeney et al. Jun 2008 B2
7398116 Edwards Jul 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7426412 Schecter Sep 2008 B1
7433739 Salys et al. Oct 2008 B1
7454248 Burrell et al. Nov 2008 B2
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7499743 Vass et al. Mar 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7509170 Zhang et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7546166 Michels et al. Jun 2009 B2
7558626 Corbucci Jul 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565190 Okerlund et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7587074 Zarkh et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7599730 Hunter et al. Oct 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7613500 Vass et al. Nov 2009 B2
7616991 Mann et al. Nov 2009 B2
7616993 Müssig et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630764 Ding et al. Dec 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7635541 Scott et al. Dec 2009 B2
7637867 Zdeblick Dec 2009 B2
7640057 Libbus et al. Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7657313 Rom Feb 2010 B2
7664550 Eick et al. Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7684863 Parikh et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7706879 Burnes et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742629 Zarkh et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747047 Okerlund et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7751882 Helland et al. Jul 2010 B1
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769451 Yang et al. Aug 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7770390 Wegener et al. Aug 2010 B2
7770392 Birkner et al. Aug 2010 B2
7778685 Evron et al. Aug 2010 B2
7778686 Vass et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7787951 Min Aug 2010 B1
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7813785 Okerlund et al. Oct 2010 B2
7818040 Spear et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848807 Wang Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7860580 Falk et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7877144 Coles, Jr. et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881791 Sambelashvili et al. Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881806 Horrigan et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894889 Zhang Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894902 Rom Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7912544 Min et al. Mar 2011 B1
7917214 Gill et al. Mar 2011 B1
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930027 Prakash et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941205 Jung et al. May 2011 B2
7941213 Markowitz et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7941218 Sambelashvili et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hubinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953475 Harlev et al. May 2011 B2
7953482 Hess May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983743 Rudy et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996063 Vass et al. Aug 2011 B2
7996070 van Dam et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8002718 Buchholtz et al. Aug 2011 B2
8010191 Zhu et al. Aug 2011 B2
8010194 Muller Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8014861 Zhu et al. Sep 2011 B2
8019402 Kryzpow et al. Sep 2011 B1
8019409 Rosenberg et al. Sep 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8032229 Gerber et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8046065 Burnes et al. Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
8050297 Delmain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060185 Hunter et al. Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8068920 Gaudiani Nov 2011 B2
8073542 Doerr Dec 2011 B2
8075486 Tal Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8105714 Schmidt et al. Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8142363 Eigler et al. Mar 2012 B1
8145308 Sambelashvili et al. Mar 2012 B2
8150513 Chinchoy Apr 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160700 Ryu et al. Apr 2012 B1
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175703 Dong et al. May 2012 B2
8175715 Cox May 2012 B1
8180428 Kaiser et al. May 2012 B2
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195292 Rosenberg et al. Jun 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204590 Sambelashvili et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8213693 Li Jul 2012 B1
8214041 Van Gelder et al. Jul 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8265736 Sathaye et al. Sep 2012 B2
8265738 Min et al. Sep 2012 B1
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8262578 Bharmi et al. Oct 2012 B1
8280521 Haubrich et al. Oct 2012 B2
8285377 Rosenberg et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8295943 Eggen et al. Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321014 Maskara et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8326419 Rosenberg et al. Dec 2012 B2
8332030 Hess et al. Dec 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352027 Spinelli et al. Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380308 Rosenberg et al. Feb 2013 B2
8380320 Spital Feb 2013 B2
8383269 Scott et al. Feb 2013 B2
8386051 Rys Feb 2013 B2
8391964 Musley et al. Mar 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8401616 Verard et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8406899 Reddy et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428716 Mullen et al. Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8467871 Maskara Jun 2013 B2
8478388 Nguyen et al. Jul 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509896 Doerr et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8509916 Byrd et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8521268 Zhang et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527051 Hedberg et al. Sep 2013 B1
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matoes Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8583230 Ryu et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8594775 Ghosh et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615298 Ghosh et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8617082 Zhang et al. Dec 2013 B2
8620433 Ghosh et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bornzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639333 Stadler et al. Jan 2014 B2
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8676314 Maskara et al. Mar 2014 B2
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8694099 Ghosh et al. Apr 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8705599 Dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8731632 Zarkh et al. May 2014 B1
8731642 Zarkh et al. May 2014 B2
8738132 Ghosh et al. May 2014 B1
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8744576 Munsterman et al. Jun 2014 B2
8747314 Stahmann et al. Jun 2014 B2
8750994 Ghosh et al. Jun 2014 B2
8750998 Ghosh et al. Jun 2014 B1
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768459 Ghosh et al. Jul 2014 B2
8768465 Ghosh et al. Jul 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781582 Ziegler et al. Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805504 Sweeney Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8861830 Brada et al. Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886307 Sambelashvili et al. Nov 2014 B2
8886311 Anderson et al. Nov 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8929984 Ghosh et al. Jan 2015 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8948869 Ghosh et al. Feb 2015 B2
8948883 Eggen et al. Feb 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8965489 Ghosh Feb 2015 B2
8972228 Ghosh et al. Mar 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002454 Ghosh et al. Apr 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9031642 Ghosh May 2015 B2
9033996 West May 2015 B1
9037238 Stadler et al. May 2015 B2
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9060699 Nearing et al. Jun 2015 B2
9072872 Asleson et al. Jul 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9101281 Reinert et al. Aug 2015 B2
9119959 Rys et al. Sep 2015 B2
9155882 Grubac et al. Oct 2015 B2
9155897 Ghosh et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9199087 Stadler et al. Dec 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265951 Sweeney Feb 2016 B2
9265954 Ghosh Feb 2016 B2
9265955 Ghosh Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272148 Ghosh Mar 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278219 Ghosh Mar 2016 B2
9278220 Ghosh Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9282907 Ghosh Mar 2016 B2
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashbili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9320446 Gillberg et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381362 Ghosh et al. Jul 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Regnier et al. Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9474457 Ghosh et al. Oct 2016 B2
9486151 Ghosh et al. Nov 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9510763 Ghosh et al. Dec 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9517336 Eggen et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishler et al. Dec 2016 B2
9526435 Ghosh Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9579500 Rys et al. Feb 2017 B2
9586050 Ghosh et al. Mar 2017 B2
9586052 Gillberg et al. Mar 2017 B2
9591982 Ghosh et al. Mar 2017 B2
9603651 Ghosh Mar 2017 B2
9610045 Du et al. Apr 2017 B2
9623234 Anderson Apr 2017 B2
9636511 Carney et al. May 2017 B2
9643014 Zhang et al. May 2017 B2
9675579 Rock et al. Jun 2017 B2
9700728 Ghosh Jul 2017 B2
9707399 Zielinski et al. Jul 2017 B2
9724519 Demmer et al. Aug 2017 B2
9731138 Stadler et al. Aug 2017 B1
9737223 Du et al. Aug 2017 B2
9750941 Ghosh Sep 2017 B2
9757567 Ghosh et al. Sep 2017 B2
9764143 Ghosh et al. Sep 2017 B2
9776009 Ghosh et al. Oct 2017 B2
9782094 Du et al. Oct 2017 B2
9789319 Sambelashvili Oct 2017 B2
9808628 Sheldon et al. Nov 2017 B2
9808633 Bonner et al. Nov 2017 B2
9877789 Ghosh Jan 2018 B2
9901732 Sommer et al. Feb 2018 B2
9924884 Ghosh et al. Mar 2018 B2
9962097 Ghosh et al. May 2018 B2
9974457 Ghosh et al. May 2018 B2
10004467 Lahm et al. Jun 2018 B2
10022060 Nearing et al. Jul 2018 B2
10039305 van der Voort et al. Aug 2018 B2
10064567 Ghosh et al. Sep 2018 B2
10092744 Sommer et al. Oct 2018 B2
10099050 Chen et al. Oct 2018 B2
10154794 Stadler et al. Dec 2018 B2
10166396 Schrock et al. Jan 2019 B2
10206601 Gillberg et al. Feb 2019 B2
10251555 Ghosh et al. Apr 2019 B2
10315028 Sommer et al. Jun 2019 B2
10406370 Makharinsky Sep 2019 B1
10456581 Liu et al. Oct 2019 B2
10463853 Drake et al. Nov 2019 B2
10478627 Muessig Nov 2019 B2
10780279 Ghosh Sep 2020 B2
10850107 Li et al. Dec 2020 B2
10850108 Li et al. Dec 2020 B2
11058880 Yang Jul 2021 B2
20010044619 Altman Nov 2001 A1
20020026220 Groenewegen et al. Feb 2002 A1
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020049476 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072682 Hopman et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020087089 Ben-Haim Jul 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020143264 Ding et al. Oct 2002 A1
20020161307 Yu et al. Oct 2002 A1
20020169484 Mathis et al. Nov 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030004549 Hill et al. Jan 2003 A1
20030009203 Lebel et al. Jan 2003 A1
20030018277 He Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030050670 Spinelli et al. Mar 2003 A1
20030083104 Bonner et al. May 2003 A1
20030083702 Stadler et al. May 2003 A1
20030088278 Bardy et al. May 2003 A1
20030092995 Thompson May 2003 A1
20030093122 Vanhout May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105495 Yu et al. Jun 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20030199938 Smits et al. Oct 2003 A1
20030204233 Laske et al. Oct 2003 A1
20030236466 Tarjan et al. Dec 2003 A1
20040010201 Korzinov et al. Jan 2004 A1
20040015081 Kramer et al. Jan 2004 A1
20040024435 Leckrone et al. Feb 2004 A1
20040059237 Narayan et al. Mar 2004 A1
20040064158 Klein Apr 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040097806 Hunter et al. May 2004 A1
20040102812 Yonce et al. May 2004 A1
20040102830 Williams May 2004 A1
20040116878 Byrd et al. Jun 2004 A1
20040122479 Spinelli et al. Jun 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040127967 Osypka Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040162496 Yu et al. Aug 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172078 Chinchoy Sep 2004 A1
20040172079 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040193223 Kramer et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215245 Stahmann et al. Oct 2004 A1
20040215252 Verbeek et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220635 Burnes Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040230283 Prinzen et al. Dec 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20040267321 Boileau et al. Dec 2004 A1
20050008210 Evron et al. Jan 2005 A1
20050027320 Nehls et al. Feb 2005 A1
20050038477 Kramer et al. Feb 2005 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050090870 Hine et al. Apr 2005 A1
20050096522 Reddy et al. May 2005 A1
20050102003 Grabek et al. May 2005 A1
20050107839 Sanders May 2005 A1
20050109339 Stahmann et al. May 2005 A1
20050137629 Dyjach et al. Jun 2005 A1
20050137632 Ding Jun 2005 A1
20050137638 Yonce et al. Jun 2005 A1
20050137671 Liu Jun 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050197674 McCabe et al. Sep 2005 A1
20050203410 Jenkins Sep 2005 A1
20050216068 Lee et al. Sep 2005 A1
20050277990 Ostroff et al. Dec 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288720 Ross et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060041300 Zhang et al. Feb 2006 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060074285 Zarkh et al. Apr 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060161205 Mitrani et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060206153 Libbus Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060224198 Dong et al. Oct 2006 A1
20060235478 Van Gelder et al. Oct 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060253162 Zhang et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070021813 Sommer et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070049975 Cates et al. Mar 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jaconson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070142871 Libbus et al. Jun 2007 A1
20070150009 Kveen Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070167809 Dala-Krishna Jul 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070232943 Harel et al. Oct 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070233216 Liu Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070239248 Hastings Oct 2007 A1
20070250129 Van Oort Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070265508 Sheikhzadeh-Nadjar et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20070299475 Levin et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021336 Dobak et al. Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080027488 Coles Jan 2008 A1
20080058656 Costello et al. Mar 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080082136 Gaudiani Apr 2008 A1
20080103539 Stegemann et al. May 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119903 Arcot-Krishnamurthy et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080140143 Ettori et al. Jun 2008 A1
20080146954 Bojovic et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080183072 Robertson et al. Jul 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080242976 Robertson et al. Oct 2008 A1
20080243217 Wildon Oct 2008 A1
20080249585 Lippert et al. Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269816 Prakash et al. Oct 2008 A1
20080269818 Sullivan et al. Oct 2008 A1
20080269823 Burnes et al. Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080281195 Heimdal Nov 2008 A1
20080288008 Lee Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080294229 Friedman et al. Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080306567 Park et al. Dec 2008 A1
20080306568 Ding et al. Dec 2008 A1
20080319500 Zhu et al. Dec 2008 A1
20090005832 Zhu et al. Jan 2009 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036769 Zdeblick Feb 2009 A1
20090036941 Corbucci Feb 2009 A1
20090036947 Westlund et al. Feb 2009 A1
20090043352 Brooke et al. Feb 2009 A1
20090048528 Hopenfeld Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090053102 Rudy et al. Feb 2009 A2
20090054941 Eggen et al. Feb 2009 A1
20090054946 Sommer et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090084382 Jalde et al. Apr 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090093857 Markowitz et al. Apr 2009 A1
20090099468 Thiagalingam et al. Apr 2009 A1
20090099469 Flores Apr 2009 A1
20090099619 Lessmeier et al. Apr 2009 A1
20090112109 Kuklik et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090143838 Libbus et al. Jun 2009 A1
20090157134 Ziglio et al. Jun 2009 A1
20090157136 Yang et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090198298 Kaiser et al. Aug 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 Jason Aug 2009 A1
20090216112 Assis et al. Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090232448 Barmash et al. Sep 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090234412 Sambelashvili Sep 2009 A1
20090234413 Sambelashvili et al. Sep 2009 A1
20090234414 Sambelashvili et al. Sep 2009 A1
20090234415 Sambelashvili et al. Sep 2009 A1
20090248103 Sambelashvili et al. Oct 2009 A1
20090254140 Rosenberg et al. Oct 2009 A1
20090259272 Reddy et al. Oct 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090270729 Corbucci et al. Oct 2009 A1
20090270937 Yonce et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090281590 Maskara et al. Nov 2009 A1
20090299201 Gunderson Dec 2009 A1
20090299423 Min Dec 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20090306732 Rosenberg et al. Dec 2009 A1
20090318995 Keel et al. Dec 2009 A1
20090326397 Behzadi et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100016914 Mullen et al. Jan 2010 A1
20100016917 Efimov et al. Jan 2010 A1
20100016918 Mann Jan 2010 A1
20100022873 Hunter et al. Jan 2010 A1
20100023078 Dong et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100049063 Dobak, III Feb 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100065871 Govari et al. Mar 2010 A1
20100069983 Peacock, III et al. Mar 2010 A1
20100069987 Min et al. Mar 2010 A1
20100087888 Maskara Apr 2010 A1
20100094149 Kohut et al. Apr 2010 A1
20100094250 Gumm Apr 2010 A1
20100094367 Sen Apr 2010 A1
20100113954 Zhou May 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100114229 Chinchoy May 2010 A1
20100114284 Doerr May 2010 A1
20100121403 Schecter et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100145405 Min et al. Jun 2010 A1
20100152798 Sanghera et al. Jun 2010 A1
20100152801 Joh Jun 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100174137 Shim Jul 2010 A1
20100185250 Rom Jul 2010 A1
20100191131 Revishvili et al. Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198291 Sambelashvili et al. Aug 2010 A1
20100198292 Honeck et al. Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100204766 Zdeblick et al. Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100228138 Chen Sep 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234916 Turcott et al. Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249622 Olson Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100254583 Chan et al. Oct 2010 A1
20100268059 Ryu et al. Oct 2010 A1
20100286541 Musley et al. Nov 2010 A1
20100286626 Petersen Nov 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100298841 Prinzen et al. Nov 2010 A1
20100305451 Kim et al. Dec 2010 A1
20100312309 Harding Dec 2010 A1
20100318147 Forslund Dec 2010 A1
20110004111 Gill et al. Jan 2011 A1
20110004264 Siejko et al. Jan 2011 A1
20110009918 Bornzin Jan 2011 A1
20110014510 Miyashisa et al. Jan 2011 A1
20110022112 Min Jan 2011 A1
20110022113 Ideblick et al. Jan 2011 A1
20110054286 Crosby Mar 2011 A1
20110054559 Rosenberg et al. Mar 2011 A1
20110054560 Rosenberg et al. Mar 2011 A1
20110071586 Jacobson Mar 2011 A1
20110075896 Matsumoto Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110092809 Nguyen et al. Apr 2011 A1
20110106202 Ding et al. May 2011 A1
20110112398 Zarkh et al. May 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118803 Hou et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110137369 Ryu et al. Jun 2011 A1
20110144510 Ryu et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110172728 Wang Jul 2011 A1
20110184297 Vitali et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190615 Phillips et al. Aug 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110190841 Sambelashvili et al. Aug 2011 A1
20110196444 Prakash et al. Aug 2011 A1
20110201915 Gogin et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110213260 Keel et al. Sep 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110238102 Gutfinger et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110264158 Dong et al. Oct 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20110319954 Niazi et al. Dec 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120004567 Eberle et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120029586 Kumar Feb 2012 A1
20120035685 Saha et al. Feb 2012 A1
20120041500 Zhu Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078129 Bailin Mar 2012 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120089214 Kroll et al. Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101543 Demmer et al. Apr 2012 A1
20120101546 Stadler et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109235 Sheldon et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109244 Anderson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158089 Bocek et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120179056 Moulder et al. Jul 2012 A1
20120179221 Reddy et al. Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120203090 Min Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232478 Haslinger Sep 2012 A1
20120232563 Williams Sep 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120253419 Rosenberg et al. Oct 2012 A1
20120263218 Dal Molin et al. Oct 2012 A1
20120271369 Ollivier Oct 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120277725 Kassab Nov 2012 A1
20120283587 Ghosh et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120284003 Gosh et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296228 Zhang et al. Nov 2012 A1
20120296381 Matos Nov 2012 A1
20120296387 Zhang et al. Nov 2012 A1
20120296388 Zhang et al. Nov 2012 A1
20120302904 Lian et al. Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120303084 Kleckner et al. Nov 2012 A1
20120310297 Sweeney Dec 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20120330179 Yuk et al. Dec 2012 A1
20130006332 Sommer et al. Jan 2013 A1
20130012151 Hankins Jan 2013 A1
20130013017 Mullen et al. Jan 2013 A1
20130018250 Caprio et al. Jan 2013 A1
20130018251 Caprio et al. Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130030491 Stadler et al. Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053906 Ghosh et al. Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130072790 Ludwig et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130096446 Michael et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourget et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116739 Brada et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131529 Jia et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130131749 Sheldon et al. May 2013 A1
20130131750 Stadler et al. May 2013 A1
20130131751 Stadler et al. May 2013 A1
20130136035 Bange et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130150913 Bornzin et al. Jun 2013 A1
20130165983 Ghosh et al. Jun 2013 A1
20130165988 Ghosh Jun 2013 A1
20130184697 Han et al. Jul 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197599 Sambelashvili et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130231728 Ollivier Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Walfhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261471 Saha et al. Oct 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130261688 Dong et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268017 Zhang et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130289640 Zhang et al. Oct 2013 A1
20130138006 Bornzin et al. Nov 2013 A1
20130296726 Niebauer et al. Nov 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130304407 George et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130324828 Nishiwaki et al. Dec 2013 A1
20130325078 Whiting et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140005563 Ramanathan et al. Jan 2014 A1
20140012344 Hastings et al. Jan 2014 A1
20140018872 Siejko et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046389 Anderson Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140339570 Carroll et al. Feb 2014 A1
20140067036 Shuros et al. Mar 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107507 Ghosh et al. Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140114173 Bar-Tal et al. Apr 2014 A1
20140114372 Ghosh et al. Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140135866 Ramanathan et al. May 2014 A1
20140135867 Demmer et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140163633 Ghosh et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172033 Pei Jun 2014 A1
20140172060 Bornzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222099 Sweeney Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140236252 Ghosh et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276125 Hou et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140277233 Ghosh Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140323882 Ghosh et al. Oct 2014 A1
20140323892 Ghosh et al. Oct 2014 A1
20140323893 Ghosh et al. Oct 2014 A1
20140330208 Christie et al. Nov 2014 A1
20140330287 Thompson-Nauman et al. Nov 2014 A1
20140330326 Thompson-Nauman et al. Nov 2014 A1
20140358135 Sambelashvili et al. Dec 2014 A1
20140371807 Ghosh et al. Dec 2014 A1
20140371808 Ghosh et al. Dec 2014 A1
20140371832 Ghosh et al. Dec 2014 A1
20140371833 Ghosh et al. Dec 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150032016 Ghosh Jan 2015 A1
20150032171 Ghosh Jan 2015 A1
20150032172 Ghosh Jan 2015 A1
20150032173 Ghosh Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150045849 Ghosh et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Foster et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150142069 Sambelashvili May 2015 A1
20150142070 Sambelashvili May 2015 A1
20150148697 Burnes et al. May 2015 A1
20150149096 Soykan May 2015 A1
20150157225 Gillberg et al. Jun 2015 A1
20150157231 Gillberg et al. Jun 2015 A1
20150157232 Gillberg et al. Jun 2015 A1
20150157861 Aghassian Jun 2015 A1
20150157865 Gillberg et al. Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150216434 Ghosh et al. Aug 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150238768 Bornzin Aug 2015 A1
20150238769 Demmer et al. Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150265840 Ghosh et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150305695 Lahm et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150335894 Bornzin et al. Nov 2015 A1
20160015287 Anderson et al. Jan 2016 A1
20160015322 Anderson et al. Jan 2016 A1
20160022164 Brockway et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030747 Thakur et al. Feb 2016 A1
20160030751 Ghosh et al. Feb 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160045737 Ghosh et al. Feb 2016 A1
20160045738 Ghosh et al. Feb 2016 A1
20160045744 Gillberg et al. Feb 2016 A1
20160051821 Sambelashvili et al. Feb 2016 A1
20160059002 Grubac et al. Mar 2016 A1
20160067486 Brown et al. Mar 2016 A1
20160067487 Demmer et al. Mar 2016 A1
20160067490 Carney et al. Mar 2016 A1
20160110856 Hoof et al. Apr 2016 A1
20160114161 Amblard et al. Apr 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishler et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160129239 Anderson May 2016 A1
20160184590 Ghosh Jun 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213928 Ghosh Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160220142 Gillberg et al. Aug 2016 A1
20160228026 Jackson Aug 2016 A1
20160242887 Watschke et al. Aug 2016 A1
20160271393 Yu et al. Sep 2016 A1
20160310733 Sheldon et al. Oct 2016 A1
20160317825 Jacobson Nov 2016 A1
20160317840 Stadler et al. Nov 2016 A1
20160339248 Schrock et al. Nov 2016 A1
20160361536 Grubac et al. Dec 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170001011 An et al. Jan 2017 A1
20170014629 Ghosh et al. Jan 2017 A1
20170028205 Ghosh Feb 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170049347 Ghosh et al. Feb 2017 A1
20170056670 Sheldon et al. Mar 2017 A1
20170071675 Dawoud et al. Mar 2017 A1
20170182327 Liu Jun 2017 A1
20170189674 Camps Jul 2017 A1
20170189681 Anderson Jul 2017 A1
20170209689 Chen Jul 2017 A1
20170216575 Asleson et al. Aug 2017 A1
20170246460 Ghosh Aug 2017 A1
20170246461 Ghosh Aug 2017 A1
20170273574 Wu et al. Sep 2017 A1
20170303840 Stadler et al. Oct 2017 A1
20170304624 Friedman et al. Oct 2017 A1
20170326369 Koop et al. Nov 2017 A1
20170326372 Koop et al. Nov 2017 A1
20170340885 Sambelashvili Nov 2017 A1
20180008829 An et al. Jan 2018 A1
20180020938 Du et al. Jan 2018 A1
20180021567 An et al. Jan 2018 A1
20180021581 An et al. Jan 2018 A1
20180021582 An et al. Jan 2018 A1
20180050208 Shuros et al. Feb 2018 A1
20180078773 Thakur et al. Mar 2018 A1
20180078779 An et al. Mar 2018 A1
20180117324 Schilling et al. May 2018 A1
20180140847 Taff et al. May 2018 A1
20180140848 Stahmann May 2018 A1
20180178007 Shuros et al. Jun 2018 A1
20180185653 Baru et al. Jul 2018 A1
20180199843 Ghosh et al. Jul 2018 A1
20180212451 Schmidt et al. Jul 2018 A1
20180250514 Ghosh Sep 2018 A1
20180256902 Toy et al. Sep 2018 A1
20180256904 Li et al. Sep 2018 A1
20180263522 Ghosh et al. Sep 2018 A1
20180264258 Cheng et al. Sep 2018 A1
20180264262 Haasl et al. Sep 2018 A1
20180264272 Haasl et al. Sep 2018 A1
20180264273 Haasl et al. Sep 2018 A1
20180264274 Haasl et al. Sep 2018 A1
20180272121 Yankelson Sep 2018 A1
20180280686 Shuros et al. Oct 2018 A1
20180326215 Ghosh Nov 2018 A1
20190030331 Ghosh et al. Jan 2019 A1
20190030346 Li Jan 2019 A1
20190038906 Koop et al. Feb 2019 A1
20190083779 Yang et al. Mar 2019 A1
20190083800 Yang et al. Mar 2019 A1
20190083801 Yang et al. Mar 2019 A1
20190111270 Zhou Apr 2019 A1
20190134412 Shuros et al. May 2019 A1
20190143117 Ghosh May 2019 A1
20190151666 Bonnet May 2019 A1
20190160288 Stegemann et al. May 2019 A1
20190183370 Gillberg et al. Jun 2019 A1
20190192023 Ghosh Jun 2019 A1
20190192034 Ghosh Jun 2019 A1
20190192860 Ghosh et al. Jun 2019 A1
20190192863 Koop et al. Jun 2019 A1
20190261876 Ghosh et al. Aug 2019 A1
20190269926 Ghosh Sep 2019 A1
20190290905 Yang et al. Sep 2019 A1
20190290909 Ghosh et al. Sep 2019 A1
20190290910 Yang Sep 2019 A1
20190290915 Yang Sep 2019 A1
20190298903 Gillberg et al. Oct 2019 A1
20190298990 De Kock et al. Oct 2019 A1
20190314636 Shuros et al. Oct 2019 A1
20190351236 Koop Nov 2019 A1
20190366106 Ghosh et al. Dec 2019 A1
20200016418 Makharinsky Jan 2020 A1
20200069949 Ghosh Mar 2020 A1
20200095061 Ghosh Mar 2020 A1
20200197705 Drake Jun 2020 A1
20200197706 Grenz Jun 2020 A1
20200206511 Goedeke et al. Jul 2020 A1
20200261725 Yang Aug 2020 A1
20200261731 Ghosh Aug 2020 A1
20200261734 Yang Aug 2020 A1
20200306529 Asleson Oct 2020 A1
20200306546 Ghosh Oct 2020 A1
20200338336 Makharinsky et al. Oct 2020 A1
20200352470 Ghosh Nov 2020 A1
20210060340 Klepfer et al. Mar 2021 A1
20210085986 Li et al. Mar 2021 A1
20210106227 Ghosh Apr 2021 A1
20210106245 Ghosh Apr 2021 A1
20210106337 Ghosh Apr 2021 A1
20210106832 Ghosh Apr 2021 A1
20210106839 Hine Apr 2021 A1
20210128925 Ghosh May 2021 A1
20210204879 Gelfman Jul 2021 A1
20210228892 Kornet et al. Jul 2021 A1
20210236038 Hoglund et al. Aug 2021 A1
20210298658 Ghosh Sep 2021 A1
20210307670 Ghosh Oct 2021 A1
20210308458 Ghosh Oct 2021 A1
Foreign Referenced Citations (98)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
1253761 May 2000 CN
1878595 Dec 2006 CN
101073502 Nov 2007 CN
202933393 May 2013 CN
362611 Apr 1990 EP
0459 239 Dec 1991 EP
0 728 497 Aug 1996 EP
1 072 284 Jan 2001 EP
1 504 713 Feb 2005 EP
1 541 191 Jun 2005 EP
1 702 648 Sep 2006 EP
2 016 976 Jan 2009 EP
1 904 166 Jun 2011 EP
1 925 337 Mar 2012 EP
2 436 309 Apr 2012 EP
2 452 721 May 2012 EP
2 471 452 Jul 2012 EP
2 435 132 Aug 2013 EP
2 662 113 Nov 2013 EP
1 703 944 Jul 2015 EP
2005245215 Sep 2005 JP
WO 9500202 Jan 1995 WO
WO 9636134 Nov 1996 WO
WO 9724981 Jul 1997 WO
WO 1998026712 Jun 1998 WO
WO 1999006112 Feb 1999 WO
WO 2000045700 Aug 2000 WO
WO 2001067950 Sep 2001 WO
WO 0222206 Mar 2002 WO
WO 2003070323 Aug 2003 WO
WO 03092800 Nov 2003 WO
WO 2005000206 Jan 2005 WO
WO 2005042089 May 2005 WO
WO 2005056108 Jun 2005 WO
WO 2006069215 Jun 2006 WO
WO 2006086435 Aug 2006 WO
WO 2006105474 Oct 2006 WO
WO 2006113659 Oct 2006 WO
WO 2006115777 Nov 2006 WO
WO 2006116595 Nov 2006 WO
WO 2006117773 Nov 2006 WO
WO 2007013994 Feb 2007 WO
WO 2007027940 Mar 2007 WO
WO 2007013994 Apr 2007 WO
WO 2007073435 Jun 2007 WO
WO 2007075974 Jul 2007 WO
WO 2007139456 Dec 2007 WO
WO 2008042887 Apr 2008 WO
WO 2008058265 May 2008 WO
WO 2008064682 Jun 2008 WO
WO 2008151077 Dec 2008 WO
WO 2009006531 Jan 2009 WO
WO 2009079344 Jun 2009 WO
WO 2009139911 Nov 2009 WO
WO 2009148429 Dec 2009 WO
WO 2010019494 Feb 2010 WO
WO 2010071520 Jun 2010 WO
WO 2010088040 Aug 2010 WO
WO 2010088485 Aug 2010 WO
WO 2011070166 Jun 2011 WO
WO 2011090622 Jul 2011 WO
WO 2011099992 Aug 2011 WO
WO 2012037471 Mar 2012 WO
WO 2012106297 Aug 2012 WO
WO 2012109618 Aug 2012 WO
WO 2012110940 Aug 2012 WO
WO 2012151364 Nov 2012 WO
WO 2012151389 Nov 2012 WO
WO 2013006724 Jan 2013 WO
WO 2013010165 Jan 2013 WO
WO 2013010184 Jan 2013 WO
WO 2013006724 Apr 2013 WO
WO 2013080038 Jun 2013 WO
WO 2013098644 Jul 2013 WO
WO 2014179454 Nov 2014 WO
WO 2014179459 Nov 2014 WO
WO 2015013271 Jan 2015 WO
WO 2015013493 Jan 2015 WO
WO 2015013574 Jan 2015 WO
WO 2015081221 Jun 2015 WO
WO 2015193047 Dec 2015 WO
WO 2016011042 Jan 2016 WO
WO 2016077099 May 2016 WO
WO 2016110856 Jul 2016 WO
WO 2016171891 Oct 2016 WO
WO 2017075193 May 2017 WO
WO 2018009569 Jan 2018 WO
WO 2018017226 Jan 2018 WO
WO 2018017361 Jan 2018 WO
WO 2018035343 Feb 2018 WO
WO 2018081519 May 2018 WO
WO 2019173599 Sep 2019 WO
WO 2020058314 Mar 2020 WO
WO 2020226754 Nov 2020 WO
WO 2021123271 Jun 2021 WO
Non-Patent Literature Citations (337)
Entry
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
Jia et al, “Electrocardiogramaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiological responses”, Heart Rhythm, Mar. 2006 (Year: 2006).
Guillem et al, “Noninvasive Mapping of Human Atrial Fibrillation”, Journal of Cardiovascular Electrophysiology, May 2009.
U.S. Appl. No. 17/360,643, filed Jun. 28, 2021.
U.S. Appl. No. 17/361,721, filed Jun. 29, 2021.
U.S. Appl. No. 17/363,318, filed Jun. 30, 2021.
U.S. Appl. No. 17/368,260, filed Jul. 6, 2021.
U.S. Appl. No. 17/385,259, filed Jul. 26, 2021.
U.S. Appl. No. 17/385,609, filed Jul. 26, 2021.
http://www.isrctn.com/ISRCTN47824547, public posting published Aug. 2019.
Abed et al., “Obesity results in progressive atrial structural and electrical remodeling: Implications for atrial fibrillation,” Heart Rhythm Society, Jan. 2013; 10(1):90-100.
Adragão et al., “Ablation of pulmonary vein foci for the treatment of atrial fibrillation; percutaneous electroanatomical guided approach,” Europace, Oct. 2002; 4(4):391-9.
Aliot et al., “Arrhythmia detection by dual-chamber implantable cardioverter defibrillators: A review of current algorithms,” Europace, Jul. 2004; 6(4):273-86.
Amirahmadi et al., “Ventricular Tachycardia Caused by Mesothelial Cyst,” Indian Pacing and Electrophysiology Journal, 2013; 13(1):43-44.
Ammirabile et al., “Pitx2 confers left morphological, molecular, and functional identity to the sinus venosus myocardium,” Cardiovasc Res., Feb. 2012; 93(2):291-301.
Anfinsen, “Non-pharmacological Treatment of Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2002; 2(1):4-14.
Anné et al., “Ablation of post-surgical intra-atrial reentrant Tachycardia,” European Heart Journal, 2002; 23:169-1616.
Aquilina, “A Brief History of Cardiac Pacing”, Images Paediatr Cardiol. 8 (2), Apr.-Jun. 2006, 117 pages.
Arenal et al., “Dominant frequency differences in atrial fibrillation patients with and without left ventricular systolic dysfunction,” Europace, Apr. 2009; 11(4):450-457.
Arriagada et al., “Predictors of arrhythmia recurrence in patients with lone atrial fibrillation,” Europace, Jan. 2008; 10(1):9-14.
Asirvatham et al., “Cardiac Anatomic Considerations in Pediatric Electrophysiology,” Indian Pacing and Electrophysiology Journal, Apr. 2008; 8(Suppl 1):S75-S91.
Asirvatham et al., “Intramyocardial Pacing and Sensing for the Enhancement of Cardiac Stimulation and Sensing Specificity,” Pacing Clin. Electrophysiol., Jun. 2007; 30(6):748-754.
Asirvatham et al., “Letter to the Editor,” J Cardiovasc Electrophysiol., Mar. 2010; 21(3):E77.
Balmer et al., “Long-term follow up of children with congenital complete atrioventricular block and the impact of pacemaker therapy,” Europace, Oct. 2002; 4(4):345-349.
Barold et al., “Conventional and biventricular pacing in patients with first-degree atrioventricular block,” Europace, Oct. 2012; 14(10):1414-9.
Barold et al., “The effect of hyperkalaemia on cardiac rhythm devices,” Europace, Apr. 2014; 16(4):467-76.
Bayrak et al., “Added value of transoesophageal echocardiography during transseptal puncture performed by inexperienced operators,” Europace, May 2012; 14(5):661-5.
Bergau et al., “Measurement of Left Atrial Pressure is a Good Predictor of Freedom From Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):181-93.
Bernstein et al., “The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group,” Pacing Clin Electrophysiol., Feb. 2002; 25(2):260-4.
Biffi et al., “Occurrence of Phrenic Nerve Stimulation in Cardiac Resynchronization Therapy Patients: the Role of Left Ventricular Lead Type and Placement Site,” Europace, 2013; 15:77-82.
Bito et al., “Early exercise training after myocardial infarction prevents contractile but not electrical remodeling or hypertrophy,” Cardiovascular Research, Apr. 2010; 86(1):72-81.
Bollmann et al., “Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications,” Europace, Nov. 2006; 8(11):911-926.
Bortolotto et al., “Pre-implantation interlead EKG heterogeneity is superior to QRS complex duration in predicting mechanical super-response and survival in patients receiving cardiac resynchronization therapy”, Heart Rhythm, Mar. 10, 2020, 35 pages.
Bortone et al., “Evidence for an incomplete mitral isthmus block after failed ablation of a left postero-inferior concealed accessory pathway,” Europace, Jun. 2006; 8(6):434-7.
Botker MD, PhD., et al., “Electromechanical Mapping for Detection of Myocardial Viability in Patients with ischemia Cardiomyopathy,” Circulation, Mar. 2001; vol. 103, No. 12, pp. 1631-1637.
Boulos et al., “Electroanatomical mapping and radiofrequency ablation of an accessory pathway associated with a large aneurysm of the coronary sinus,” Europace, Nov. 2004; 6(6):608-12.
Brembilla-Perrot et al., “Incidence and prognostic significance of spontaneous and inducible antidromic tachycardia,” Europace, Jun. 2013; 15(6):871-876.
Buber et al., “Morphological features of the P-waves at surface electrocardiogram as surrogate to mechanical function of the left atrium following a successful modified maze procedure,” Europace, Apr. 2014; 16(4):578-86.
Burashnikov et al., “Late-phase 3 EAD. A unique mechanism contributing to initiation of atrial fibrillation,” Pacing Clin Electrophysiol., Mar. 2006; 29(3):290-5.
Burashnikov et al., “Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation,” Heart Rhythm, Jan. 2012; 9(1):125-31.
Calvo et al., “Efficacy of circumferential pulmonary vein ablation of atrial fibrillation in endurance athletes,” Europace, Jan. 2010; 12(1):30-6.
Can et al., ““Atrial torsades de pointes” Induced by Low-Energy Shock From Implantable-Cardioverter Defibrillator,” Indian Pacing and Electrophysiology Journal, Sep. 2013; 13(5):194-199.
“CardioGuide System Enables Real-Time Navigation of Left Ventricular Leads During Medtronic CRT Implants,” Press Release, Apr. 9, 2013, Medtronic, Inc., 2 pgs.
Carroz et al., “Pseudo-pacemaker syndrome in a young woman with first-degree atrio-ventricular block,” Europace, Apr. 2010; 12(4):594-596.
Catanchin et al., “Wolff-Parkinson-White syndrome with an unroofed coronary sinus without persistent left superior vena cava treated with catheter cryoablation,” Indian Pacing and Electrophysiology Journal, Aug. 2008; 8(3):227-233.
Cazeau et al., “Cardiac resynchronization therapy,” Europace, Sep. 2004; 5 Suppl 1:S42-8.
Cerqueira et al., “Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association,” Circulation, Jan. 29, 2002; 105(4):539-42.
Chandra et al., “Evaluation of KCB-328, a new IKr blocking antiarrhythmic agent in pacing induced canine atrial fibrillation,” Europace, Sep. 2004; 6(5):384-91.
Chang et al., “Electrophysiological characteristics and catheter ablation in patients with paroxysmal supraventricular tachycardia and paroxysmal atrial fibrillation,” J Cardiovasc Electrophysiol., Apr. 2008; 19(4):367-73.
Charron et al., “A familial form of conduction defect related to a mutation in the PRKAG2 gene,” Europace, Aug. 2007; 9(8):597-600.
Chou et al., “Effects of SEA0400 on Arrhythmogenicity in a Langendorff-Perfused 1-Month Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., May 2013; 36(5):596-606.
Ciploetta et al., “Posterior Coronary Vein as the Substrate for an Epicardial Accessory Pathway,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13(4):142-7.
Climent et al., “Effects of endocardial microwave energy ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2005; 5(3):233-43.
Comtois et al., “Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry,” Europace, Sep. 2005; 7 Suppl 2:10-20.
Crick et al., “Anatomy of the pig heart: comparisons with normal human cardiac structure,” J. Anat.,1998, 193:105-119.
Cuculich, P.S., et al., “The Electrophysiological Cardiac Ventricular Substrate in Patients After Myocardial Infection” J. Am. Coll. Cardiol. 2011; 58:1893-1902.
Czerwinska et al., “Method of Segmentation of Thorax Organs Images Applied to Modeling the Cardiac Electrical Field,” Engineering in Medicine and Biology Society, Proceedings of the 22nd Annual International Conference of the IEEE, vol. 1, 23, Jul. 23, 2000.; pp. 402-405.
Daoulah et al., “Unintended Harm and Benefit of the Implantable Defibrillator in an Unfortunate 19-Year-Old Male: Featuring a Sequence of Rare Life-threatening Complications of Cardiac Procedures,” Indian Pacing and Electrophysiology Journal, Aug. 2013; 13(4):151-6.
Dawoud, F. et al., “Inverse Electrocardiogramhic Imaging to Assess Electrical Dyssynchrony in Cardiac Resynchronization Therapy Patients,” Computing in Cardiology, 2012; 39:993-996.
De Mattia et al., “Paroxysmal atrial fibrillation triggered by a monomorphic ventricular couplet in a patient with acute coronary syndrome,” Indian Pacing and Electrophysiology Journal, Jan. 2012; 12(1):19-23.
DeSimone et al., “New approach to cardiac resynchronization therapy: CRT without left ventricular lead,” Apr. 25, 2014, 2 pages.
De Sisti et al., “Electrophysiological determinants of atrial fibrillation in sinus node dysfunction despite atrial pacing,” Europace, Oct. 2000; 2(4):304-11.
De Voogt et al., “Electrical characteristics of low atrial septum pacing compared with right atrial appendage pacing,” Europace, Jan. 2005; 7(1):60-6.
De Voogt et al., “A technique of lead insertion for low atrial septal pacing,” Pacing Clin Electrophysiol., Jul. 2005; 28(7):639-46.
Dizon et al. “Real-time stroke vol. measurements for the optimization of cardiac resynchronization therapy parameters,” Europace, Sep. 2010; 12(9):1270-1274.
Duckett et al., “Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy,” Europace, Jan. 2012; 14(1):99-106.
Eksik et al., “Influence of atrioventricular nodal reentrant tachycardia ablation on right to left inter-atrial conduction,” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):279-88.
Fiala et al., “Left Atrial Voltage during Atrial Fibrillation in Paroxysmal and Persistent Atrial Fibrillation Patients,” PACE, May 2010; 33(5):541-548.
Fragakis et al., “Acute beta-adrenoceptor blockade improves efficacy of ibutilide in conversion of atrial fibrillation with a rapid ventricular rate,” Europace, Jan. 2009; 11(1):70-4.
Freund et al., “A Decision-Theoretic Generalization of Online Learning and an Application to Boosting,” Journal of Computer and System Sciences, 1997; 55(1):119-139.
Friedman, “Greedy Function Approximation: A Gradient Boosting Machine,” Annals of Statistics, 2001; 29(5):1189-1232.
Friedman, “Stochastic Gradient Boosting,” Computational Statistics and Data Analysis, 2002; 38(4):367-378.
Friedman et al., “Additive Logistic Regression: a Statistical View of Boosting,” Annals of Statistics, 2000; 28(2):337-374.
Frogoudaki et al., “Pacing for adult patients with left atrial isomerism: efficacy and technical considerations,” Europace, Apr. 2003; 5(2):189-193.
Fung et al., Chapter 20, Optimization of Cardiac Resynchronization Therapy, Cardiac Resynchronization Therapy, Second Edition, Copyright 2008, Blackwell Publishing Ltd., pp. 356-373.
Ganapathy et al., “Implantable Device to Monitor Cardiac Activity with Sternal Wires,” Pacing Clin. Electrophysiol., Dec. 2014; Epub Aug. 24, 2014; 37(12):1630-40.
Geddes, “Accuracy limitations of chronaxie values,” IEEE Trans Biomed Eng., Jan. 2004; 51(1):176-81.
Gertz et al., “The impact of mitral regurgitation on patients undergoing catheter ablation of atrial fibrillation,” Europace, Aug. 2011; 13(8):1127-32.
Ghosh et al. “Accuracy of Quadratic Versus Linear Interpolation in Noninvasive Electrocardiogramaging (ECGI),” Annuals of Biomedical Engineering, vol. 33, No. 9. Sep. 2005; pp. 1187-1201.
Ghosh et al., “Cardiac Memory in Patents with Wolff-Parkinson-White Syndrome: Noninvasive Imaging of Activation and Repolarization Before and After Catheter Ablation” Circulation, 2008; 118:907-915. Published online Aug. 12, 2008.
Ghosh et al. “Application of L1-Norm Regularization to Epicardial Potential Solution of the Inverse Electrocardiogram Problem,” Annuals of Biomedical Engineering, vol. 37, No. 5, May 2009; pp. 902-912.
Ghosh et al., “Electrophysiological Substrate and Intraventricular LV Dyssynchrony in Non-ischemic Heart Failure Patients Undergoing Cardiac Resynchronization Therapy,” Heart rhythm : the official journal of the Heart Rhythm Society, 2011; 8(5):692-699.
Girmatsion et al., “Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation,” Heart Rhythm, Dec. 2009; 6(12):1802-9.
Goette et al., “Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow abnormalities in the ventricles,” European Heart Journal, Jun. 2009; 30(11):1411-20.
Goette et al., “Electrophysiological effects of angiotensin II. Part I: signal transduction and basic electrophysiological mechanisms,” Europace, Feb. 2008; 10(2):238-41.
Gold et al., “Comparison of Stimulation Sites within Left Ventricular Veins on the Acute Hemodynamic Effects of Cardiac Resynchronization Therapy” Heart Rhythm, Apr. 2005; 2(4):376-381.
Gómez et al., “Nitric oxide inhibits Kv4.3 and human cardiac transient outward potassium current (Ito1),” Cardiovasc Res., Dec. 2008; 80(3):375-84.
Gros et al., “Connexin 30 is expressed in the mouse sino-atrial node and modulates heart rate,” Cardiovascular Research, Jan. 2010; 85(1):45-55.
Guenther et al., “Substernal Lead Implantation: A Novel Option to Manage OFT Failure in S-ICD patients,” Clinical Research Cardiology, Feb. 2015; Epub Oct. 2, 2014; 104(2):189-91.
Guillem et al., “Noninvasive mapping of human atrial fibrillation,” J Cardiovasc Electrophysiol., May 2009; 20(5):507-513.
Gulrajani, “The Forward and Inverse Problems of Electrocardiogramhy,” IEEE Engineering in Medicine and Biology, IEEE Service Center, vol. 17, No. 5, Sep. 1, 1988; pp. 84-101, 122.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Hakacova et al., “Septal atrial pacing for the prevention of atrial fibrillation,” Europace, 2007; 9:1124-1128.
Hansen, “Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems,” Version 4.1 for Matlab 7.3; Mar. 2008; 128 pages. Retrieved from the Internet: Jun. 19, 2014 http://www.mathworks.com/matlabcentral/fileexchange/52-regtools.
Hasan et al., “Safety, efficacy, and performance of implanted recycled cardiac rhythm management (CRM) devices in underprivileged patients,” Pacing Clin Electrophysiol., Jun. 2011; 34(6):653-8.
Hawkins, “Epicardial Wireless Pacemaker for Improved Left Ventricular Reynchronization (Conceptual Design)”, Dec. 2010, A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo, 57 pp.
Hayes et al., “Cardiac Resynchronization Therapy and the Relationship of Percent Biventricular Pacing to Symptoms and Survival,” Heart Rhythm, Sep. 2011; 8(9):1469-1475.
He et al., “Three-dimensional cardiac electrical imaging from intracavity recordings,” IEEE Trans Biomed Eng., Aug. 2007; 54(8):1454-60.
“Heart Failure Management” datasheet [online]. Medtronic, Minneapolis, Minnesota, [Last updated on Jun. 3, 2013].Retrieved from the Internet: www.medtronic.com; 9 pages.
Heist et al., “Direct visualization of epicardial structures and ablation utilizing a visually guided laser balloon catheter: preliminary findings,” J Cardiovasc Electrophysiol., Jul. 2011; 22(7):808-12.
Henz et al., “Synchronous Ventricular Pacing without Crossing the Tricuspid Valve or Entering the Coronary Sinus—Preliminary Results,” J Cardiovasc Electrophysiol., Dec. 2009; 20(12):1391-1397.
Hiippala et al., “Automatic Atrial Threshold Measurement and Adjustment in Pediatric Patients,” Pacing Clin Electrophysiol., Mar. 2010; 33(3):309-13.
Ho, “Letter to the Editor” J Cardiovasc Electrophysiol., Mar. 2010; 21(3): E76.
Höijer et al., “Improved cardiac function and quality of life following upgrade to dual chamber pacing after long-term ventricular stimulation,” European Heart Journal, Mar. 2002; 23(6):490-497.
Hopenfeld et al., “The Effect of Conductivity on ST-Segment Epicardial Potentials Arising from Subendocardial Ischemia,” Annals of Biomedical Eng., Jun. 2005; vol. 33, No. 6, pp. 751-763.
Huang et al., “A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block,” Can J Cardiol., Dec. 2007; Epub Sep. 22, 2017; 33(12):1736.e1-1736.e.
Hurtado, “Electrical and Anatomical Modeling of the Specialized Cardiac Conduction System, A Simulation Study”, Universitat Politecnica de Valenica, March 211, 96 pp.
Inter-Office Memo, Model 6426-85 Canine Feasibility AV Septal 8 mm Screw-In Right Single Pass DDD Lead Final Report (AR # 0120A0207).
Ishigaki et al., “Prevention of immediate recurrence of atrial fibrillation with low-dose landiolol after radiofrequency catheter ablation,” Journal of Arrhythmia, Oct. 2015; 31(5):279-285.
Israel, “The role of pacing mode in the development of atrial fibrillation,” Europace, Feb. 2006; 8(2):89-95.
Janion et al., “Dispersion of P wave duration and P wave vector in patients with atrial septal aneurysm,” Europace, Jul. 2007; 9(7):471-4.
Jia et al., “Electrocardiographic Imaging of Cardiac Resynchronization Therapy in Heart Failure: Observation of Variable Electrophysiologic Responses,” Heart Rhythm, vol. 3, No. 3; Mar. 1, 2006, pp. 296-310.
Kabra et al., “Recent Trends in Imaging for Atrial Fibrillation Ablation,” Indian Pacing and Electrophysiology Journal, 2010; 10(5):215-227.
Kalbfleisch et al., “Catheter Ablation with Radiofrequency Energy: Biophysical Aspects and Clinical Applications,” Journal of Cardiovascular Electrophysiology, Oct. 2008; 3(2):173-186.
Kauitsis et al., “Classification and differential diagnosis of atrioventricular nodal re-entrant tachycardia,” Europace, Jan. 2006; 8(1):29-36.
Katritsis et al., “Anatomically left-sided septal slow pathway ablation in dextrocardia and situs inversus totalis,” Europace, Aug. 2008; 10(8):1004-5.
Kentta et al., “Prediction of sudden cardiac death with automated high-throughput analysis of heterogeneity in standard resting 12-lead electrocardiograms”, Heart Rhythm Society, 2015, 8 pages.
Khairy et al., “Cardiac Arrhythmias In Congenital Heart Diseases,” Indian Pacing and Electrophysiology Journal, Nov.-Dec. 2009; 9(6):299-317.
Kimmel et al., “Single-site ventricular and biventricular pacing: investigation of latest depolarization strategy,” Europace, Dec. 2007; 9(12):1163-1170.
Knackstedt et al., “Electro-anatomic mapping systems in arrhythmias,” Europace, Nov. 2008; 10 Suppl 3:iii28-iii34.
Kobayashi et al., “Successful Ablation of Antero-septal Accessory Pathway in the Non-Coronary Cusp in a Child,” Indian Pacing and Electrophysiology Journal, 2012; 12(3):124-130.
Kojodjojo et al., “4:2:1 conduction of an AF initiating trigger,” Indian Pacing and Electrophysiology Journal, Nov. 2015; 15(5):255-8.
Kołodzińska et al., “Differences in encapsulating lead tissue in patients who underwent transvenous lead removal,” Europace, Jul. 2012; 14(7):994-1001.
Konecny et al., “Synchronous intra-myocardial ventricular pacing without crossing the tricuspid valve or entering the coronary sinus,” Cardiovascular Revascularization Medicine, 2013; 14:137-138.
Kornreich, “Body Surface Potential Mapping of ST Segment Changes in Acute Myocardial Infarction,” Circulation, 1993; 87: 773-782.
Kriatselis et al., “Ectopic atrial tachycardias with early activation at His site: radiofrequency ablation through a retrograde approach,” Europace, Jun. 2008; 10(6):698-704.
Lalu et al., “Ischaemia-reperfusion injury activates matrix metalloproteinases in the human heart,” Eur Heart J., Jan. 2005; 26(1):27-35.
Laske et al., “Excitation of the Intrinsic Conduction System Through His and Interventricular Septal Pacing,” Pacing Clin. Electrophysiol., Apr. 2006; 29(4):397-405.
Leclercq, “Problems and troubleshooting in regular follow-up of patients with cardiac resynchronization therapy,” Europace, Nov. 2009; 11 Suppl 5:v66-71.
Lee et al., “An unusual atrial tachycardia in a patient with Friedreich ataxia,” Europace, Nov. 2011; 13(11):1660-1.
Lee et al., “Blunted Proarrhythmic Effect of Nicorandil in a Langendorff-Perfused Phase-2 Myocardial Infarction Rabbit Model,” Pacing Clin Electrophysiol., Feb. 2013; 36(2):142-51.
Lemay et al., “Spatial dynamics of atrial activity assessed by the vectorcardiogram: from sinus rhythm to atrial fibrillation,” Europace, Nov. 2007; 9 Suppl 6:vi109-18.
Levy et al., “Does the mechanism of action of biatrial pacing for atrial fibrillation involve changes in cardiac haemodynamics? Assessment by Doppler echocardiography and natriuretic peptide measurements,” Europace, Apr. 2000; 2(2):127-35.
Lewalter et al., “Comparison of spontaneous atrial fibrillation electrogram potentials to the P wave electrogram amplitude in dual chamber pacing with unipolar atrial sensing,” Europace, Apr. 2000; 2(2):136-40.
Liakopoulos et al., “Sequential deformation and physiological considerations in unipolar right and left ventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S188-197.
Lian et al., “Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing,” IEEE Transactions on Biomedical Engineering, Aug. 2006; 53(8):1512-1520.
Lim et al., “Right ventricular lead implantation facilitated by a guiding sheath in a patient with severe chamber dilatation with tricuspid regurgitation,” Indian Pacing and Electrophysiology Journal, Sep. 2011; 11(5):156-8.
Lim et al., “Coupled pacing improves left ventricular function during simulated atrial fibrillation without mechanical dyssynchrony,” Europace, Mar. 2010; 12(3):430-6.
Liu et al., “Three-Dimensional Imaging of Ventricular Activation and Electrograms from Intercavitary Recordings”, IEEE 2011, vol. 58, No. Apr. 2011, pp. 868-875.
Lou et al., “Tachy-brady arrhythmias: The critical role of adenosine-induced sinoatrial conduction block in post-tachycardia pauses,” Heart Rhythm, Jan. 2013; 10(1):110-8.
Lutomsky et al., “Catheter ablation of paroxysmal atrial fibrillation improves cardiac function: a prospective study on the impact of atrial fibrillation ablation on left ventricular function assessed by magnetic resonance imaging,” Europace, May 2008; 10(5):593-9.
Macedo et al, “Septal accessory pathway: anatomy, causes for difficulty, and an approach to ablation,” Indian Pacing and Electrophysiology Journal, Jul. 2010; 10(7):292-309.
Mafi-Rad et al., “Feasibility and Acute Hemodynamic Effect of Left Venuicular Septal Pacing by Transvenous Approach Through the Interventricular Septum,” Circ Arrhythm Electrophysoil., Mar. 2016; 9(3):e003344.
Mani et al., “Dual Atrioventricular Nodal Pathways Physiology: A Review of Relevant Anatomy, Electrophysiology, and Electrocardiographic Manifestations,” Indian Pacing and Electrophysiology Journal, Jan. 2014; 14(1):12-25.
Manios et al., “Effects of successful cardioversion of persistent atrial fibrillation on right ventricular refractoriness and repolarization,” Europace, Jan. 2005; 7(1):34-9.
Manolis et al., “Prevention of atrial fibrillation by inter-atrial septum pacing guided by electrophysiological testing, in patients with delayed interatrial conduction,” Europace, Apr. 2002; 4(2):165-174.
Marino et al., “Inappropriate mode switching clarified by using a chest radiograph,” Journal of Arrhythmia, Aug. 2015; 31(4):246-248.
Markowitz et al., “Time course and predictors of autonomic dysfunction after ablation of the slow atrioventricular nodal pathway,” Pacing Clin Electrophysiol., Dec. 2004; 27(12):1638-43.
Marshall et al., “The effects of temperature on cardiac pacing thresholds,” Pacing Clin Electrophysiol., Jul. 2010; 33(7):826-833.
McSharry et al., “A Dynamical Model for Generating Synthetic Electrocardiogram Signals,” IEEE Transactions on Biomedical Engineering, Mar. 2003; 50(3):289-294.
Medtronic Vitatron Carelink Encore® Programmer Model 29901 Reference Manual, 2013, Medtronic, Inc., Minneapolis, MN.
Meijler et al., “Scaling of Atrioventricular Transmission in Mammalian Species: An Evolutionary Riddle!,” Journal of Cfardiovascular Electrophysiology, Aug. 2002; 13(8):826-830.
Meiltz et al., “Permanent form of junctional reciprocating tachycardia in adults: peculiar features and results of radiofrequency catheter ablation,” Europace, Jan. 2006; 8(1):21-8.
Mellin et al., “Transient reduction in myocardial free oxygen radical levels is involved in the improved cardiac function and structure after long-term allopurinol treatment initiated in established chronic heart failure,” Eur Heart J., Aug. 2005; 26(15):1544-50.
Mestan et al., “The influence of fluid and diuretic administration on the index of atrial contribution in sequentially paced patients,” Europace, Apr. 2006; 8(4):273-8.
Metin et al., “Assessment of the P Wave Dispersion and Duration in Elite Women Basketball Players,” Indian Pacing and Electrophysiology Journal, 2010; 10(1):11-20.
Mills et al., “Left Ventricular Septal and Left Ventricular Apical Pacing Chronically Maintain Cardiac Contractile Coordination, Pump Function and Efficiency,” Circ Arrhythm Electrophysoil., Oct. 2009; 2(5):571-579.
Mirzoyev et al., “Embryology of the Conduction System for the Electrophysiologist,” Indian Pacing and Electrophysiology Journal, 2010; 10(8):329-338.
Miri et al., “Applicability of body surface potential map in computerized optimization of biventricular pacing,” Annals of Biomedical Engineening, vol. 38, No. 3, Mar. 2010, pp. 865-875.
Miri et al., “Comparison of the electrophysiologically based optimization methods with different pacing parameters in patient undergoing resynchronization treatment,” 30th Annual International IEEE EMBS Conference, Aug. 2008, pp. 1741-1744.
Miri et al., “Computerized Optimization of Biventricular Pacing Using Body Surface Potential Map,” 31st Annual International Conference of the IEEE EMBS, Sep. 2009, pp. 2815-2818.
Miri et al., “Efficiency of Timing Delays and Electrode Positions in Optimization of Biventricular Pacing: A Simulation Study,” IEEE Transactions on Biomedical Engineering, Nov. 2009, pp. 2573-2582.
Mitchell et al., “How do atrial pacing algorithms prevent atrial arrhythmias?” Europace, Jul. 2004; 6(4):351-62.
Modre et al., “Noninvasive Myocardial Activation Time Imaging: A Novel Inverse Algorithm Applied to Clinical ECG Mapping Data,” IEE Transactions on Biomedical Engineering, Oct. 2002; 49(10):1153-1161.
Montgomery et al., “Measurement of diffuse ventricular fibrosis with myocardial T1 in patients with atrial fibrillation,” J Arrhythm., Feb. 2016; 32(1):51-6.
Mulpuru et al., “Synchronous ventricular pacing with direct capture of the atrioventricular conduction system: Functional anatomy, terminology, and challenges,” Heart Rhythm, Nov. 2016; Epub Aug. 3, 2016; 13(11):2237-2246.
Musa et al., “Inhibition of Platelet-Derived Growth Factor-AB Signaling Prevents Electromechanical Remodeling of Adult Atrial Myocytes that Contact Myofibroblasts,” Heart Rhythm, Jul. 2013; 10(7):1044-1051.
Nagy et al., “Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and β-catenin expression,” Cardiovascular Research, Jan. 2010; 85(1):100-9.
Namboodiri et al., “Electrophysiological features of atrial flutter in cardiac sarcoidosis: a report of two cases,” Indian Pacing and Electrophysiology Journal, Nov. 2012; 12(6):284-9.
Nanthakumar et al., “Assessment of accessory pathway and atrial refractoriness by transesophageal and intracardiac atrial stimulation: An analysis of methodological agreement,” Europace, Jan. 1999; 1(1):55-62.
Nash et al., “An Experimental-Computational Framework for Validating in-vivo ECG Inverse Algorithms,” International Journal of Bioelectromagnetism, vol. 2, No. 2, Dec. 31, 2000, 9 pp.
Neto et al., “Temporary atrial pacing in the prevention of postoperative atrial fibrillation,” Pacing Clin Electrophysiol., Jan. 2007; 30(Suppl 1):S79-83.
Nishijima et al., “Tetrahydrobiopterin depletion and NOS2 uncoupling contribute to heart failure-induced alterations in atrial electrophysiology,” Cardiovasc Res., Jul. 2011; 91(1):71-9.
Niwano et al., “Effect of oral L-type calcium channel blocker on repetitive paroxysmal atrial fibrillation: spectral analysis of fibrillation waves in the Holter monitoring,” Europace, Dec. 2007; 9(12):1209-1215.
Okumura et al., “Effects of a high-fat diet on the electrical properties of porcine atria,” Journal of Arrhythmia, Dec. 2015; 31(6):352-358.
Olesen et al., “Mutations in sodium channel β-subunit SCN3B are associated with early-onset lone atrial fibrillation,” Cardiovascular Research, Mar. 2011; 89(4):786-93.
Ozmen et al., “P wave dispersion is increased in pulmonary stenosis,” Indian Pacing and Electrophysiology Journal, Jan. 2006; 6(1):25-30.
Packer et al., “New generation of electro-anatomic mapping: Full intracardiac image integration,” Europace, Nov. 2008; 10 Suppl 3:iii35-41.
Page et al., “Ischemic ventricular tachycardia presenting as a narrow complex tachycardia,” Indian Pacing and Electrophysiology Journal, Jul. 2014; 14(4):203-210.
Pakarinen et al., “Pre-implant determinants of adequate long-term function of single lead VDD pacemakers,” Europace, Apr. 2002; 4:137-141.
Patel et al., “Atrial Fibrillation after Cardiac Surgery: Where are we now?” Indian Pacing and Electrophysiology Journal, Oct.-Dec. 2008; 8(4):281-291.
Patel et al., “Successful ablation of a left-sided accessory pathway in a patient with coronary sinus atresia and arteriovenous fistula: clinical and developmental insights,” Indian Pacing and Electrophysiology Journal, Mar. 2011; 11(2):43-49.
Peschar et al., “Left Ventricular Septal and Apex Pacing for Optimal Pump Function in Canine Hearts,” J Am Coll Cardiol., Apr. 2, 2003; 41(7):1218-1226.
Physiological Research Laboratories, Final Report for an Acute Study for Model 6426-85 AV Septal Leads, Feb. 1996.
Porciani et al., “Interatrial septum pacing avoids the adverse effect of interatrial delay in biventricular pacing: an echo-Doppler evaluation,” Europace, Jul. 2002; 4(3):317-324.
Potse et al., “A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart,” IEEE Transactions on Biomedical Engineering, Dec. 2006; 53(12 Pt 1):2425-35.
Potse et al., “Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy,” J. of Cardiovasc. Trans. Res., 2012; 5:146-158.
Prinzen et al., “Cardiac Resynchronization Therapy State-of-the-Art of Current Applications, Guidelines, Ongoing Trials, and Areas of Controversy” Circulation, 2013; 128: 2407-2418.
Prystowsky et al., “Case studies with the experts: management decisions in atrial fibrillation,” J Cardiovasc Electrophysiol., Feb. 2008; 19(Suppl. 1):S1-12.
Prystowsky, “The history of atrial fibrillation: the last 100 years,” J Cardiovasc Electrophysiol, Jun. 2008; 19(6):575-582.
Pytkowski et al., “Paroxysmal atrial fibrillation is associated with increased intra-atrial conduction delay,” Europace, Dec. 2008; 10(12):1415-20.
Qu et al., “Dynamics and cardiac arrhythmias,” J Cardiovasc Electrophysiol., Sep. 2006; 17(9):1042-9.
Ravens et al., “Role of potassium currents in cardiac arrhythmias,” Europace, Oct. 2008; 10(10):1133-7.
Ricci et al., Efficacy of a dual chamber defibrillator with atrial antitachycardia functions in treating spontaneous atrial tachyarrhythmias in patients with life-threatening ventricular tachyarrhythmias, European Heart Journal, Sep. 2002; 23(18):1471-9.
Rickard et al., “The ECG Belt for CRT response trial: Design and clinical protocol”, PACE, vol. 43, No. 10, Jun. 14, 2020, pp. 1063-1071.
Ridgeway, “The State of Boosting,” Computing Science and Statistics, 1999; 31:172-181.
Roberts-Thomson et al., “Focal atrial tachycardia II: management,” Pacing Clin Electrophysiol., Jul. 2006; 29(7):769-78.
Rossi et al., “Endocardial vagal atrioventricular node stimulation in humans: reproducibility on 18-month follow-up,” Europace, Dec. 2010; 12(12):1719-24.
Rouzet et al., “Contraction delay of the RV outflow tract in patients with Brugada syndrome is dependent on the spontaneous ST-segment elevation pattern,” Heart Rhythm, Dec. 2011; 8(12):1905-12.
Russo et al., “Atrial Fibrillation and Beta Thalassemia Major: The Predictive Role of the 12-lead Electrocardiogram Analysis,” Indian Pacing and Electrophysiology Journal, May 2014; 14(3):121-32.
Ryu et al., “Simultaneous Electrical and Mechanical Mapping Using 3D Cardiac Mapping System: Novel Approach for Optimal Cardiac Resynchronization Therapy,” Journal of Cardiovascular Electrophysiology, Feb. 2010, 21(2): 219-22.
Sairaku et al., “Prediction of sinus node dysfunction in patients with persistent atrial flutter using the flutter cycle length,” Europace, Mar. 2012; 14(3):380-7.
Santini et al., “Immediate and long-term atrial sensing stability in single-lead VDD pacing depends on right atrial dimensions,” Europace, Oct. 2001; 3(4):324-31.
Saremi et al., “Cardiac Conduction System: Delineation of Anatomic Landmarks With Multidetector CT,” Indian Pacing and Electrophysiology Journal, Nov. 2009; 9(6):318-33.
Savelieva et al., “Anti-arrhythmic drug therapy for atrial fibrillation: current anti-arrhythmic drugs, investigational agents, and innovative approaches,” Europace, Jun. 2008; 10(6):647-665.
Schmidt et al., “Navigated DENSE strain imaging for post-radiofrequency ablation lesion assessment in the swine left atria,” Europace, Jan. 2014; 16(1):133-41.
Schoonderwoerd et al., “Rapid Pacing Results in Changes in Atrial but not in Ventricular Refractoriness,” Pacing Clin Electrophysiol., Mar. 2002; 25(3):287-90.
Schoonderwoerd et al., “Atrial natriuretic peptides during experimental atrial tachycardia: role of developing tachycardiomyopathy,” J Cardiovasc Electrophysiol., Aug. 2004; 15(8):927-32.
Schoonderwoerd et al., “Atrial ultrastructural changes during experimental atrial tachycardia depend on high ventricular rate,” J Cardiovasc Electrophysiol., Oct. 2004; 15(10):1167-74.
Sedmera, “Function and form in the developing cardiovascular system,” Cardiovasc Res., Jul. 2011; 91(2):252-9.
Severi et al., “Alterations of atrial electrophysiology induced by electrolyte variations: combined computational and P-wave analysis,” Europace, Jun. 2010; 12(6):842-9.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering, vol. 60(8): 2067-2079, 2013.
Shah et al., “Stable atrial sensing on long-term follow up of VDD pacemakers,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):189-93.
Shenthar et al., “Permanent pacemaker implantation in a patient with situs solitus, dextrocardia, and corrected transposition of the great arteries using a novel angiographic technique,” Journal of Arrhythmia, Apr. 2014; 30(2):134-138.
Shenthar et al., “Transvenous permanent pacemaker implantation in dextrocardia: technique, challenges, outcome, and a brief review of literature,” Europace, Sep. 2014; 16(9):1327-33.
Shirayama, “Role of atrial fibrillation threshold evaluation on guiding treatment,” Indian Pacing and Electrophysiology Journal, Oct. 2003; 3(4):224-230.
Silva et al., “Cardiac Resynchronization Therapy in Pediatric Congenital Heart Disease: Insights from Noninvasive Electrocardiogramhic Imaging” Heart Rhythm, vol. 6, No. 8. Aug. 1, 2009; pp. 1178-1185.
Singh et al., “Left Ventricular Lead Position and Clinical Outcome in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT) Trial,” Circulation, 2011; 123:1159-1166.
Sperzel et al., “Intraoperative Characterization of Interventricular Mechanical Dyssynchrony Using Electroanatomic Mapping System—A Feasibility Study,” Journal of Interventional Cardiac Electrophysiology, Nov. 2012, 35(2): 189-96.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
Sreeram et al., “Indications for Electrophysiology Study in children,” Indian Pacing and Electrophysiology Journal, Apr.-Jun. 2008; 8(Suppl. 1):S36-S54.
Steinhaus BM., “Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study,” Circulation Research, 1989, 64:449-462.
Stockburger et al., “Optimization of cardiac resynchronization guided by Doppler echocardiography: haemodynamic improvement and intraindividual variability with different pacing configurations and atrioventricular delays,” Europace, Oct. 2006; 8(10):881-6.
Strik et al., “Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization,” J. of Cardiovasc. Trans. Res., 2012; 5:117-126.
Stroobandt et al., “Prediction of Wenckebach Behavior and Block Response in DDD Pacemakers,” Pacing Clin Electrophysiol., Jun. 2006; 9(6):1040-6.
Suenari et al., “Idiopathic left ventricular tachycardia with dual electrocardiogram morphologies in a single patient,” Europace, Apr. 2010; 12(4):592-4.
Svendsen et al., “Computational Models of Cardiac Electrical Activation,” Chapter 5, Computational Nov. 2010, pp. 73-88.
Sweeney et al., “Analysis of Ventricular Activation Using Surface Electrocardiogramhy to Predict Left Ventricular Reverse Volumetric Remodeling During Cardiac Resynchronization Therapy,” Circulation, Feb. 9, 2010, 121(5): 626-34.
Sweeney et al., QRS Fusion Complex Analysis Using Wave Interference to Predict Reverse Remodeling During Cardiac Resynchronization Therapy, heart Rhythm, 2014, 11:806-813.
Tan et al., “Interlead heterogeneit of R- and T-wave morphology in standard 12-lead ECGs predicts sustained ventricular tachycardia/fibrillation and arrhythmic death in patients with cardiomyopathy”, J. Cardiovasc Electrophysiol. 2017, 28, pp. 1324-1333.
Tan et al., “Electrocardiogramidence of ventricular repolarization remodelling during atrial fibrillation,” Europace, Jan. 2008; 10(1):99-104.
Taramasco et al., “Internal low energy cardioversion: a therapeutic option for restoring sinus rhythm in chronic atrial fibrillation after failure of external cardioversion,” Europace, Jul. 1999; 1(3):179-82.
Testa et al., “Rate-control or rhythm-control: where do we stand?” Indian Pacing and Electrophysiology Journal, Oct. 2005; 5(4):296-304.
Thejus et al., “N-terminal Pro-Brain Natriuretic Peptide And Atrial Fibrillation,” Indian Pacing and Electrophysiology Journal, Jan. 2009; 9(1):1-4.
Thornton et al., “Magnetic Assisted Navigation in Electrophysiology and Cardiac Resynchronisation: A Review,” Indian Pacing and Electrophysiology Journal, Oct. 2006; 6(4):202-13.
Tilz et al., “In vivo left-ventricular contact force analysis: comparison of antegrade transseptal with retrograde transaortic mapping strategies and correlation of impedance and electrical amplitude with contact force,” Europace, Sep. 2014; 16(9):1387-95.
Tomaske et al., “Do daily threshold trend fluctuations of epicardial leads correlate with pacing and sensing characteristics in paediatric patients?” Europace, Aug. 2007; 9(8):662-668.
Tomioka et al., “The effect of ventricular sequential contraction on helical heart during pacing: high septal pacing versus biventricular pacing,” European Journal of Cardio-thoracic Surgery, Apr. 1, 2006; 29S1:S198-206.
Tournoux et al., “A ‘Regularly Irregular’ tachycardia: What is the diagnosis?” Europace, Dec. 2008; 10(12):1445-6.
Traykov et al., “Electrogram analysis at the His bundle region and the proximal coronary sinus as a tool to predict left atrial origin of focal atrial tachycardias,” Europace, Jul. 2011; 13(7):1022-7.
Trudel et al., “Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing,” IEEE Trans Biomed Eng., Aug. 2004; 51(8):1319-29.
Tse et al., “Cardiac dynamics: Alternans and arrhythmogenesis,” Journal of Arrhythmia, Oct. 2016; 32(5):411-417.
Tse, “Mechanisms of cardiac arrhythmias,” Journal of Arrhythmia, Apr. 2016; 32(2):75-81.
Turner et al., “Electrical and Mechanical Components of Dyssynchrony in Heart Failure Patients with Normal QRS Duration and Left Bundle-Branch Block,” Circulation 2004; 109:2544-2549.
Ueda et al., “Outcomes of single- or dual-chamber implantable cardioverter defibrillator systems in Japanese patients,” Journal of Arrhythmia, Apr. 2016; 32(2):89-94.
Van Dam et al., “Volume conductor effects involved in the genesis of the P wave,” Europace, Sep. 2005; 7 Suppl 2:30-8.
Van den Berg et al., “Depletion of atrial natriuretic peptide during longstanding atrial fibrillation,” Europace, Sep. 2004; 6(5):433-7.
Van Deursen, et al., “Vectorcardiography as a Tool for Easy Optimization of Cardiac Resynchronization Therapy in Canine LBBB Hearts,” Circulation Arrhythmia and Electrophysiology, Jun. 1, 2012, 5(3): 544-52.
Van Deursen et al., “Vectorcardiography for Optimization of Stimulation Intervals in Cardiac Resynchronization Therapy”, J. of Cardiovasc. Trans. Res., vol. 8, No. 2, Mar. 6, 2015, pp. 128-137.
Van Opstal et al., “Paradoxical increase of stimulus to atrium interval despite His-bundle capture during para-Hisian pacing,” Europace, Dec. 2009; 11(12):1702-4.
Vardas et al., The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in Collaboration with the European Heart Rhythm Association, European Heart Journal, 2007; 28:2256-2295.
Varma et al., “Placebo CRT,” Journal of Cardiovascular Electrophysiology, vol. 19, Aug. 2008; p. 878.
Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardia: part 1,” Pacing Clin Electrophysiol., Jun. 2011; 34(6):767-82.
Veenhuyzen et al., “Diagnostic pacing maneuvers for supraventricular tachycardias: part 2,” Pacing Clin Electrophysiol., Jun. 2012; 35(6):757-69.
Veenhuyzen et al., “Principles of Entrainment: Diagnostic Utility for Supraventricular Tachycardia,” Indian Pacing and Electrophysiology Journal, 2008; 8(1):51-65.
Verbrugge et al., “Revisiting diastolic filling time as mechanistic insight for response to cardiac resynchronization therapy,” Europace, Dec. 2013; 15(12):1747-56.
Verrier et al., “Mechanisms of ranolazine's dual protection against atrial and ventricular fibrillation,” Europace, Mar. 2013; 15(3):317-324.
Verrijcken et al., “Pacemaker-mediated tachycardia with varying cycle length: what is the mechanism?” Europace, Oct. 2009; 11(10):1400-2.
Villani et al., “Reproducibility of internal atrial defibrillation threshold in paroxysmal and persistent atrial fibrillation,” Europace, Jul. 2004; 6(4):267-72.
Violi et al., “Antioxidants for prevention of atrial fibrillation: a potentially useful future therapeutic approach? A review of the literature and meta-analysis,” Europace, Aug. 2014; 16(8):1107-1116.
Wang et al., “Application of the Method of Fundamental Solutions to Potential-based Inverse Electrocardiogram,” Annals of Biomedical Engineering, Aug. 2006, pp. 1272-1288.
Weber et al., “Adenosine sensitive focal atrial tachycardia originating from the non-coronary aortic cusp,” Europace, Jun. 2009; 11(6):823-6.
Weber et al., “Open-irrigated laser catheter ablation: relationship between the level of energy, myocardial thickness, and collateral damages in a dog model,” Europace, Jan. 2014; 16(1):142-8.
Wegmoller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Wei et al., “Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models,” IEEE Trans Biomed Eng., Apr. 1995; 42(4):343-57.
Weijs et al., “Clinical and echocardiographic correlates of intra-atrial conduction delay,” Europace, Dec. 2011; 13(12):1681-7.
Weiss et al., “The influence of fibre orientation, extracted from different segments of the human left ventricle, on the activation and repolarization sequence: a simulation study,” Europace, Nov. 2007; 9(Suppl. 6):vi96-vi104.
Wellens, MD et al., “The Electrocardiogram 102 Years After Einthoven,” Circulation, Feb. 2004; vol. 109, No. 5, pp. 562-564.
Wetzel et al., “A stepwise mapping approach for localization and ablation of ectopic right, left, and septal atrial foci using electroanatomic mapping,” European Heart Journal, Sep. 2002; 23(17):1387-1393.
Williams et al., “Short-Term Hemodynamic Effects of Cardiac Resynchronization Therapy in Patients With Heart Failure, a Narrow QRS Duration, and No Dyssynchrony,” Circulation, Oct. 27, 2009; 120: 1687-1694.
Wlodarska et al., “Thromboembolic complications in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy,” Europace, Aug. 2006; 8(8):596-600.
Wong et al., “A review of mitral isthmus ablation,” Indian Pacing and Electrophysiology Journal, 2012; 12(4):152-170.
Wu et al., “Acute and long-term outcome after catheter ablation of supraventricular tachycardia in patients after the Mustard or Senning operation for D-transposition of the great arteries,” Europace, Jun. 2013; 15(6):886-91.
Xia et al., “Asymmetric dimethylarginine concentration and early recurrence of atrial fibrillation after electrical cardioversion,” Pacing Clin Electrophysiol., Aug. 2008; 31(8):1036-40.
Yamazaki et al., “Acute Regional Left Atrial Ischemia Causes Acceleration of Atrial Drivers during Atrial Fibrillation,” Heart Rhythm, Jun. 2013; 10(6):901-9.
Yang et al., “Focal atrial tachycardia originating from the distal portion of the left atrial appendage: Characteristics and long-term outcomes of radiofrequency ablation,” Europace, Feb. 2012; 14(2):254-60.
Yiginer et al., “Advanced Age, Female Gender and Delay in Pacemaker Implantation May Cause TdP in Patients With Complete Atrioventricular Block,” Indian Pacing and Electrophysiology Journal, Oct. 2010; 10(10):454-63.
Yoon et al., “Measurement of thoracic current flow in pigs for the study of defibrillation and cardioversion,” IEEE Transactions on Biomedical Engineering, Oct. 2003; 50(10):1167-1773.
Yuan et al., “Recording monophasic action potentials using a platinum-electrode ablation catheter,” Europace, Oct. 2000; 2(4):312-9.
Yusuf et al., “5-Hydroxytryptamine and Atrial Fibrillation: How Significant is This Piece in the Puzzle?” J Cardiovasc Electrophysiol., Feb. 2003; 14(2):209-14.
Zaugg et al., “Current concepts on ventricular fibrillation: a vicious circle of cardiomyocyte calcium overload in the initiation, maintenance, and termination of ventricular fibrillation,” Indian Pacing and Electrophysiology Journal, Apr. 2004; 4(2):85-92.
Zhang et al., “Acute atrial arrhythmogenicity and altered Ca(2+) homeostasis in murine RyR2-P2328S hearts,” Cardiovascular Research, Mar. 2011; 89(4):794-804.
Zoghi et al., “Electrical stunning and hibernation: suggestion of new terms for short- and long-term cardiac memory,” Europace, Sep. 2004; 6(5):418-24.
Zografos et al., “Inhibition of the renin-angiotensin system for prevention of atrial fibrillation,” Pacing Clin Electrophysiol., Oct. 2010; 33(10):1270-85.
(PCT/US2014/066792) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority.
(PCT/US2014/013601) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority.
International Search Report and Written Opinion dated May 3, 2012 for International Application No. PCT/US2012/036262; 9 pages.
International Search Report and Written Opinion dated May 3, 2012 for International Application No. PCT/US2012/036302; 9 pages.
International Search Report and Written Opinion dated Aug. 6, 2014 for International Application No. PCT/US2014/036153; 14 pages.
(PCT/US2014/036782) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Aug. 22, 2014, 11 pages.
International Search Report and Written Opinion dated Nov. 7, 2014 for International Application No. PCT/US2014/036163; 12 pages.
International Search Report and Written Opinion dated Oct. 24, 2014 for International Application No. PCT/US2014/041929; 14 pages.
International Search Report and Written Opinion dated Oct. 28, 2014 for International Application No. PCT/US2014/041928; 15 pages.
International Search Report and Written Opinion dated Nov. 4, 2014 for International Application No. PCT/US2014/0247583; 7 pages.
International Search Report and Written Opinion dated Nov. 12, 2014 for International Application No. PCT/US2014/047971; 7 pages.
International Search Report and Written Opinion dated Nov. 12, 2014 for International Application No. PCT/US2014/048120; 7 pages.
International Search Report and Written Opinion dated Mar. 9, 2015 for International Application No. PCT/US2014/069214; 11 pages.
International Search Report and Written Opinion dated Mar. 16, 2015 for International Application No. PCT/US2014/069182; 11 pages.
International Search Report and Written Opinion dated Mar. 17, 2015, for International Application No. PCT/US2014/069192; 11 pages.
International Search Report and Written Opinion dated Apr. 8, 2015 for International Application No. PCT/US2014/069070; 11 pages.
International Search Report and Written Opinion dated Jun. 11, 2015 for International Application No. PCT/US2015/021442; 13 pages.
International Search Report and Written Opinion dated May 27, 2019 for International Application No. PCT/US2019/023549; 15 pages.
International Search Report and Written Opinion for Application No. PCT/US2017/047378, 8 pages, dated Dec. 6, 2017.
(PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Nov. 14, 2018 from PCT/US2018/050988) , 11 pages.
(PCT/US2018/050993) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Nov. 16, 2018, 7 pages.
(PCT/US2019/023642) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Jun. 28, 2019, 14 pages.
(PCT/US2019/023645) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Sep. 4, 2019, 14 pages.
(PCT/US2019/023646) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Aug. 19, 2019, 15 pages.
(PCT/IB2019/057352) PCT Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, dated Nov. 27, 2019, 123 pages.
International Search Report and Written Opinion dated Apr. 2, 2020 from PCT Application No. PCT/2019/067858, 14 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2020/019200 dated May 29, 2020, 9 pages.
International Search Report and Written Opinion dated Jun. 4, 2020 for International Application No. PCT/US2020/019589; 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/023525, 10 pages, dated Jul. 9, 2020.
International Search Report and Written Opinion for Application No. PCT/US2020/047802, 9 pages, dated Nov. 19, 2020.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/053472 dated Jan. 12, 2021, 8 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/053474 dated Jan. 13, 2021, 8 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/062466, dated Jan. 27, 2021, 15 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/058627 dated Jan. 28, 2021, 9 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/015226, dated Apr. 9, 2021, 14 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/033046, dated Aug. 9, 2021, 16 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2020/053794 dated Feb. 15, 2021, 11 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/040992 dated Oct. 15, 2021, 8 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/041208 dated Oct. 8, 2021, 11 pages.
International Preliminary Report on Patentability from PCT Application No. PCT/US2019/023645, dated Oct. 8, 2020, 7 pages.
International Preliminary Report on Patentability from PCT Application No. PCT/US2019/023636, dated Oct. 8, 2020, 9 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2019/023636, dated Aug. 19, 2019, 15 pages.
International Preliminary Report on Patentability from PCT/US2019/023642, dated Oct. 8, 2020, 9 pages.
International Search Report and Written Opinion from PCT Application No. PCT/I019/058186, dated Jan. 3, 2020, 17 pages.
International Preliminary Report on Patentability from PCT/I019/058186, dated Apr. 8, 2021, 9 pages.
International Preliminary Report on Patentability from PCT/I019/057352, dated Mar. 11, 2021, 10 pages.
International Preliminary Report on Patentability from PCT/US2019/067858, dated Jul. 1, 2021, 8 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/012260, dated Apr. 7, 2021, 15 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/024652, dated Jul. 6, 2021, 18 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/025149, dated Jun. 30, 2021, 13 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/025151, dated Jun. 30, 2021, 13 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/040994, dated Oct. 25, 2021, 11 pages.
International Search Report and Written Opinion from PCT Application No. PCT/US2021/070964, dated Nov. 16, 2021, 10 pages.
Related Publications (1)
Number Date Country
20220032070 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
63059472 Jul 2020 US