The disclosure relates generally to implantable medical devices, and more particularly to implantable cardiac pacemakers that have a post shock pacing capability.
Implantable medical devices (IMDs) are commonly used to perform a variety of functions, such as monitor one or more conditions and/or delivery therapy to a patient. In some cases, IMDs may treat patients suffering from various heart conditions that may result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. Some heart conditions may lead to low heart rates (e.g. bradycardia), while others may lead to rapid, irregular, and/or inefficient heart contractions (tachycardia). To help alleviate these and other conditions, various devices (e.g., pacemakers, defibrillators, etc.) can be implanted into a patient's body. When so provided, such devices can monitor and provide therapy, such as electrical stimulation therapy, to the patient's heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, an IMD may be configured to deliver pacing and/or defibrillation therapy to a patient's heart. In other cases, a patient may have multiple implanted devices that cooperate to deliver pacing and/or defibrillation therapy to the patient's heart.
In some instances, an IMD may perform demand pacing to help ensure that the heart rate of a patient does not fall below a lower heart rate threshold. When performing demand pacing, the IMD may pace the heart at the lower heart rate threshold when the intrinsic heart rate falls below the lower heart rate threshold. In some instances, the heart may be susceptible to cardiac fibrillation, which may be characterized by rapid, irregular, and/or inefficient heart contractions. When this happens, an Implantable Cardioverter Defibrillator (ICD) can be used to deliver a shock to the heart of the patient to defibrillate the heart. The heart typically stops beating for a moment in response to a delivered shock event, but then resumes in a normal rhythm. Often post-shock pacing pulses are delivered after the shock event to help bring the heart back into the normal rhythm. In some cases, the post-shock pacing pulses are delivered at a higher amplitude than the pacing pulses that are used during demand pacing. In some instances, an ICD may deliver both demand pacing and defibrillation shock therapy. In other instances, an IMD may deliver demand pacing while a separate ICD may deliver defibrillation shock therapy.
What would be desirable is an IMD that can deliver demand pacing, and can also anticipate a coming shock event from a remote ICD based on a detected heart rate condition, and then on its own increasing the energy level for subsequently delivered pacing pulses over a temporarily period of time. Such an IMD may, for example, deliver post shock pacing pulses with increased energy levels without requiring communication between the IMD and the remote ICD.
The disclosure relates generally to implantable medical devices, and more particularly to implantable cardiac pacemakers that have a post shock pacing capability. While a Leadless Cardiac Pacemaker (LCP) is used as an example implantable cardiac pacemaker, it should be recognized that the disclosure may be applied to any suitable implantable medical device as desired.
In an example of the disclosure, a cardiac pacemaker that is free from an Implantable Cardioverter Defibrillator (ICD) may include one or more sensors for sensing one or more physiological parameters of a patient, and two or more pacing electrodes for delivering pacing pulses to the heart of the patient. Electronics operatively coupled to the one or more sensors and the two or more pacing electrodes may be configured to determine a heart rate of the patient based at least in part on the one or more physiological parameters sensed by the one or more sensors and may pace the heart of the patient via the two or more pacing electrodes in a manner that attempts to keep the heart rate of the patient from falling below a demand heart rate threshold. If the heart rate is below an upper heart rate threshold, the pacing pulses may be delivered at a capture pacing energy level. If the heart rate rises above the upper heart rate threshold, the pacing pulses may be temporarily delivered at an enhanced energy level above the capture pacing energy level for a period of time, and after the period of time, the pacing pulses may again be delivered at the capture energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.
Alternatively or additionally to any of the embodiments above, the one or more sensors may comprise two or more sensing electrodes, and at least one of the physiological parameters may comprise a cardiac electrical signal.
Alternatively or additionally to any of the embodiments above, at least one of the two or more sensing electrodes may be one of the pacing electrodes.
Alternatively or additionally to any of the embodiments above, the one or more sensors may comprise an accelerometer, and at least one of the physiological parameters may comprise one or more of a heart motion and a heart sound.
Alternatively or additionally to any of the embodiments above, the heart rate determined by the electronics may be an average heart rate of “n” previous heart beats, wherein “n” may be an integer greater than one.
Alternatively or additionally to any of the embodiments above, the pacing pulses may have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude may be greater than the first amplitude and the second pulse width may be the same as the first pulse width.
Alternatively or additionally to any of the embodiments above, the pacing pulses may have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude may be the same as the first amplitude and the second pulse width may be greater than the first pulse width.
Alternatively or additionally to any of the embodiments above, the pacing pulses may have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude may be greater than the first amplitude and the second pulse width may be greater than the first pulse width.
Alternatively or additionally to any of the embodiments above, the period of time may be a predetermined period of time.
Alternatively or additionally to any of the embodiments above, the predetermined period of time may be programmable.
Alternatively or additionally to any of the embodiments above, the period of time may be greater than 3 minutes.
Alternatively or additionally to any of the embodiments above, the period of time may be less than 1 hour.
Alternatively or additionally to any of the embodiments above, further comprising a communication module, wherein the electronics can receive commands from a remote device via the communication module, and wherein in response to receive an ATP command, the electronics may be configured to deliver a burst of ATP pacing pulses at the enhanced energy level.
Alternatively or additionally to any of the embodiments above, the cardiac pacemaker may be a leadless cardiac pacemaker (LCP) that may be configured to be implanted within a chamber of the heart of the patient.
In another example of the disclosure, a leadless cardiac pacemaker (LCP) may comprised a housing, and a plurality of electrodes for sensing electrical signals emanating from outside of the housing. An energy storage module may be disposed within the housing. The LCP may further include a pulse generator for delivering pacing pulses via two or more of the plurality of electrodes, wherein the pulse generator may be capable of changing an energy level of the pacing pulses. A control module disposed within the housing may be operatively coupled to the pulse generator and at least two of the plurality of electrodes. The control module may be configured to receive one or more cardiac signals via two or more of the plurality of electrodes, determine a heart rate based at least in part on the received one or more cardiac signals, instruct the pulse generator to pace the heart with pacing pulses at a capture pacing energy level in a manner that attempts to keep the heart rate from falling below a demand heart rate threshold, determine if the heart rate rises above an upper heart rate threshold, and in response to determining that the heart rate has risen above the upper heart rate threshold, instruct the pulse generator to increase the energy level of the pacing pulses to an enhanced energy level for a period of time, and after the period of time, instruct the pulse generator to decrease the energy level of the pacing pulses back to the capture pacing energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.
Alternatively or additionally to any of the embodiments above, the pulse generator may change an amplitude of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.
Alternatively or additionally to any of the embodiments above, the pulse generator may change a pulse width of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.
Alternatively or additionally to any of the embodiments above, the pulse generator may change an amplitude and a pulse width of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.
In another example of the disclosure, a method for pacing a heart of a patient may comprise determining a heart rate of the patient, and pacing the heart of the patient in a manner that attempts to keep the heart rate of the patient from falling below a demand heart rate threshold. If the heart rate is below an upper heart rate threshold, pacing pulses may be delivered at a capture pacing energy level. If the heart rate rises above the upper heart rate threshold, pacing pulses may temporarily be delivered at an enhanced energy level above the capture pacing energy level for a period of time, and after the period of time, the pacing pulses may again be delivered at the capture pacing energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.
Alternatively or additionally to any of the embodiments above, the heart rate may be determined by an average heart rate of “n” previous heart beats, wherein “n” may be an integer greater than one.
The above summary of some illustrative embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures and Description which follow more particularly exemplify these and other illustrative embodiments.
The disclosure may be more completely understood in consideration of the following description in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.
The following description should be read with reference to the drawings in which similar structures in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.
As can be seen in
The electrical sensing module 106 may be configured to sense one or more physiological parameters of a patient. In some examples, the physiological parameters may include the cardiac electrical activity of the heart. For example, the electrical sensing module 106 may be connected to sensors 118 and the electrical sensing module 106 may be configured to sense the physiological parameters of the patient via the sensors 118. In some examples, the electrical sensing module 106 may be connected to electrodes 114/114′, and the electrical sensing module 106 may be configured to sense one or more of the physiological parameters of the patient, including cardiac electrical signals, via the electrodes 114/114′. In this case, the electrodes 114/114′ are the sensors.
According to various embodiments, the physiological parameters may be indicative of the state of the patient and/or the state of the heart of the patient. For example, in some cases, the physiological parameters may include temperature (e.g., blood temperature, body tissue temperature, etc.), respiration activity, cardiac electrical signals, etc. In addition, in some examples, the cardiac electrical signals may represent local information from the chamber in which the LCP 100 is implanted. For instance, if the LCP 100 is implanted within a ventricle of the heart (e.g. RV, LV), cardiac electrical signals sensed by the LCP 100 through the electrodes 114/114′ and/or sensors 118 may represent ventricular cardiac electrical signals. In some cases, the LCP 100 may be configured to detect cardiac electrical signals from other chambers (e.g. far field), such as the P-wave from the atrium.
In some examples, the mechanical sensing module 108, when provided, may be configured to sense one or more physiological parameters of the patient. For example, in certain embodiments, the mechanical sensing module 108 may include one or more sensors, such as an accelerometer, a pressure sensor, a heart sound sensor, a blood-oxygen sensor, a chemical sensor, a temperature sensor, a flow sensor and/or any other suitable sensor that is configured to detect one or more mechanical/chemical physiological parameters of the patient (e.g., heart motion, heart sound, etc.). The mechanical sensing module 108 may receive and measure the physiological parameters. Both the electrical sensing module 106 and the mechanical sensing module 108 may be connected to a processing module 110, which may provide signals representative of the sensed parameters. Although described with respect to
The electrodes 114/114′ can be secured relative to the housing 120 and may be exposed to the tissue and/or blood surrounding the LCP 100. In some cases, depending on the sensor type, the sensors 118 may be internal to the housing or exposed to the tissue and/or blood surrounding the LCP 100. In some cases, the electrodes 114 may be generally disposed on either end of the LCP 100. In some examples, the electrodes 114/114′ and sensors 118 may be in electrical communication with one or more of the modules 102, 104, 106, 108, and 110. The electrodes 114/114′ and/or sensors 118 may be supported by the housing 120. In some examples, the electrodes 114/114′ and/or sensors 118 may be connected to the housing 120 through short connecting wires such that the electrodes 114/114′ and/or sensors 118 are not directly secured relative to the housing 120 but rather located on a tail that is connected the housing. In examples where the LCP 100 includes one or more electrodes 114′, the electrodes 114′ may in some cases be disposed on the sides of the LCP 100, which may increase the number of electrodes by which the LCP 100 may sense physiological parameters, deliver electrical stimulation, and/or communicate with an external medical device. The electrodes 114/114′ and/or sensors 118 can be made up of one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, the electrodes 114/114′ and/or sensors 118 connected to the LCP 100 may have an insulative portion that electrically isolates the electrodes 114/114′ and/or sensors 118 from adjacent electrodes/sensors, the housing 120, and/or other parts of the LCP 100.
The processing module 110 may include electronics that is configured to control the operation of the LCP 100. For example, the processing module 110 may be configured to receive electrical signals from the electrical sensing module 106 and/or the mechanical sensing module 108. Based on the received signals, the processing module 110 may determine, for example, a heart rate of the patient, abnormalities in the operation of the heart, etc. Based on the determined conditions, the processing module 110 may control the pulse generator module 104 to generate and deliver pacing pulses in accordance with one or more therapies to treat the determined conditions. The processing module 110 may further receive information from the communication module 102. In some examples, the processing module 110 may use such received information to help determine the current conditions of the patient, determine whether an abnormality is occurring given the current condition, and/or to take a particular action in response to the information. The processing module 110 may additionally control the communication module 102 to send/receive information to/from other devices.
In some examples, the processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip and/or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of the LCP 100. In some cases, the pre-programmed chip may implement a state machine that performs the desired functions. By using a pre-programmed chip, the processing module 110 may use less power than other programmable circuits (e.g. general purpose programmable microprocessors) while still being able to maintain basic functionality, thereby potentially increasing the battery life of the LCP 100. In other examples, the processing module 110 may include a programmable microprocessor. Such a programmable microprocessor may allow a user to modify the control logic of the LCP 100 even after implantation, thereby allowing for greater flexibility of the LCP 100 than when using a pre-programmed ASIC. In some examples, the processing module 110 may further include a memory, and the processing module 110 may store information on and read information from the memory. In other examples, the LCP 100 may include a separate memory (not shown) that is in communication with the processing module 110, such that the processing module 110 may read and write information to and from the separate memory.
The battery 112 may provide power to the LCP 100 for its operations. In some instances, the battery 112 may a rechargeable battery, which may help increase the useable lifespan of the LCP 100. In still other examples, the battery 112 may be some other type of power source, such as a fuel cell or the like, as desired.
In the example shown in
The pulse generator module 104 may be configured to generate electrical stimulation signals. For example, the pulse generator module 104 may generate and deliver electrical pacing pulses by using energy stored in the battery 112 within the LCP 100 and deliver the generated pacing pulses via the electrodes 114, 114′ and/or sensors 118. Alternatively, or additionally, the pulse generator 104 may include one or more capacitors, and the pulse generator 104 may charge the one or more capacitors by drawing energy from the battery 112. The pulse generator 104 may then use the energy of the one or more capacitors to deliver the generated pacing pulses via the electrodes 114, 114′, and/or sensors 118. In at least some examples, the pulse generator 104 of the LCP 100 may include switching circuitry to selectively connect one or more of the electrodes 114, 114′ and/or sensors 118 to the pulse generator 104 in order to select which of the electrodes 114/114′ and/or sensors 118 (and/or other electrodes) the pulse generator 104 uses to deliver the electrical stimulation therapy. The pulse generator module 104 may be configured to deliver pacing pulses at two or more different energy levels. This may be accomplished by controlling the amplitude, pulse width, pulse shape and/or any other suitable characteristic of the pacing pulses.
According to various embodiments, the sensors 118 may be configured to sense one or more physiological parameters of a patient and send a signal to the electrical sensing module 106 and/or the mechanical sensing module 108. For example, the physiological parameters may include a cardiac electrical signal and the sensors 118 may send a response signal to the electrical sensing module 106. In some examples, one or more of the sensors 118 may be an accelerometer and the physiological parameters may alternatively or additionally include heart motion and/or heart sounds and the sensors 118 may send a corresponding signal to the mechanical sensing module 108. Based on the sensed signals, the sensing modules 106 and/or 108 may determine or measure one or more physiological parameters, such as heart rate, respiration rate, activity level of the patient and/or any other suitable physiological parameters. The one or more physiological parameters may then be passed to the processing module 110.
In some cases, the intrinsic heart rate of the patient may reach and/or fall below a demand heart rate threshold and into a “Normal Demand Zone”. In this case, the processing module 110 may perform demand pacing by instructing the pulse generator module 104 to deliver pacing pulses at a set energy level using the electrodes 114/114′ in a manner that attempts to keep the heart rate of the patient from falling below the demand heart rate threshold. The demand heart rate threshold may be a fixed heart rate such as a lower rate limit, or may be a dynamic heart rate that is dependent on the activity level of the patient. In order to help conserve battery power, the pacing pulses may be delivered at a capture pacing energy level, which is above the capture threshold of the heart but less than the maximum allowed pacing energy level.
In some cases, the intrinsic heart rate may rise to and/or above a normal heart rate upper threshold and into an “ATP Zone”. In this case, the intrinsic heart rate observed may be a fast but regular rhythm, such as that observed during ventricular tachycardia. Similar to the demand heart rate threshold, the normal heart rate upper threshold may be a fixed rate or a dynamic heart rate that is dependent on the activity level of the patient. In response to the intrinsic heart rate reaching and/or exceeding the normal heart rate upper threshold, the processing module 110 may be configured to automatically perform anti-tachyarrhythmia-pacing (ATP) therapy by instructing the pulse generator module 104 to deliver ATP pulses at the capture pacing energy level (or an enhanced level if desired). Note, in this case, the LCP 100 may autonomously initiate ATP therapy based on the detected heart rate without having to first receive a command from another medical device notifying the LCP to deliver ATP pulses.
If the intrinsic heart rate rises to and/or above an upper heart rate threshold and into a “Post Shock Zone”, the processing module 110 may instruct the pulse generator module 104 to temporarily set the energy level of pacing pulses, if delivered, to an enhanced energy level above the capture pacing energy level for a period of time. After the period of time expires, the energy level of pacing pulses may be returned to the capture energy level. During the period of time, it is contemplated that the pacing pulses, if delivered, may be demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy by the processing module 110 at any given time.
The upper heart rate threshold may be a threshold that may be fixed or programmable. The upper heart rate threshold may be set at a rate that is above a safe heart rate of the patient, such that if the patient's heart rate rises above the upper heart rate threshold, the patient may be experiencing tachycardia and even cardiac fibrillation. Anticipating that a shock may be delivered to the heart via another medical device (e.g. an Implantable Cardioverter Defibrillator), the processing module 110 may instruct the pulse generator module 104 to temporarily set the energy level of pacing pulses, if delivered, to an enhanced energy level above the capture pacing energy level for a period of time. The period of time may be 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, 1 day, or any other suitable time period. While this may consume extra power during this period of time by delivering some pacing pulses at the enhanced energy level, the pulses will be more appropriate for post-shock pacing should a shock be delivered to the heart by another medical device. Note, this allows the LCP 100 to autonomously set the pacing pulses to an enhanced energy level for post shock-pacing without having to first detect a high energy shock pulse or receive a communication from another medical device notifying the LCP that a shock will be delivered. Whether a shock pulse is actually delivered or not, the processing module 110 may instruct the pulse generator module 104 to temporarily set the energy level of pacing pulses, if delivered, to an enhanced energy level until the end of the time period, and then return the energy level back to the capture energy level. In some cases, the period of time may be reset each time the measured heart rate is above the upper heart rate threshold. When so provided, the pulse generator module 104 keep the energy level at the enhanced energy level until the heart rate remains below the upper heart rate threshold for at least the period of time.
In some case, the processing module 110 may detect when the sensed heart rate falls at a rate that is above a threshold rate and/or falls below a floor heart rate. When the heart rate falls at a rate that is outside the bounds of normal physiology, or falls below a heart rate that is below what is necessary to sustain life, it may be assumed that the heart has been shocked by an ICD or the like. In response, the processing module may instruct the pulse generator module 104 to deliver pacing pulses (e.g. post shock pacing pulses) at the enhanced energy level until the end of the time period, and then return the energy level back to the capture energy level. This may be an alternative trigger for temporarily delivering pacing pulses at the enhanced energy level for a period of time.
In certain embodiments, the LCP 100 may include the communication module 102. In some cases, the communication module 102 may be configured to communicate with devices such as remote sensors, other medical devices such as an SICD, and/or the like, that are located externally to the LCP 100. Such devices may be located either external or internal to the patient's body. Irrespective of the location, external devices (i.e. external to the LCP 100 but not necessarily external to the patient's body) can communicate with the LCP 100 via communication module 102 to accomplish one or more desired functions. For example, the LCP 100 may communicate information, such as sensed electrical signals, data, instructions, messages, R-wave detection markers, etc., to an external medical device (e.g. SICD and/or programmer) through the communication module 102. The external medical device may use the communicated signals, data, instructions, messages, R-wave detection markers, etc., to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, and/or performing any other suitable function. The LCP 100 may additionally receive information such as signals, data, instructions and/or messages from the external medical device through the communication module 102, and the LCP 100 may use the received signals, data, instructions and/or messages to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, and/or performing any other suitable function. The communication module 102 may be configured to use one or more methods for communicating with external devices. For example, the communication module 102 may communicate via radiofrequency (RF) signals, inductive coupling, optical signals, acoustic signals, conducted communication signals, and/or any other signals suitable for communication.
To implant the LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.), may fix the LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, the LCP 100 may include one or more anchors 116. The anchor 116 may include any one of a number of fixation or anchoring mechanisms. For example, the anchor 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some examples, although not shown, the anchor 116 may include threads on its external surface that may run along at least a partial length of the anchor 116. The threads may provide friction between the cardiac tissue and the anchor to help fix the anchor 116 within the cardiac tissue. In other examples, the anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.
In some cases, the LCP 210 may include a pulse generator (e.g., electrical circuitry) and an energy storage module (e.g., a battery, supercapacitor and/or other power source) within the housing 212 to provide electrical signals to the electrodes 220, 222 to control the pacing/sensing electrodes 220, 222. While not explicitly shown, the LCP 210 may also include, a communications module, an electrical sensing module, a mechanical sensing module, and/or a processing module, and the associated circuitry, similar in form and function to the modules 102, 106, 108, 110 described above. The various modules and electrical circuitry may be disposed within the housing 212. Electrical connections between the pulse generator and the electrodes 220, 222 may allow electrical stimulation to heart tissue and/or sense a physiological parameter.
In the example shown, the LCP 210 includes a fixation mechanism 224 proximate the distal end 216 of the housing 212. The fixation mechanism 224 is configured to attach the LCP 210 to a wall of the heart, or otherwise anchor the LCP 210 to the anatomy of the patient. In some instances, the fixation mechanism 224 may include one or more, or a plurality of hooks or tines 226 anchored into the cardiac tissue of the heart to attach the LCP 210 to a tissue wall. In other instances, the fixation mechanism 224 may include one or more, or a plurality of passive tines, configured to entangle with trabeculae within the chamber of the heart and/or a helical fixation anchor configured to be screwed into a tissue wall to anchor the LCP 210 to the heart. These are just examples.
The LCP 210 may further include a docking member 230 proximate the proximal end 214 of the housing 212. The docking member 230 may be configured to facilitate delivery and/or retrieval of the LCP 210. For example, the docking member 230 may extend from the proximal end 214 of the housing 212 along a longitudinal axis of the housing 212. The docking member 230 may include a head portion 232 and a neck portion 234 extending between the housing 212 and the head portion 232. The head portion 232 may be an enlarged portion relative to the neck portion 234. For example, the head portion 232 may have a radial dimension from the longitudinal axis of the LCP 210 that is greater than a radial dimension of the neck portion 234 from the longitudinal axis of the LCP 210. In some cases, the docking member 230 may further include a tether retention structure 236 extending from or recessed within the head portion 232. The tether retention structure 236 may define an opening 238 configured to receive a tether or other anchoring mechanism therethrough. While the retention structure 236 is shown as having a generally “U-shaped” configuration, the retention structure 236 may take any shape that provides an enclosed perimeter surrounding the opening 238 such that a tether may be securably and releasably passed (e.g. looped) through the opening 238. In some cases, the retention structure 236 may extend though the head portion 232, along the neck portion 234, and to or into the proximal end 214 of the housing 212. The docking member 230 may be configured to facilitate delivery of the LCP 210 to the intracardiac site and/or retrieval of the LCP 210 from the intracardiac site. While this describes one example docking member 230, it is contemplated that the docking member 230, when provided, can have any suitable configuration.
It is contemplated that the LCP 210 may include one or more pressure sensors 240 coupled to or formed within the housing 212 such that the pressure sensor(s) is exposed to the environment outside the housing 212 to measure blood pressure within the heart. For example, if the LCP 210 is placed in the left ventricle, the pressure sensor(s) 240 may measure the pressure within the left ventricle. If the LCP 210 is placed in another portion of the heart (such as one of the atriums or the right ventricle), the pressures sensor(s) may measure the pressure within that portion of the heart. The pressure sensor(s) 240 may include a MEMS device, such as a MEMS device with a pressure diaphragm and piezoresistors on the diaphragm, a piezoelectric sensor, a capacitor-Micro-machined Ultrasonic Transducer (cMUT), a condenser, a micro-monometer, or any other suitable sensor adapted for measuring cardiac pressure. The pressures sensor(s) 240 may be part of a mechanical sensing module described herein. It is contemplated that the pressure measurements obtained from the pressures sensor(s) 240 may be used to generate a pressure curve over cardiac cycles. The pressure readings may be taken in combination with impedance measurements (e.g. the impedance between electrodes 220 and 222) to generate a pressure-impedance loop for one or more cardiac cycles as will be described in more detail below. The impedance may be a surrogate for chamber volume, and thus the pressure-impedance loop may be representative for a pressure-volume loop for the heart.
In some embodiments, the LCP 210 may be configured to measure impedance between the electrodes 220, 222. More generally, the impedance may be measured between other electrode pairs, such as the additional electrodes 114′ described above. In some cases, the impedance may be measured between two spaced LCP's, such as two LCP's implanted within the same chamber (e.g. LV) of the heart, or two LCP's implanted in different chambers of the heart (e.g. RV and LV). The processing module of the LCP 210 and/or external support devices may derive a measure of cardiac volume from intracardiac impedance measurements made between the electrodes 220, 222 (or other electrodes). Primarily due to the difference in the resistivity of blood and the resistivity of the cardiac tissue of the heart, the impedance measurement may vary during a cardiac cycle as the volume of blood (and thus the volume of the chamber) surrounding the LCP changes. In some cases, the measure of cardiac volume may be a relative measure, rather than an actual measure. In some cases, the intracardiac impedance may be correlated to an actual measure of cardiac volume via a calibration process, sometimes performed during implantation of the LCP(s). During the calibration process, the actual cardiac volume may be determined using fluoroscopy or the like, and the measured impedance may be correlated to the actual cardiac volume.
In some cases, the LCP 210 may be provided with energy delivery circuitry operatively coupled to the first electrode 220 and the second electrode 222 for causing a current to flow between the first electrode 220 and the second electrode 222 in order to determine the impedance between the two electrodes 220, 222 (or other electrode pair). It is contemplated that the energy delivery circuitry may also be configured to deliver pacing pulses via the first and/or second electrodes 220, 222. The LCP 210 may further include detection circuitry operatively coupled to the first electrode 220 and the second electrode 222 for detecting an electrical signal received between the first electrode 220 and the second electrode 222. In some instances, the detection circuitry may be configured to detect cardiac signals received between the first electrode 220 and the second electrode 222.
When the energy delivery circuitry delivers a current between the first electrode 220 and the second electrode 222, the detection circuitry may measure a resulting voltage between the first electrode 220 and the second electrode 222 (or between a third and fourth electrode separate from the first electrode 220 and the second electrode 222, not shown) to determine the impedance. When the energy delivery circuitry delivers a voltage between the first electrode 220 and the second electrode 222, the detection circuitry may measure a resulting current between the first electrode 220 and the second electrode 222 (or between a third and fourth electrode separate from the first electrode 220 and the second electrode 222) to determine the impedance.
From these and other measurements, heart rate, respiration, stroke volume, contractility, and other physiological parameters can be derived.
According to various embodiments, the LCP 300 may include a housing 302 having electrodes 304 for sensing electrical signals emanating from outside of the housing 302. The electrodes 304 may be configured to provide sensed cardiac signals to a control module disposed with the housing 302. The control module may then determine a heart rate of the heart 306 based on the cardiac signals and instruct a pulse generator to deliver pacing pulses to the heart 306 via the electrodes 304.
According to various embodiments, the control module may cause the LCP 300 to deliver demand pacing. In demand pacing, the LCP 300 may monitor the heart rate and send an electrical pacing pulse or electrical pacing pulses to the heart 306 if the intrinsic heart rate is too slow and/or if beats are being missed. Said another way, the LCP 300 may pace the heart at a lower heart rate threshold when the intrinsic heart rate falls below the lower heart rate threshold, and missed intrinsic beats may be paced. In one example, in demand pacing, when the control module receives cardiac signals from the electrodes 304, the control module may analyze the cardiac signals and determine a measure of heart rate. In some cases, the determined measure of the heart rate may be an average heart rate of more than one or a set of previously recorded heart beats. In certain embodiments, the control module may then compare the measure of the heart rate to the lower heart rate threshold (e.g. a fixed heart rate threshold or a demand heart rate threshold). In some cases, the control module may be programmed to keep the measure of the heart rate from falling below the lower heart rate threshold. As a result, if the intrinsic heart rate falls below the lower heart rate threshold, such as 60 bpm, the control module instructs the pulse generator to deliver electrical pacing pulses at the lower heart rate threshold and at a first energy level using the electrodes 304. The lower heart rate threshold may be any suitable heart rate, such as 70 bpm, 60 bpm, 50 bpm, 45 bpm, 40 bpm, etc. It is contemplated that the lower heart rate threshold may be a fixed heart rate such as a lower rate limit, or may be a dynamic heart rate that is dependent on the activity level of the patient.
In various embodiments, the desired energy level of the pacing pulses may dictate the amplitude and/or the pulse width of the electrical pacing pulses that are delivered to the heart. In certain embodiments, the first energy level may deliver pacing pulses each having an electrical pulse width of 1 ms and an amplitude of 5.0 V. In some embodiments, the first energy level may deliver pacing pulses each having an electrical pulse width of 0.5 ms and an amplitude of 4.0 V. In further embodiments, the first energy level may deliver pacing pulses each having an electrical pulse width of 0.25 ms and an amplitude of 3.0 V amplitude. These are just examples and other amplitudes and pulse widths may be designated for the first energy level at which the demand pacemaker delivers electrical pulses. In some instances, the first energy level may be set based on the results of a capture threshold test. For example, the first energy level may be set at the capture threshold plus a capture threshold margin. In some instances, changing the energy level may only change the amplitude and keep the pulse width the same, or change the pulse width and keep the amplitude the same, or change both the amplitude and pulse width.
In some cases, while the pulse generator delivers pacing pulses at the first energy level, the control module may continue to use the electrodes 304 to sense the cardiac signals and determine and monitor the heart rate. In some cases, the control module may continue to instruct the pulse generator to deliver the electrical pacing pulses until the intrinsic rate is above the lower heart rate threshold.
In various embodiments, the control module may cause the LCP 300 to deliver ATP therapy pulses. In ATP therapy, the LCP 300 may monitor the heart rate and send an electrical pacing pulse or electrical pacing pulses to the heart 306 if the intrinsic heart rate is above a normal heart rate. In one example, in ATP therapy, when the control module receives cardiac signals from the electrodes 304, the control module may analyze the cardiac signals and determine a measure of heart rate. In some cases, the determined measure of the heart rate may be an average heart rate of more than one or a set of previously recorded heart beats. In certain embodiments, the control module may then compare the measure of the heart rate to the higher heart rate threshold (e.g. a fixed heart rate threshold or a normal heart rate threshold). In some cases, the control module may be programmed to attempt to keep the measure of the heart rate from rising above the higher heart rate threshold by delivering ATP therapy if appropriate. As a result, if the intrinsic heart rate rises above the higher heart rate threshold, such as 140 bpm, the control module may instruct the pulse generator to deliver ATP therapy pulses at the first energy level using the electrodes 304. The higher heart rate threshold may be any suitable heart rate, such as 155 bpm, 150 bpm, 145 bpm, 135 bpm, etc. It is contemplated that the higher heart rate threshold may be a fixed heart rate such as a higher rate limit, or may be a dynamic heart rate that is dependent on the activity level of the patient.
In some cases, while the pulse generator delivers ATP pulses at the first energy level, the control module may continue to use the electrodes 304 to sense the cardiac signals and determine and monitor the heart rate. In some cases, the control module may continue to instruct the pulse generator to deliver the ATP pulses until the intrinsic rate falls below the higher heart rate threshold or until a predetermined period has passed.
While monitoring the measure of the heart rate, the control module may detect when the heart rate rises above an upper heart rate threshold. If the heart rate is below the upper heart rate threshold, the pacing pulses may be delivered at the first energy level as discussed above. However, if the heart rate rises above the upper heart rate threshold, the control module may cause pacing pulses to be temporarily delivered at an enhanced energy level above the first energy level for a period of time, and after the period of time, the pacing pulses may again be delivered at the first energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.
The upper heart rate threshold may be a threshold that may be fixed or programmable. The upper heart rate threshold may be set at a rate that is above a safe heart rate of the patient, such that if the patient's heart rate rises above the upper heart rate threshold, the patient may be experienced tachycardia and even cardiac fibrillation. Anticipating that a shock may be delivered to the heart via another medical device (e.g. an Implantable Cardioverter Defibrillator), the control module of the LCP 300 may instruct a pulse generator module of the LCP 300 to temporarily deliver pacing pulses at the enhanced energy level above the first energy level for a period of time. The period of time may be 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, 1 day, or any other suitable time period. While this may consume extra power during this period of time by delivering pacing pulses at the enhanced energy level rather than the lower first energy level, the pacing pulses will be delivering pacing pulses that are more appropriate for post-shock pacing pulses should a shock be delivered to the heart by another medical device. Note, this allows the LCP 300 to autonomously set the pacing pulses to an enhanced energy level for post shock-pacing without having to have circuitry to detect a high energy shock pulse or receive a communication from another medical device notifying the LCP 300 that a shock will be delivered. Whether a shock pulse is actually delivered or not, the control module may instruct the pulse generator module to temporarily deliver pacing pulses at the enhanced energy level until the end of the time period, and then return to delivering pacing pulses at the first energy level. In some cases, the period of time may be reset each time the measured heart rate is above the upper heart rate threshold. When so provided, the control module of the LCP 300 may deliver pacing pulses at the enhanced energy level until the heart rate remains below the upper heart rate threshold for the period of time. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what the control module deems appropriate therapy at any given time.
In some case, the control module may detect when the sensed heart rate falls at a rate that is above a threshold and/or falls below a floor heart rate. When the heart rate falls at a rate that is outside the bounds of normal physiology, or falls below a heart rate that is below what is necessary to sustain life, the control module may assume that the heart has just been shocked by an ICD. In response, the control module may instruct the pulse generator module of the LCP 300 to temporarily deliver pacing pulses at the enhanced energy level until the end of a time period, and then return to delivering pacing pulses at the first energy level. This may be an alternative trigger for temporarily delivering pacing pulses at the enhanced energy level for a period of time.
In certain embodiments, the enhanced energy level may have an electrical pulse width of 1.5 ms and a 5.0 V amplitude. In some embodiments, the enhanced energy level may have an electrical pulse width of 1.5 ms and a 7.0 V amplitude. In some embodiments, the enhance energy level may have an electrical pulse width of 2 ms and an 8.0 V amplitude. In further embodiments, the enhanced energy level may have an electrical pulse width of 2.5 ms and an 8.5 V amplitude. These are just examples and other amplitudes and pulse widths may be designated for the enhanced energy level. In some cases, the enhanced energy level may have an amplitude that is a maximum voltage, and the pulse width is the same or larger than that used for the first energy level. In some cases, when changing between the first energy level and the enhanced energy level, the control module may only change the pulse amplitude of the electrical pacing pulses and leave the pulse widths the same, only change the pulse widths and leave the pulse amplitudes the same, or both change pulse amplitude and pulse width.
The LCP 402 may operate similar to the LCPs 100, 210 and 300 discussed above. The LCP 402 may be configured to deliver demand pacing. In demand pacing, the LCP 402 may monitor the heart rate and send an electrical pacing pulse or electrical pacing pulses to the heart 410 if the intrinsic heart rate is too slow and/or if beats are being missed. Said another way, the LCP 402 may pace the heart at a lower heart rate threshold when the intrinsic heart rate falls below the lower heart rate threshold, and missed intrinsic beats may be paced. In one example, in demand pacing, when the LCP 402 receives cardiac signals from its electrodes, the LCP 402 may analyze the cardiac signals and determine a measure of heart rate. In some cases, the determined measure of the heart rate may be an average heart rate of more than one or a set of previously recorded heart beats. In certain embodiments, the LCP 402 may then compare the measure of the heart rate to the lower heart rate threshold (e.g. a fixed heart rate threshold or a demand heart rate threshold). In some cases, the LCP 402 may be programmed to keep the measure of the heart rate from falling below the lower heart rate threshold. As a result, if the intrinsic heart rate falls below the lower heart rate threshold, such as 60 bpm, the LCP 402 delivers electrical pacing pulses at the lower heart rate threshold and at a first energy level.
While monitoring the measure of the heart rate, the control module may detect when the heart rate rises above a higher heart rate threshold. If the heart rate rises above the higher heart rate threshold, the LCP 402 may be configured to deliver ATP therapy. In ATP therapy, the LCP 402 may monitor the heart rate and send an electrical pacing pulse or electrical pacing pulses to the heart 410 if the intrinsic heart rate is too high. In one example, in ATP therapy, when the LCP 402 receives cardiac signals from its electrodes, the LCP 402 may analyze the cardiac signals and determine a measure of heart rate. In some cases, the determined measure of the heart rate may be an average heart rate of more than one or a set of previously recorded heart beats. In certain embodiments, the LCP 402 may then compare the measure of the heart rate to the higher heart rate threshold (e.g. a fixed heart rate threshold or a demand heart rate threshold). In some cases, the LCP 402 may attempt to keep the measure of the heart rate from rising above the higher heart rate threshold by applying ATP therapy if appropriate. As a result, if the intrinsic heart rate rises above the higher heart rate threshold, such as 140 bpm, the LCP 402 may delivers ATP therapy at the first energy level.
While monitoring the measure of the heart rate, the control module may detect when the heart rate rises above an upper heart rate threshold. If the heart rate is below the upper heart rate threshold, the pacing pulses may be delivered at the first energy level as discussed above. However, if the heart rate rises above the upper heart rate threshold, the LCP 402 may cause pacing pulses to be temporarily delivered at an enhanced energy level above the first energy level for a period of time, and after the period of time, the pacing pulses may again be delivered at the first energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhanced energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.
The upper heart rate threshold may be a threshold that may be fixed or programmable. The upper heart rate threshold may be set at a rate that is above a safe heart rate of the patient, such that if the patient's heart rate rises above the upper heart rate threshold, the patient may be experiencing tachycardia and even cardiac fibrillation. Anticipating that a shock may be delivered to the heart via the ICD 400, the LCP 402 may temporarily deliver pacing pulses at the enhanced energy level above the first energy level for a period of time. While this may consume extra power during this period of time by delivering pacing pulses at the enhanced energy level rather than the lower first energy level, the pacing pulses will be delivering pacing pulses that are more appropriate for post-shock pacing pulses should a shock be delivered to the heart 410 by the ICD 400. Note, this allows the LCP 402 to autonomously set the pacing pulses to an enhanced energy level for post shock-pacing without having to have circuitry to detect a high energy shock pulse or receive a communication from ICD 400 notifying the LCP 402 that a shock will be delivered. Whether a shock pulse is actually delivered or not by the ICD 400 during the time period, the LCP 402 may temporarily deliver pacing pulses at the enhanced energy level until the end of the time period, and then return to delivering pacing pulses at the first energy level. In some cases, the period of time may be reset each time the measured heart rate is above the upper heart rate threshold. When so provided, the LCP 402 may deliver pacing pulses at the enhanced energy level until the heart rate remains below the upper heart rate threshold for the period of time. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what the control module deems appropriate therapy at any given time.
In some case, the LCP 402 may detect when the sensed heart rate falls at a rate that is above a threshold and/or falls below a floor heart rate. When the heart rate falls at a rate that is outside the bounds of normal physiology, or falls below a heart rate that is below what is necessary to sustain life, the LCP 402 may assume that the heart has just been shocked by the ICD 400. In response, the LCP 402 may temporarily deliver pacing pulses at the enhanced energy level until the end of a time period, and then return to delivering pacing pulses at the first energy level. This may be an alternative trigger for temporarily delivering pacing pulses at the enhanced energy level for a period of time.
In some cases, the ICD 400 may monitor the heart 410 and determine if the heart 410 is experiencing cardiac fibrillation or other condition that necessitates delivery of a high energy shock therapy. This may include the detection of rapid, irregular, and/or inefficient heart contractions. In some cases, before delivering the shock therapy, the ICD 400 may communicate an ATP command to the LCP 402 to deliver anti-tachyarrhythmia-pacing (ATP) pulses to the heart 410. In some cases, anti-tachyarrhythmia-pacing (ATP) pulses may cause the heart 410 to return to a normal rhythm without delivering a high energy shock. The LCP 402 may receive the ATP command and deliver the requested ATP pulses. In some cases, the energy level of the ATP pulses may be at an enhanced energy level. In some cases, the LCP 402 may have already detected a high heart rate and already adjusted the energy level of the delivered pulses (for a period of time) to the enhanced energy level. In other cases, the LCP 402 may adjust the energy level of the delivered pulses in response to receiving the ATP command from the ICD 400.
Turning specifically to
The upper limit threshold 606 may be a threshold that may be variable (e.g. depend on fluctuations in hemodynamic demand), fixed and/or programmable. In
As shown in
After point B, the active energy level 610 is still set at the first energy level as the intrinsic heart rate 602 continues to rise. At point C, the intrinsic heart rate 602 has reached the upper limit threshold 606, at which point the LCP increases the active energy level 610 to an enhanced energy level. When demand pacing, and as shown in
Turning now to
At point H, the intrinsic heart rate 602 again rises to the upper limit threshold 606 and the active energy level 610 may be again increased from the first energy level to the enhanced energy level for a 10 minute time period, which might be extended as described above. At point I, the intrinsic heart rate 602 has started falling at a rate that is above the maximum decrease threshold. This may indicate that an ICD may have delivered a shock to the patient's heart. As a result, the LCP may be configured to deliver post shock pacing therapy 614 at the enhanced energy level. As shown in
Turning now to
At point C, the intrinsic heart rate 602 once again begins falling at a rate that is above the maximum decrease threshold and continues to fall below the demand heart rate threshold 604 and the life sustaining threshold 608. In this case, the active energy level 610 may once again be instantaneously increased to the enhanced energy level and post shock pacing therapy 614 may be delivered until point D, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. In some cases, the post shock pacing therapy 614 may be delivered for a predetermined period of time or until the intrinsic heart rate 602 has stabilized. Once again, in this example, because the intrinsic heart rate 602 did not rise above the upper limit threshold 606 before it started falling at a rate above the maximum decrease threshold, the active energy level 610 may be decreased back to the first energy level once the intrinsic heart rate 602 has stabilized (or after a predetermined period of time). However, it is contemplated that the active energy level 610 may remain at the enhanced energy level for a period of time.
At point E, the intrinsic heart rate 602 has fallen below the demand heart rate threshold 604. In this example, demand pacing therapy 612 is delivered at the first energy level until point F, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. After point F, the active energy level 610 is still set at the first energy level as the intrinsic heart rate 602 continues to rise.
Turning now to
Turning now to
Turning now to
After point B, the active energy level 610 is still set at the first energy level as the intrinsic heart rate 602 continues to rise. At point C, the intrinsic heart rate 602 has reached the ATP threshold 624. As shown in
Turning now to
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/480,784 filed on Apr. 3, 2017, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3835864 | Rasor et al. | Sep 1974 | A |
3943936 | Rasor et al. | Mar 1976 | A |
4142530 | Wittkampf | Mar 1979 | A |
4151513 | Menken et al. | Apr 1979 | A |
4157720 | Greatbatch | Jun 1979 | A |
RE30366 | Rasor et al. | Aug 1980 | E |
4243045 | Maas | Jan 1981 | A |
4250884 | Hartlaub et al. | Feb 1981 | A |
4256115 | Bilitch | Mar 1981 | A |
4263919 | Levin | Apr 1981 | A |
4310000 | Lindemans | Jan 1982 | A |
4312354 | Walters | Jan 1982 | A |
4323081 | Wiebusch | Apr 1982 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4365639 | Goldreyer | Dec 1982 | A |
4440173 | Hudziak et al. | Apr 1984 | A |
4476868 | Thompson | Oct 1984 | A |
4522208 | Buffet | Jun 1985 | A |
4537200 | Widrow | Aug 1985 | A |
4556063 | Thompson et al. | Dec 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4593702 | Kepski et al. | Jun 1986 | A |
4593955 | Leiber | Jun 1986 | A |
4630611 | King | Dec 1986 | A |
4635639 | Hakala et al. | Jan 1987 | A |
4674508 | DeCote | Jun 1987 | A |
4712554 | Garson | Dec 1987 | A |
4729376 | DeCote | Mar 1988 | A |
4754753 | King | Jul 1988 | A |
4759366 | Callaghan | Jul 1988 | A |
4776338 | Lekholm et al. | Oct 1988 | A |
4787389 | Tarjan | Nov 1988 | A |
4793353 | Borkan | Dec 1988 | A |
4819662 | Heil et al. | Apr 1989 | A |
4858610 | Callaghan et al. | Aug 1989 | A |
4886064 | Strandberg | Dec 1989 | A |
4887609 | Cole | Dec 1989 | A |
4928688 | Mower | May 1990 | A |
4967746 | Vandegriff | Nov 1990 | A |
4987897 | Funke | Jan 1991 | A |
4989602 | Sholder et al. | Feb 1991 | A |
5012806 | De Bellis | May 1991 | A |
5036849 | Hauck et al. | Aug 1991 | A |
5040534 | Mann et al. | Aug 1991 | A |
5058581 | Silvian | Oct 1991 | A |
5078134 | Heilman et al. | Jan 1992 | A |
5109845 | Yuuchi et al. | May 1992 | A |
5113859 | Funke | May 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5117824 | Keimel et al. | Jun 1992 | A |
5127401 | Grevious et al. | Jul 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5144950 | Stoop et al. | Sep 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5179945 | Van Hofwegen et al. | Jan 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5241961 | Henry | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5259387 | DePinto | Nov 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5284136 | Hauck et al. | Feb 1994 | A |
5300107 | Stokes et al. | Apr 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5305760 | McKown et al. | Apr 1994 | A |
5312439 | Loeb | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5318597 | Hauck et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5334222 | Salo et al. | Aug 1994 | A |
5342408 | deCoriolis et al. | Aug 1994 | A |
5370667 | Alt | Dec 1994 | A |
5372606 | Lang et al. | Dec 1994 | A |
5376106 | Stahmann et al. | Dec 1994 | A |
5383915 | Adams | Jan 1995 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5404877 | Nolan et al. | Apr 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411031 | Yomtov | May 1995 | A |
5411525 | Swanson et al. | May 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5456691 | Snell | Oct 1995 | A |
5458622 | Alt | Oct 1995 | A |
5466246 | Silvian | Nov 1995 | A |
5468254 | Hahn et al. | Nov 1995 | A |
5472453 | Alt | Dec 1995 | A |
5522866 | Fernald | Jun 1996 | A |
5540727 | Tockman et al. | Jul 1996 | A |
5545186 | Olson et al. | Aug 1996 | A |
5545202 | Dahl et al. | Aug 1996 | A |
5571146 | Jones et al. | Nov 1996 | A |
5591214 | Lu | Jan 1997 | A |
5620466 | Haefner et al. | Apr 1997 | A |
5634938 | Swanson et al. | Jun 1997 | A |
5649968 | Alt et al. | Jul 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5674259 | Gray | Oct 1997 | A |
5683426 | Greenhut et al. | Nov 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5706823 | Wodlinger | Jan 1998 | A |
5709215 | Perttu et al. | Jan 1998 | A |
5720770 | Nappholz et al. | Feb 1998 | A |
5728154 | Crossett et al. | Mar 1998 | A |
5741314 | Daly et al. | Apr 1998 | A |
5741315 | Lee et al. | Apr 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5752977 | Grevious et al. | May 1998 | A |
5755736 | Gillberg et al. | May 1998 | A |
5759199 | Snell et al. | Jun 1998 | A |
5774501 | Halpern et al. | Jun 1998 | A |
5792195 | Carlson et al. | Aug 1998 | A |
5792202 | Rueter | Aug 1998 | A |
5792203 | Schroeppel | Aug 1998 | A |
5792205 | Alt et al. | Aug 1998 | A |
5792208 | Gray | Aug 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836985 | Rostami et al. | Nov 1998 | A |
5836987 | Baumann et al. | Nov 1998 | A |
5842977 | Lesho et al. | Dec 1998 | A |
5855593 | Olson et al. | Jan 1999 | A |
5873894 | Vandegriff et al. | Feb 1999 | A |
5891184 | Lee et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5899876 | Flower | May 1999 | A |
5899928 | Sholder et al. | May 1999 | A |
5919214 | Ciciarelli et al. | Jul 1999 | A |
5935078 | Feierbach | Aug 1999 | A |
5941906 | Barreras, Sr. et al. | Aug 1999 | A |
5944744 | Paul et al. | Aug 1999 | A |
5954757 | Gray | Sep 1999 | A |
5978713 | Prutchi et al. | Nov 1999 | A |
5991660 | Goyal | Nov 1999 | A |
5991661 | Park et al. | Nov 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999857 | Weijand et al. | Dec 1999 | A |
6016445 | Baura | Jan 2000 | A |
6026320 | Carlson et al. | Feb 2000 | A |
6029085 | Olson et al. | Feb 2000 | A |
6041250 | DePinto | Mar 2000 | A |
6044298 | Salo et al. | Mar 2000 | A |
6044300 | Gray | Mar 2000 | A |
6055454 | Heemels | Apr 2000 | A |
6073050 | Griffith | Jun 2000 | A |
6076016 | Feierbach | Jun 2000 | A |
6077236 | Cunningham | Jun 2000 | A |
6080187 | Alt et al. | Jun 2000 | A |
6083248 | Thompson | Jul 2000 | A |
6106551 | Crossett et al. | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6128526 | Stadler et al. | Oct 2000 | A |
6128529 | Esler | Oct 2000 | A |
6141581 | Olson et al. | Oct 2000 | A |
6141588 | Cox et al. | Oct 2000 | A |
6141592 | Pauly | Oct 2000 | A |
6144879 | Gray | Nov 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167310 | Grevious | Dec 2000 | A |
6201993 | Kruse et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6211799 | Post et al. | Apr 2001 | B1 |
6221011 | Bardy | Apr 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6240317 | Villaseca et al. | May 2001 | B1 |
6256534 | Dahl | Jul 2001 | B1 |
6259947 | Olson et al. | Jul 2001 | B1 |
6266558 | Gozani et al. | Jul 2001 | B1 |
6266567 | Ishikawa et al. | Jul 2001 | B1 |
6270457 | Bardy | Aug 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6273856 | Sun et al. | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6285907 | Kramer et al. | Sep 2001 | B1 |
6292698 | Duffin et al. | Sep 2001 | B1 |
6295473 | Rosar | Sep 2001 | B1 |
6297943 | Carson | Oct 2001 | B1 |
6298271 | Weijand | Oct 2001 | B1 |
6307751 | Bodony et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6336903 | Bardy | Jan 2002 | B1 |
6345202 | Richmond et al. | Feb 2002 | B2 |
6351667 | Godie | Feb 2002 | B1 |
6351669 | Hartley et al. | Feb 2002 | B1 |
6353759 | Hartley et al. | Mar 2002 | B1 |
6358203 | Bardy | Mar 2002 | B2 |
6361780 | Ley et al. | Mar 2002 | B1 |
6368284 | Bardy | Apr 2002 | B1 |
6371922 | Baumann et al. | Apr 2002 | B1 |
6398728 | Bardy | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6400990 | Silvian | Jun 2002 | B1 |
6408208 | Sun | Jun 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411848 | Kramer et al. | Jun 2002 | B2 |
6424865 | Ding | Jul 2002 | B1 |
6434429 | Kraus et al. | Aug 2002 | B1 |
6438410 | Hsu et al. | Aug 2002 | B2 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6438421 | Stahmann et al. | Aug 2002 | B1 |
6440066 | Bardy | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6442426 | Kroll | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6443891 | Grevious | Sep 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6453200 | Koslar | Sep 2002 | B1 |
6459929 | Hopper et al. | Oct 2002 | B1 |
6470215 | Kraus et al. | Oct 2002 | B1 |
6471645 | Warkentin et al. | Oct 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6487443 | Olson et al. | Nov 2002 | B2 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6498951 | Larson et al. | Dec 2002 | B1 |
6507755 | Gozani et al. | Jan 2003 | B1 |
6507759 | Prutchi et al. | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6526311 | Begemann | Feb 2003 | B2 |
6539253 | Thompson et al. | Mar 2003 | B2 |
6542775 | Ding et al. | Apr 2003 | B2 |
6553258 | Stahmann et al. | Apr 2003 | B2 |
6561975 | Pool et al. | May 2003 | B1 |
6564807 | Schulman et al. | May 2003 | B1 |
6574506 | Kramer et al. | Jun 2003 | B2 |
6584351 | Ekwall | Jun 2003 | B1 |
6584352 | Combs et al. | Jun 2003 | B2 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6597951 | Kramer et al. | Jul 2003 | B2 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6628985 | Sweeney et al. | Sep 2003 | B2 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6666844 | Igo et al. | Dec 2003 | B1 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6690959 | Thompson | Feb 2004 | B2 |
6694189 | Begemann | Feb 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6718212 | Parry et al. | Apr 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6738670 | Almendinger et al. | May 2004 | B1 |
6746797 | Benson et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6763269 | Cox | Jul 2004 | B2 |
6778860 | Ostroff et al. | Aug 2004 | B2 |
6788971 | Sloman et al. | Sep 2004 | B1 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6807442 | Myklebust et al. | Oct 2004 | B1 |
6847844 | Sun et al. | Jan 2005 | B2 |
6871095 | Stahmann et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6885889 | Chinchoy | Apr 2005 | B2 |
6892094 | Ousdigian | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6904315 | Panken et al. | Jun 2005 | B2 |
6922592 | Thompson et al. | Jul 2005 | B2 |
6931282 | Esler | Aug 2005 | B2 |
6934585 | Schloss et al. | Aug 2005 | B1 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6978176 | Lattouf | Dec 2005 | B2 |
6985773 | Von Arx et al. | Jan 2006 | B2 |
6990375 | Kloss et al. | Jan 2006 | B2 |
7001366 | Ballard | Feb 2006 | B2 |
7003350 | Denker et al. | Feb 2006 | B2 |
7006864 | Echt et al. | Feb 2006 | B2 |
7013178 | Reinke et al. | Mar 2006 | B2 |
7027871 | Burnes et al. | Apr 2006 | B2 |
7050849 | Echt et al. | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7063693 | Guenst | Jun 2006 | B2 |
7082336 | Ransbury et al. | Jul 2006 | B2 |
7085606 | Flach et al. | Aug 2006 | B2 |
7092758 | Sun et al. | Aug 2006 | B2 |
7110824 | Amundson et al. | Sep 2006 | B2 |
7120504 | Osypka | Oct 2006 | B2 |
7130681 | Gebhardt et al. | Oct 2006 | B2 |
7139613 | Reinke et al. | Nov 2006 | B2 |
7142912 | Wagner et al. | Nov 2006 | B2 |
7146225 | Guenst et al. | Dec 2006 | B2 |
7146226 | Lau et al. | Dec 2006 | B2 |
7149581 | Goedeke | Dec 2006 | B2 |
7149588 | Lau et al. | Dec 2006 | B2 |
7158839 | Lau | Jan 2007 | B2 |
7162307 | Patrias | Jan 2007 | B2 |
7164952 | Lau et al. | Jan 2007 | B2 |
7177700 | Cox | Feb 2007 | B1 |
7181505 | Haller et al. | Feb 2007 | B2 |
7184830 | Echt et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7200439 | Zdeblick et al. | Apr 2007 | B2 |
7206423 | Feng et al. | Apr 2007 | B1 |
7209785 | Kim et al. | Apr 2007 | B2 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7211884 | Davis et al. | May 2007 | B1 |
7212871 | Morgan | May 2007 | B1 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7228183 | Sun et al. | Jun 2007 | B2 |
7236821 | Cates et al. | Jun 2007 | B2 |
7236829 | Farazi et al. | Jun 2007 | B1 |
7254448 | Almendinger et al. | Aug 2007 | B2 |
7260436 | Kilgore et al. | Aug 2007 | B2 |
7270669 | Sra | Sep 2007 | B1 |
7272448 | Morgan et al. | Sep 2007 | B1 |
7277755 | Falkenberg et al. | Oct 2007 | B1 |
7280872 | Mosesov et al. | Oct 2007 | B1 |
7288096 | Chin | Oct 2007 | B2 |
7289847 | Gill et al. | Oct 2007 | B1 |
7289852 | Helfinstine et al. | Oct 2007 | B2 |
7289853 | Campbell et al. | Oct 2007 | B1 |
7289855 | Nghiem et al. | Oct 2007 | B2 |
7302294 | Kamath et al. | Nov 2007 | B2 |
7305266 | Kroll | Dec 2007 | B1 |
7310556 | Bulkes | Dec 2007 | B2 |
7319905 | Morgan et al. | Jan 2008 | B1 |
7321798 | Muhlenberg et al. | Jan 2008 | B2 |
7333853 | Mazar et al. | Feb 2008 | B2 |
7336994 | Hettrick et al. | Feb 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7366572 | Heruth et al. | Apr 2008 | B2 |
7373207 | Lattouf | May 2008 | B2 |
7384403 | Sherman | Jun 2008 | B2 |
7386342 | Falkenberg et al. | Jun 2008 | B1 |
7392090 | Sweeney et al. | Jun 2008 | B2 |
7406105 | DelMain et al. | Jul 2008 | B2 |
7406349 | Seeberger et al. | Jul 2008 | B2 |
7410497 | Hastings et al. | Aug 2008 | B2 |
7425200 | Brockway et al. | Sep 2008 | B2 |
7433739 | Salys et al. | Oct 2008 | B1 |
7496409 | Greenhut et al. | Feb 2009 | B2 |
7496410 | Heil | Feb 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7512448 | Malick et al. | Mar 2009 | B2 |
7515969 | Tockman et al. | Apr 2009 | B2 |
7526342 | Chin et al. | Apr 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7532933 | Hastings et al. | May 2009 | B2 |
7536222 | Bardy et al. | May 2009 | B2 |
7536224 | Ritscher et al. | May 2009 | B2 |
7539541 | Quiles et al. | May 2009 | B2 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7565195 | Kroll et al. | Jul 2009 | B1 |
7584002 | Burnes et al. | Sep 2009 | B2 |
7590455 | Heruth et al. | Sep 2009 | B2 |
7606621 | Brisken et al. | Oct 2009 | B2 |
7610088 | Chinchoy | Oct 2009 | B2 |
7610092 | Cowan et al. | Oct 2009 | B2 |
7610099 | Almendinger et al. | Oct 2009 | B2 |
7610104 | Kaplan et al. | Oct 2009 | B2 |
7616991 | Mann et al. | Nov 2009 | B2 |
7617001 | Penner et al. | Nov 2009 | B2 |
7617007 | Williams et al. | Nov 2009 | B2 |
7630767 | Poore et al. | Dec 2009 | B1 |
7634313 | Kroll et al. | Dec 2009 | B1 |
7637867 | Zdeblick | Dec 2009 | B2 |
7640060 | Zdeblick | Dec 2009 | B2 |
7647109 | Hastings et al. | Jan 2010 | B2 |
7650186 | Hastings et al. | Jan 2010 | B2 |
7657311 | Bardy et al. | Feb 2010 | B2 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7682316 | Anderson et al. | Mar 2010 | B2 |
7691047 | Ferrari | Apr 2010 | B2 |
7702392 | Echt et al. | Apr 2010 | B2 |
7713194 | Zdeblick | May 2010 | B2 |
7713195 | Zdeblick | May 2010 | B2 |
7729783 | Michels et al. | Jun 2010 | B2 |
7734333 | Ghanem et al. | Jun 2010 | B2 |
7734343 | Ransbury et al. | Jun 2010 | B2 |
7738958 | Zdeblick et al. | Jun 2010 | B2 |
7738964 | Von Arx et al. | Jun 2010 | B2 |
7742812 | Ghanem et al. | Jun 2010 | B2 |
7742816 | Masoud et al. | Jun 2010 | B2 |
7742822 | Masoud et al. | Jun 2010 | B2 |
7743151 | Vallapureddy et al. | Jun 2010 | B2 |
7747335 | Williams | Jun 2010 | B2 |
7751881 | Cowan et al. | Jul 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7761150 | Ghanem et al. | Jul 2010 | B2 |
7761164 | Verhoef et al. | Jul 2010 | B2 |
7765001 | Echt et al. | Jul 2010 | B2 |
7769452 | Ghanem et al. | Aug 2010 | B2 |
7783362 | Whitehurst et al. | Aug 2010 | B2 |
7792588 | Harding | Sep 2010 | B2 |
7797059 | Bornzin et al. | Sep 2010 | B1 |
7801596 | Fischell et al. | Sep 2010 | B2 |
7809438 | Echt et al. | Oct 2010 | B2 |
7840281 | Kveen et al. | Nov 2010 | B2 |
7844331 | Li et al. | Nov 2010 | B2 |
7844348 | Swoyer et al. | Nov 2010 | B2 |
7846088 | Ness | Dec 2010 | B2 |
7848815 | Brisken et al. | Dec 2010 | B2 |
7848823 | Drasler et al. | Dec 2010 | B2 |
7860455 | Fukumoto et al. | Dec 2010 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7877136 | Moffitt et al. | Jan 2011 | B1 |
7877142 | Moaddeb et al. | Jan 2011 | B2 |
7881786 | Jackson | Feb 2011 | B2 |
7881798 | Miesel et al. | Feb 2011 | B2 |
7881810 | Chitre et al. | Feb 2011 | B1 |
7890173 | Brisken et al. | Feb 2011 | B2 |
7890181 | Denzene et al. | Feb 2011 | B2 |
7890192 | Kelsch et al. | Feb 2011 | B1 |
7894885 | Bartal et al. | Feb 2011 | B2 |
7894894 | Stadler et al. | Feb 2011 | B2 |
7894907 | Cowan et al. | Feb 2011 | B2 |
7894910 | Cowan et al. | Feb 2011 | B2 |
7894915 | Chitre et al. | Feb 2011 | B1 |
7899537 | Kroll et al. | Mar 2011 | B1 |
7899541 | Cowan et al. | Mar 2011 | B2 |
7899542 | Cowan et al. | Mar 2011 | B2 |
7899554 | Williams et al. | Mar 2011 | B2 |
7901360 | Yang et al. | Mar 2011 | B1 |
7904170 | Harding | Mar 2011 | B2 |
7907993 | Ghanem et al. | Mar 2011 | B2 |
7920928 | Yang et al. | Apr 2011 | B1 |
7925343 | Min et al. | Apr 2011 | B1 |
7930022 | Zhang et al. | Apr 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7937135 | Ghanem et al. | May 2011 | B2 |
7937148 | Jacobson | May 2011 | B2 |
7937161 | Hastings et al. | May 2011 | B2 |
7941214 | Kleckner et al. | May 2011 | B2 |
7945333 | Jacobson | May 2011 | B2 |
7946997 | Hübinette | May 2011 | B2 |
7949404 | Hill | May 2011 | B2 |
7949405 | Feher | May 2011 | B2 |
7953486 | Daum et al. | May 2011 | B2 |
7953493 | Fowler et al. | May 2011 | B2 |
7962202 | Bhunia | Jun 2011 | B2 |
7974702 | Fain et al. | Jul 2011 | B1 |
7979136 | Young et al. | Jul 2011 | B2 |
7983753 | Severin | Jul 2011 | B2 |
7991467 | Markowitz et al. | Aug 2011 | B2 |
7991471 | Ghanem et al. | Aug 2011 | B2 |
7996087 | Cowan et al. | Aug 2011 | B2 |
8000791 | Sunagawa et al. | Aug 2011 | B2 |
8000807 | Morris et al. | Aug 2011 | B2 |
8001975 | DiSilvestro et al. | Aug 2011 | B2 |
8002700 | Ferek-Petric et al. | Aug 2011 | B2 |
8010209 | Jacobson | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8019434 | Quiles et al. | Sep 2011 | B2 |
8027727 | Freeberg | Sep 2011 | B2 |
8027729 | Sunagawa et al. | Sep 2011 | B2 |
8032219 | Neumann et al. | Oct 2011 | B2 |
8036743 | Savage et al. | Oct 2011 | B2 |
8046079 | Bange et al. | Oct 2011 | B2 |
8046080 | Von Arx et al. | Oct 2011 | B2 |
8050297 | DelMain et al. | Nov 2011 | B2 |
8050759 | Stegemann et al. | Nov 2011 | B2 |
8050774 | Kveen et al. | Nov 2011 | B2 |
8055345 | Li et al. | Nov 2011 | B2 |
8055350 | Roberts | Nov 2011 | B2 |
8060212 | Rios et al. | Nov 2011 | B1 |
8065018 | Haubrich et al. | Nov 2011 | B2 |
8073542 | Doerr | Dec 2011 | B2 |
8078278 | Penner | Dec 2011 | B2 |
8078283 | Cowan et al. | Dec 2011 | B2 |
8095123 | Gray | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103359 | Reddy | Jan 2012 | B2 |
8103361 | Moser | Jan 2012 | B2 |
8112148 | Giftakis et al. | Feb 2012 | B2 |
8114021 | Robertson et al. | Feb 2012 | B2 |
8121680 | Falkenberg et al. | Feb 2012 | B2 |
8123684 | Zdeblick | Feb 2012 | B2 |
8126545 | Flach et al. | Feb 2012 | B2 |
8131334 | Lu et al. | Mar 2012 | B2 |
8140161 | Willerton et al. | Mar 2012 | B2 |
8150521 | Crowley et al. | Apr 2012 | B2 |
8160672 | Kim et al. | Apr 2012 | B2 |
8160702 | Mann et al. | Apr 2012 | B2 |
8160704 | Freeberg | Apr 2012 | B2 |
8165694 | Carbanaru et al. | Apr 2012 | B2 |
8175715 | Cox | May 2012 | B1 |
8180451 | Hickman et al. | May 2012 | B2 |
8185213 | Kveen et al. | May 2012 | B2 |
8187161 | Li et al. | May 2012 | B2 |
8195293 | Limousin et al. | Jun 2012 | B2 |
8204595 | Pianca et al. | Jun 2012 | B2 |
8204605 | Hastings et al. | Jun 2012 | B2 |
8209014 | Doerr | Jun 2012 | B2 |
8214043 | Matos | Jul 2012 | B2 |
8224244 | Kim et al. | Jul 2012 | B2 |
8229556 | Li | Jul 2012 | B2 |
8233985 | Bulkes et al. | Jul 2012 | B2 |
8262578 | Bharmi et al. | Sep 2012 | B1 |
8265748 | Liu et al. | Sep 2012 | B2 |
8265757 | Mass et al. | Sep 2012 | B2 |
8280521 | Haubrich et al. | Oct 2012 | B2 |
8285387 | Utsi et al. | Oct 2012 | B2 |
8290598 | Boon et al. | Oct 2012 | B2 |
8290600 | Hastings et al. | Oct 2012 | B2 |
8295939 | Jacobson | Oct 2012 | B2 |
8301254 | Mosesov et al. | Oct 2012 | B2 |
8315701 | Cowan et al. | Nov 2012 | B2 |
8315708 | Berthelsdorf et al. | Nov 2012 | B2 |
8321021 | Kisker et al. | Nov 2012 | B2 |
8321036 | Brockway et al. | Nov 2012 | B2 |
8332036 | Hastings et al. | Dec 2012 | B2 |
8335563 | Stessman | Dec 2012 | B2 |
8335568 | Heruth et al. | Dec 2012 | B2 |
8340750 | Prakash et al. | Dec 2012 | B2 |
8340780 | Hastings et al. | Dec 2012 | B2 |
8352025 | Jacobson | Jan 2013 | B2 |
8352028 | Wenger | Jan 2013 | B2 |
8352038 | Mao et al. | Jan 2013 | B2 |
8359098 | Lund et al. | Jan 2013 | B2 |
8364261 | Stubbs et al. | Jan 2013 | B2 |
8364276 | Willis | Jan 2013 | B2 |
8369959 | Meskens | Feb 2013 | B2 |
8369962 | Abrahamson | Feb 2013 | B2 |
8380320 | Spital | Feb 2013 | B2 |
8386051 | Rys | Feb 2013 | B2 |
8391981 | Mosesov | Mar 2013 | B2 |
8391990 | Smith et al. | Mar 2013 | B2 |
8406874 | Liu et al. | Mar 2013 | B2 |
8406879 | Shuros et al. | Mar 2013 | B2 |
8406886 | Gaunt et al. | Mar 2013 | B2 |
8412352 | Griswold et al. | Apr 2013 | B2 |
8417340 | Goossen | Apr 2013 | B2 |
8417341 | Freeberg | Apr 2013 | B2 |
8423149 | Hennig | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8433402 | Ruben et al. | Apr 2013 | B2 |
8433409 | Johnson et al. | Apr 2013 | B2 |
8433420 | Bange et al. | Apr 2013 | B2 |
8447412 | Dal Molin et al. | May 2013 | B2 |
8452413 | Young et al. | May 2013 | B2 |
8457740 | Osche | Jun 2013 | B2 |
8457742 | Jacobson | Jun 2013 | B2 |
8457744 | Janzig et al. | Jun 2013 | B2 |
8457761 | Wariar | Jun 2013 | B2 |
8478407 | Demmer et al. | Jul 2013 | B2 |
8478408 | Hastings et al. | Jul 2013 | B2 |
8478431 | Griswold et al. | Jul 2013 | B2 |
8494632 | Sun et al. | Jul 2013 | B2 |
8504156 | Bonner et al. | Aug 2013 | B2 |
8509910 | Sowder et al. | Aug 2013 | B2 |
8515559 | Roberts et al. | Aug 2013 | B2 |
8525340 | Eckhardt et al. | Sep 2013 | B2 |
8527068 | Ostroff | Sep 2013 | B2 |
8532790 | Griswold | Sep 2013 | B2 |
8538526 | Stahmann et al. | Sep 2013 | B2 |
8541131 | Lund et al. | Sep 2013 | B2 |
8543205 | Ostroff | Sep 2013 | B2 |
8547248 | Zdeblick et al. | Oct 2013 | B2 |
8548605 | Ollivier | Oct 2013 | B2 |
8554333 | Wu et al. | Oct 2013 | B2 |
8565882 | Matos | Oct 2013 | B2 |
8565897 | Regnier et al. | Oct 2013 | B2 |
8571678 | Wang | Oct 2013 | B2 |
8577327 | Makdissi et al. | Nov 2013 | B2 |
8588926 | Moore et al. | Nov 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8615310 | Khairkhahan et al. | Dec 2013 | B2 |
8626280 | Allavatam et al. | Jan 2014 | B2 |
8626294 | Sheldon et al. | Jan 2014 | B2 |
8634908 | Cowan | Jan 2014 | B2 |
8634912 | Bornzin et al. | Jan 2014 | B2 |
8634919 | Hou et al. | Jan 2014 | B1 |
8639335 | Peichel et al. | Jan 2014 | B2 |
8644934 | Hastings et al. | Feb 2014 | B2 |
8649859 | Smith et al. | Feb 2014 | B2 |
8670842 | Bornzin et al. | Mar 2014 | B1 |
8676319 | Knoll | Mar 2014 | B2 |
8676335 | Katoozi et al. | Mar 2014 | B2 |
8700173 | Edlund | Apr 2014 | B2 |
8700181 | Bornzin et al. | Apr 2014 | B2 |
8705599 | dal Molin et al. | Apr 2014 | B2 |
8718766 | Wahlberg | May 2014 | B2 |
8718773 | Willis et al. | May 2014 | B2 |
8725260 | Shuros et al. | May 2014 | B2 |
8738133 | Shuros et al. | May 2014 | B2 |
8738147 | Hastings et al. | May 2014 | B2 |
8744555 | Allavatam et al. | Jun 2014 | B2 |
8744572 | Greenhut | Jun 2014 | B1 |
8747314 | Stahmann et al. | Jun 2014 | B2 |
8755884 | Demmer et al. | Jun 2014 | B2 |
8758365 | Bonner et al. | Jun 2014 | B2 |
8768483 | Schmitt et al. | Jul 2014 | B2 |
8774572 | Hamamoto | Jul 2014 | B2 |
8781605 | Bornzin et al. | Jul 2014 | B2 |
8788035 | Jacobson | Jul 2014 | B2 |
8788053 | Jacobson | Jul 2014 | B2 |
8798740 | Samade et al. | Aug 2014 | B2 |
8798745 | Jacobson | Aug 2014 | B2 |
8798762 | Fain et al. | Aug 2014 | B2 |
8798770 | Reddy | Aug 2014 | B2 |
8805505 | Roberts | Aug 2014 | B1 |
8805528 | Corndorf | Aug 2014 | B2 |
8812109 | Blomqvist et al. | Aug 2014 | B2 |
8818504 | Bodner et al. | Aug 2014 | B2 |
8827913 | Havel et al. | Sep 2014 | B2 |
8831747 | Min et al. | Sep 2014 | B1 |
8855789 | Jacobson | Oct 2014 | B2 |
8868186 | Kroll | Oct 2014 | B2 |
8886339 | Faltys et al. | Nov 2014 | B2 |
8903473 | Rogers et al. | Dec 2014 | B2 |
8903500 | Smith et al. | Dec 2014 | B2 |
8903513 | Ollivier | Dec 2014 | B2 |
8909336 | Navarro-Paredes et al. | Dec 2014 | B2 |
8914131 | Bornzin et al. | Dec 2014 | B2 |
8923795 | Makdissi et al. | Dec 2014 | B2 |
8923963 | Bonner et al. | Dec 2014 | B2 |
8938300 | Rosero | Jan 2015 | B2 |
8942806 | Sheldon et al. | Jan 2015 | B2 |
8958892 | Khairkhahan et al. | Feb 2015 | B2 |
8977358 | Ewert et al. | Mar 2015 | B2 |
8989873 | Locsin | Mar 2015 | B2 |
8996109 | Karst et al. | Mar 2015 | B2 |
9002467 | Smith et al. | Apr 2015 | B2 |
9008776 | Cowan et al. | Apr 2015 | B2 |
9008777 | Dianaty et al. | Apr 2015 | B2 |
9014818 | Deterre et al. | Apr 2015 | B2 |
9017341 | Bornzin et al. | Apr 2015 | B2 |
9020611 | Khairkhahan et al. | Apr 2015 | B2 |
9037262 | Regnier et al. | May 2015 | B2 |
9042984 | Demmer et al. | May 2015 | B2 |
9072911 | Hastings et al. | Jul 2015 | B2 |
9072913 | Jacobson | Jul 2015 | B2 |
9155882 | Grubac et al. | Oct 2015 | B2 |
9168372 | Fain | Oct 2015 | B2 |
9168380 | Greenhut et al. | Oct 2015 | B1 |
9168383 | Jacobson et al. | Oct 2015 | B2 |
9180285 | Moore et al. | Nov 2015 | B2 |
9192774 | Jacobson | Nov 2015 | B2 |
9205225 | Khairkhahan et al. | Dec 2015 | B2 |
9216285 | Boling et al. | Dec 2015 | B1 |
9216293 | Berthiaume et al. | Dec 2015 | B2 |
9216298 | Jacobson | Dec 2015 | B2 |
9227077 | Jacobson | Jan 2016 | B2 |
9238145 | Wenzel et al. | Jan 2016 | B2 |
9242102 | Khairkhahan et al. | Jan 2016 | B2 |
9242113 | Smith et al. | Jan 2016 | B2 |
9248300 | Rys et al. | Feb 2016 | B2 |
9265436 | Min et al. | Feb 2016 | B2 |
9265962 | Dianaty et al. | Feb 2016 | B2 |
9272155 | Ostroff | Mar 2016 | B2 |
9278218 | Karst et al. | Mar 2016 | B2 |
9278229 | Reinke et al. | Mar 2016 | B1 |
9283381 | Grubac et al. | Mar 2016 | B2 |
9283382 | Berthiaume et al. | Mar 2016 | B2 |
9289612 | Sambelashvili et al. | Mar 2016 | B1 |
9302115 | Molin et al. | Apr 2016 | B2 |
9333364 | Echt et al. | May 2016 | B2 |
9358387 | Suwito et al. | Jun 2016 | B2 |
9358400 | Jacobson | Jun 2016 | B2 |
9364675 | Deterre et al. | Jun 2016 | B2 |
9370663 | Moulder | Jun 2016 | B2 |
9375580 | Bonner et al. | Jun 2016 | B2 |
9375581 | Baru et al. | Jun 2016 | B2 |
9381365 | Kibler et al. | Jul 2016 | B2 |
9393424 | Demmer et al. | Jul 2016 | B2 |
9393436 | Doerr | Jul 2016 | B2 |
9399139 | Demmer et al. | Jul 2016 | B2 |
9399140 | Cho et al. | Jul 2016 | B2 |
9409033 | Jacobson | Aug 2016 | B2 |
9427594 | Bornzin et al. | Aug 2016 | B1 |
9433368 | Stahmann et al. | Sep 2016 | B2 |
9433780 | Régnier et al. | Sep 2016 | B2 |
9457193 | Klimovitch et al. | Oct 2016 | B2 |
9492668 | Sheldon et al. | Nov 2016 | B2 |
9492669 | Demmer et al. | Nov 2016 | B2 |
9492674 | Schmidt et al. | Nov 2016 | B2 |
9492677 | Greenhut et al. | Nov 2016 | B2 |
9511233 | Sambelashvili | Dec 2016 | B2 |
9511236 | Varady et al. | Dec 2016 | B2 |
9511237 | Deterre et al. | Dec 2016 | B2 |
9522276 | Shen et al. | Dec 2016 | B2 |
9522280 | Fishler et al. | Dec 2016 | B2 |
9526522 | Wood et al. | Dec 2016 | B2 |
9526891 | Eggen et al. | Dec 2016 | B2 |
9526909 | Stahmann et al. | Dec 2016 | B2 |
9533163 | Klimovitch et al. | Jan 2017 | B2 |
9561382 | Persson et al. | Feb 2017 | B2 |
9566012 | Greenhut et al. | Feb 2017 | B2 |
9636511 | Carney et al. | May 2017 | B2 |
9669223 | Auricchio et al. | Jun 2017 | B2 |
9687654 | Sheldon et al. | Jun 2017 | B2 |
9687655 | Pertijs et al. | Jun 2017 | B2 |
9687659 | Von Arx et al. | Jun 2017 | B2 |
9694186 | Carney et al. | Jul 2017 | B2 |
9782594 | Stahmann et al. | Oct 2017 | B2 |
9782601 | Ludwig | Oct 2017 | B2 |
9789317 | Greenhut et al. | Oct 2017 | B2 |
9789319 | Sambelashvili | Oct 2017 | B2 |
9808617 | Ostroff et al. | Nov 2017 | B2 |
9808628 | Sheldon et al. | Nov 2017 | B2 |
9808631 | Maile et al. | Nov 2017 | B2 |
9808632 | Reinke et al. | Nov 2017 | B2 |
9808633 | Bonner et al. | Nov 2017 | B2 |
9808637 | Sharma et al. | Nov 2017 | B2 |
9855414 | Marshall et al. | Jan 2018 | B2 |
9855430 | Ghosh et al. | Jan 2018 | B2 |
9855435 | Sahabi et al. | Jan 2018 | B2 |
9861815 | Tran et al. | Jan 2018 | B2 |
10080887 | Schmidt et al. | Sep 2018 | B2 |
10080888 | Kelly et al. | Sep 2018 | B2 |
10080900 | Ghosh et al. | Sep 2018 | B2 |
10080903 | Willis et al. | Sep 2018 | B2 |
10086206 | Sambelashvili | Oct 2018 | B2 |
10118026 | Grubac et al. | Nov 2018 | B2 |
10124163 | Ollivier et al. | Nov 2018 | B2 |
10124175 | Berthiaume et al. | Nov 2018 | B2 |
10130821 | Grubac et al. | Nov 2018 | B2 |
10137305 | Kane et al. | Nov 2018 | B2 |
10201710 | Jackson et al. | Feb 2019 | B2 |
10207115 | Echt et al. | Feb 2019 | B2 |
10207116 | Sheldon et al. | Feb 2019 | B2 |
10323182 | Jun | Jun 2019 | B2 |
20020032470 | Linberg | Mar 2002 | A1 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095196 | Linberg | Jul 2002 | A1 |
20020099423 | Berg et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | Ostroff et al. | Aug 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20020193846 | Pool et al. | Dec 2002 | A1 |
20030009203 | Lebel et al. | Jan 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030040779 | Engmark et al. | Feb 2003 | A1 |
20030041866 | Linberg et al. | Mar 2003 | A1 |
20030045805 | Sheldon et al. | Mar 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030105497 | Zhu et al. | Jun 2003 | A1 |
20030114908 | Flach | Jun 2003 | A1 |
20030144701 | Mehra et al. | Jul 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030187461 | Chin | Oct 2003 | A1 |
20040024435 | Leckrone et al. | Feb 2004 | A1 |
20040039422 | Russie | Feb 2004 | A1 |
20040068302 | Rodgers et al. | Apr 2004 | A1 |
20040087938 | Leckrone et al. | May 2004 | A1 |
20040088035 | Guenst et al. | May 2004 | A1 |
20040102830 | Williams | May 2004 | A1 |
20040127959 | Amundson et al. | Jul 2004 | A1 |
20040133242 | Chapman et al. | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040147973 | Hauser | Jul 2004 | A1 |
20040167558 | Igo et al. | Aug 2004 | A1 |
20040167587 | Thompson | Aug 2004 | A1 |
20040172071 | Bardy et al. | Sep 2004 | A1 |
20040172077 | Chinchoy | Sep 2004 | A1 |
20040172104 | Berg et al. | Sep 2004 | A1 |
20040176817 | Wahlstrand et al. | Sep 2004 | A1 |
20040176818 | Wahlstrand et al. | Sep 2004 | A1 |
20040176830 | Fang | Sep 2004 | A1 |
20040186529 | Bardy et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040210292 | Bardy et al. | Oct 2004 | A1 |
20040210293 | Bardy et al. | Oct 2004 | A1 |
20040210294 | Bardy et al. | Oct 2004 | A1 |
20040215308 | Bardy et al. | Oct 2004 | A1 |
20040220624 | Ritscher et al. | Nov 2004 | A1 |
20040220626 | Wagner | Nov 2004 | A1 |
20040220639 | Mulligan et al. | Nov 2004 | A1 |
20040230283 | Prinzen et al. | Nov 2004 | A1 |
20040249431 | Ransbury et al. | Dec 2004 | A1 |
20040260348 | Bakken et al. | Dec 2004 | A1 |
20040267303 | Guenst | Dec 2004 | A1 |
20050061320 | Lee et al. | Mar 2005 | A1 |
20050070962 | Echt et al. | Mar 2005 | A1 |
20050102003 | Grabek et al. | May 2005 | A1 |
20050149138 | Min et al. | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182465 | Ness | Aug 2005 | A1 |
20050203410 | Jenkins | Sep 2005 | A1 |
20050283208 | Von Arx et al. | Dec 2005 | A1 |
20050288743 | Ahn et al. | Dec 2005 | A1 |
20060042830 | Maghribi et al. | Mar 2006 | A1 |
20060052829 | Sun et al. | Mar 2006 | A1 |
20060052830 | Spinelli et al. | Mar 2006 | A1 |
20060064135 | Brockway | Mar 2006 | A1 |
20060064149 | Belacazar et al. | Mar 2006 | A1 |
20060085039 | Hastings et al. | Apr 2006 | A1 |
20060085041 | Hastings et al. | Apr 2006 | A1 |
20060085042 | Hastings et al. | Apr 2006 | A1 |
20060095078 | Tronnes | May 2006 | A1 |
20060106442 | Richardson et al. | May 2006 | A1 |
20060116746 | Chin | Jun 2006 | A1 |
20060135999 | Bodner et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060161061 | Echt et al. | Jul 2006 | A1 |
20060200002 | Guenst | Sep 2006 | A1 |
20060206151 | Lu | Sep 2006 | A1 |
20060212079 | Routh et al. | Sep 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241705 | Neumann et al. | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060259088 | Pastore et al. | Nov 2006 | A1 |
20060265018 | Smith et al. | Nov 2006 | A1 |
20070004979 | Wojciechowicz et al. | Jan 2007 | A1 |
20070016098 | Kim et al. | Jan 2007 | A1 |
20070027508 | Cowan | Feb 2007 | A1 |
20070078490 | Cowan et al. | Apr 2007 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088396 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20070088398 | Jacobson | Apr 2007 | A1 |
20070088405 | Jacobson | Apr 2007 | A1 |
20070135882 | Drasler et al. | Jun 2007 | A1 |
20070135883 | Drasler et al. | Jun 2007 | A1 |
20070150037 | Hastings et al. | Jun 2007 | A1 |
20070150038 | Hastings et al. | Jun 2007 | A1 |
20070156190 | Cinbis | Jul 2007 | A1 |
20070219525 | Gelfand et al. | Sep 2007 | A1 |
20070219590 | Hastings et al. | Sep 2007 | A1 |
20070225545 | Ferrari | Sep 2007 | A1 |
20070233206 | Frikart et al. | Oct 2007 | A1 |
20070239244 | Morgan et al. | Oct 2007 | A1 |
20070255376 | Michels et al. | Nov 2007 | A1 |
20070276444 | Gelbart et al. | Nov 2007 | A1 |
20070293900 | Sheldon et al. | Dec 2007 | A1 |
20070293904 | Gelbart et al. | Dec 2007 | A1 |
20080004663 | Jorgenson | Jan 2008 | A1 |
20080021505 | Hastings et al. | Jan 2008 | A1 |
20080021519 | De Geest et al. | Jan 2008 | A1 |
20080021532 | Kveen et al. | Jan 2008 | A1 |
20080065183 | Whitehurst et al. | Mar 2008 | A1 |
20080065185 | Worley | Mar 2008 | A1 |
20080071318 | Brooke et al. | Mar 2008 | A1 |
20080109054 | Hastings et al. | May 2008 | A1 |
20080119911 | Rosero | May 2008 | A1 |
20080130670 | Kim et al. | Jun 2008 | A1 |
20080154139 | Shuros et al. | Jun 2008 | A1 |
20080154322 | Jackson et al. | Jun 2008 | A1 |
20080228234 | Stancer | Sep 2008 | A1 |
20080234771 | Chinchoy et al. | Sep 2008 | A1 |
20080243217 | Wildon | Oct 2008 | A1 |
20080269814 | Rosero | Oct 2008 | A1 |
20080269825 | Chinchoy et al. | Oct 2008 | A1 |
20080275518 | Ghanem et al. | Nov 2008 | A1 |
20080275519 | Ghanem et al. | Nov 2008 | A1 |
20080288039 | Reddy | Nov 2008 | A1 |
20080294208 | Willis et al. | Nov 2008 | A1 |
20080294210 | Rosero | Nov 2008 | A1 |
20080294229 | Friedman et al. | Nov 2008 | A1 |
20080306359 | Zdeblick et al. | Dec 2008 | A1 |
20090018599 | Hastings et al. | Jan 2009 | A1 |
20090024180 | Kisker et al. | Jan 2009 | A1 |
20090036941 | Corbucci | Feb 2009 | A1 |
20090048646 | Katoozi et al. | Feb 2009 | A1 |
20090062895 | Stahmann et al. | Mar 2009 | A1 |
20090082827 | Kveen et al. | Mar 2009 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090088813 | Brockway et al. | Apr 2009 | A1 |
20090131907 | Chin et al. | May 2009 | A1 |
20090135886 | Robertson et al. | May 2009 | A1 |
20090143835 | Pastore et al. | Jun 2009 | A1 |
20090171408 | Solem | Jul 2009 | A1 |
20090171414 | Kelly et al. | Jul 2009 | A1 |
20090204163 | Shuros et al. | Aug 2009 | A1 |
20090204170 | Hastings et al. | Aug 2009 | A1 |
20090210024 | M. | Aug 2009 | A1 |
20090216292 | Pless et al. | Aug 2009 | A1 |
20090234407 | Hastings et al. | Sep 2009 | A1 |
20090234411 | Sambelashvili et al. | Sep 2009 | A1 |
20090266573 | Engmark et al. | Oct 2009 | A1 |
20090275998 | Burnes et al. | Nov 2009 | A1 |
20090275999 | Burnes et al. | Nov 2009 | A1 |
20090299447 | Jensen et al. | Dec 2009 | A1 |
20100013668 | Kantervik | Jan 2010 | A1 |
20100016911 | Willis et al. | Jan 2010 | A1 |
20100023085 | Wu et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100030327 | Chatel | Feb 2010 | A1 |
20100042108 | Hibino | Feb 2010 | A1 |
20100056871 | Govari et al. | Mar 2010 | A1 |
20100063375 | Kassab et al. | Mar 2010 | A1 |
20100063562 | Cowan et al. | Mar 2010 | A1 |
20100069983 | Peacock, III et al. | Mar 2010 | A1 |
20100094367 | Sen | Apr 2010 | A1 |
20100114209 | Krause et al. | May 2010 | A1 |
20100114214 | Morelli et al. | May 2010 | A1 |
20100125281 | Jacobson et al. | May 2010 | A1 |
20100168761 | Kassab et al. | Jul 2010 | A1 |
20100168819 | Freeberg | Jul 2010 | A1 |
20100198288 | Ostroff | Aug 2010 | A1 |
20100198304 | Wang | Aug 2010 | A1 |
20100217367 | Belson | Aug 2010 | A1 |
20100228308 | Cowan et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100234924 | Willis | Sep 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100249729 | Morris et al. | Sep 2010 | A1 |
20100286744 | Echt et al. | Nov 2010 | A1 |
20100298841 | Prinzen et al. | Nov 2010 | A1 |
20100312309 | Harding | Dec 2010 | A1 |
20110022113 | Zdeblick et al. | Jan 2011 | A1 |
20110071586 | Jacobson | Mar 2011 | A1 |
20110077708 | Ostroff | Mar 2011 | A1 |
20110112600 | Cowan et al. | May 2011 | A1 |
20110118588 | Komblau et al. | May 2011 | A1 |
20110118810 | Cowan et al. | May 2011 | A1 |
20110137187 | Yang et al. | Jun 2011 | A1 |
20110144720 | Cowan et al. | Jun 2011 | A1 |
20110152970 | Jollota et al. | Jun 2011 | A1 |
20110160558 | Rassatt et al. | Jun 2011 | A1 |
20110160565 | Stubbs et al. | Jun 2011 | A1 |
20110160801 | Markowitz et al. | Jun 2011 | A1 |
20110160806 | Lyden et al. | Jun 2011 | A1 |
20110166620 | Cowan et al. | Jul 2011 | A1 |
20110166621 | Cowan et al. | Jul 2011 | A1 |
20110184491 | Kivi | Jul 2011 | A1 |
20110190835 | Brockway et al. | Aug 2011 | A1 |
20110208260 | Jacobson | Aug 2011 | A1 |
20110218587 | Jacobson | Sep 2011 | A1 |
20110230734 | Fain et al. | Sep 2011 | A1 |
20110237967 | Moore et al. | Sep 2011 | A1 |
20110245890 | Brisben et al. | Oct 2011 | A1 |
20110251660 | Griswold | Oct 2011 | A1 |
20110251662 | Griswold et al. | Oct 2011 | A1 |
20110270099 | Ruben et al. | Nov 2011 | A1 |
20110270339 | Murray, III et al. | Nov 2011 | A1 |
20110270340 | Pellegrini et al. | Nov 2011 | A1 |
20110270341 | Ruben et al. | Nov 2011 | A1 |
20110276102 | Cohen | Nov 2011 | A1 |
20110282423 | Jacobson | Nov 2011 | A1 |
20120004527 | Thompson et al. | Jan 2012 | A1 |
20120029323 | Zhao | Feb 2012 | A1 |
20120041508 | Rousso et al. | Feb 2012 | A1 |
20120059433 | Cowan et al. | Mar 2012 | A1 |
20120059436 | Fontaine et al. | Mar 2012 | A1 |
20120065500 | Rogers et al. | Mar 2012 | A1 |
20120078322 | Dal Molin et al. | Mar 2012 | A1 |
20120089198 | Ostroff | Apr 2012 | A1 |
20120093245 | Makdissi et al. | Apr 2012 | A1 |
20120095521 | Hintz | Apr 2012 | A1 |
20120095539 | Khairkhahan et al. | Apr 2012 | A1 |
20120101540 | O'Brien et al. | Apr 2012 | A1 |
20120101553 | Reddy | Apr 2012 | A1 |
20120109148 | Bonner et al. | May 2012 | A1 |
20120109149 | Bonner et al. | May 2012 | A1 |
20120109236 | Jacobson et al. | May 2012 | A1 |
20120109259 | Bond et al. | May 2012 | A1 |
20120116489 | Khairkhahan et al. | May 2012 | A1 |
20120150251 | Giftakis et al. | Jun 2012 | A1 |
20120158111 | Khairkhahan et al. | Jun 2012 | A1 |
20120165827 | Khairkhahan et al. | Jun 2012 | A1 |
20120172690 | Anderson et al. | Jul 2012 | A1 |
20120172891 | Lee | Jul 2012 | A1 |
20120172892 | Grubac et al. | Jul 2012 | A1 |
20120172942 | Berg | Jul 2012 | A1 |
20120197350 | Roberts et al. | Aug 2012 | A1 |
20120197373 | Khairkhahan et al. | Aug 2012 | A1 |
20120215285 | Tahmasian et al. | Aug 2012 | A1 |
20120232565 | Kveen et al. | Sep 2012 | A1 |
20120245665 | Friedman et al. | Sep 2012 | A1 |
20120277600 | Greenhut | Nov 2012 | A1 |
20120277606 | Ellingson et al. | Nov 2012 | A1 |
20120283795 | Stancer et al. | Nov 2012 | A1 |
20120283807 | Deterre et al. | Nov 2012 | A1 |
20120289776 | Keast et al. | Nov 2012 | A1 |
20120289815 | Keast et al. | Nov 2012 | A1 |
20120290021 | Saurkar et al. | Nov 2012 | A1 |
20120290025 | Keimel | Nov 2012 | A1 |
20120296381 | Mates | Nov 2012 | A1 |
20120303082 | Dong et al. | Nov 2012 | A1 |
20120316613 | Keefe et al. | Dec 2012 | A1 |
20130012151 | Hankins | Jan 2013 | A1 |
20130023975 | Locsin | Jan 2013 | A1 |
20130035748 | Bonner et al. | Feb 2013 | A1 |
20130041422 | Jacobson | Feb 2013 | A1 |
20130053908 | Smith et al. | Feb 2013 | A1 |
20130053915 | Holmstrom et al. | Feb 2013 | A1 |
20130053921 | Bonner et al. | Feb 2013 | A1 |
20130060298 | Splett et al. | Mar 2013 | A1 |
20130066169 | Rys et al. | Mar 2013 | A1 |
20130072770 | Rao et al. | Mar 2013 | A1 |
20130079798 | Tran et al. | Mar 2013 | A1 |
20130079861 | Reinert et al. | Mar 2013 | A1 |
20130085350 | Schugt et al. | Apr 2013 | A1 |
20130085403 | Gunderson et al. | Apr 2013 | A1 |
20130085550 | Polefko et al. | Apr 2013 | A1 |
20130096649 | Martin et al. | Apr 2013 | A1 |
20130103047 | Steingisser et al. | Apr 2013 | A1 |
20130103109 | Jacobson | Apr 2013 | A1 |
20130110008 | Bourget et al. | May 2013 | A1 |
20130110127 | Bornzin et al. | May 2013 | A1 |
20130110192 | Tran et al. | May 2013 | A1 |
20130110219 | Bornzin et al. | May 2013 | A1 |
20130116529 | Min et al. | May 2013 | A1 |
20130116738 | Samade et al. | May 2013 | A1 |
20130116740 | Bornzin et al. | May 2013 | A1 |
20130116741 | Bornzin et al. | May 2013 | A1 |
20130123872 | Bornzin et al. | May 2013 | A1 |
20130123875 | Varady et al. | May 2013 | A1 |
20130131591 | Berthiaume et al. | May 2013 | A1 |
20130131693 | Berthiaume et al. | May 2013 | A1 |
20130138006 | Bornzin et al. | May 2013 | A1 |
20130150695 | Biela et al. | Jun 2013 | A1 |
20130150911 | Perschbacher et al. | Jun 2013 | A1 |
20130150912 | Perschbacher et al. | Jun 2013 | A1 |
20130184776 | Shuros et al. | Jul 2013 | A1 |
20130192611 | Taepke, II et al. | Aug 2013 | A1 |
20130196703 | Masoud et al. | Aug 2013 | A1 |
20130197609 | Moore et al. | Aug 2013 | A1 |
20130231710 | Jacobson | Sep 2013 | A1 |
20130238072 | Deterre et al. | Sep 2013 | A1 |
20130238073 | Makdissi et al. | Sep 2013 | A1 |
20130253309 | Allan et al. | Sep 2013 | A1 |
20130253342 | Griswold et al. | Sep 2013 | A1 |
20130253343 | Waldhauser et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253345 | Griswold et al. | Sep 2013 | A1 |
20130253346 | Griswold et al. | Sep 2013 | A1 |
20130253347 | Griswold et al. | Sep 2013 | A1 |
20130261497 | Pertijs et al. | Oct 2013 | A1 |
20130265144 | Banna et al. | Oct 2013 | A1 |
20130268042 | Hastings et al. | Oct 2013 | A1 |
20130274828 | Willis | Oct 2013 | A1 |
20130274847 | Ostroff | Oct 2013 | A1 |
20130282070 | Cowan et al. | Oct 2013 | A1 |
20130282073 | Cowan et al. | Oct 2013 | A1 |
20130296727 | Sullivan et al. | Nov 2013 | A1 |
20130303872 | Taff et al. | Nov 2013 | A1 |
20130324825 | Ostroff et al. | Dec 2013 | A1 |
20130325081 | Karst et al. | Dec 2013 | A1 |
20130345770 | Dianaty et al. | Dec 2013 | A1 |
20140012344 | Hastings et al. | Jan 2014 | A1 |
20140018876 | Ostroff | Jan 2014 | A1 |
20140018877 | Demmer et al. | Jan 2014 | A1 |
20140031836 | Ollivier | Jan 2014 | A1 |
20140039570 | Carroll et al. | Feb 2014 | A1 |
20140039591 | Drasler et al. | Feb 2014 | A1 |
20140043146 | Makdissi et al. | Feb 2014 | A1 |
20140046395 | Regnier et al. | Feb 2014 | A1 |
20140046420 | Moore et al. | Feb 2014 | A1 |
20140058240 | Mothilal et al. | Feb 2014 | A1 |
20140058494 | Ostroff et al. | Feb 2014 | A1 |
20140074114 | Khairkhahan et al. | Mar 2014 | A1 |
20140074186 | Faltys et al. | Mar 2014 | A1 |
20140094891 | Pare et al. | Apr 2014 | A1 |
20140100624 | Ellingson | Apr 2014 | A1 |
20140100627 | Min | Apr 2014 | A1 |
20140107723 | Hou et al. | Apr 2014 | A1 |
20140121719 | Bonner et al. | May 2014 | A1 |
20140121720 | Bonner et al. | May 2014 | A1 |
20140121722 | Sheldon et al. | May 2014 | A1 |
20140128935 | Kumar et al. | May 2014 | A1 |
20140135865 | Hastings et al. | May 2014 | A1 |
20140142648 | Smith et al. | May 2014 | A1 |
20140148675 | Nordstrom et al. | May 2014 | A1 |
20140148815 | Wenzel et al. | May 2014 | A1 |
20140155950 | Hastings et al. | Jun 2014 | A1 |
20140169162 | Romano et al. | Jun 2014 | A1 |
20140172060 | Bornzin et al. | Jun 2014 | A1 |
20140180306 | Grubac et al. | Jun 2014 | A1 |
20140180366 | Edlund | Jun 2014 | A1 |
20140207149 | Hastings et al. | Jul 2014 | A1 |
20140207210 | Willis et al. | Jul 2014 | A1 |
20140214104 | Greenhut et al. | Jul 2014 | A1 |
20140222015 | Keast et al. | Aug 2014 | A1 |
20140222098 | Baru et al. | Aug 2014 | A1 |
20140222109 | Moulder | Aug 2014 | A1 |
20140228913 | Molin et al. | Aug 2014 | A1 |
20140236172 | Hastings et al. | Aug 2014 | A1 |
20140243848 | Auricchio et al. | Aug 2014 | A1 |
20140255298 | Cole et al. | Sep 2014 | A1 |
20140257324 | Fain | Sep 2014 | A1 |
20140257422 | Herken | Sep 2014 | A1 |
20140257444 | Cole et al. | Sep 2014 | A1 |
20140276929 | Foster et al. | Sep 2014 | A1 |
20140303704 | Suwito et al. | Oct 2014 | A1 |
20140309706 | Jacobson | Oct 2014 | A1 |
20140343348 | Kaplan et al. | Nov 2014 | A1 |
20140371818 | Bond et al. | Dec 2014 | A1 |
20140379041 | Foster | Dec 2014 | A1 |
20150025612 | Haasl et al. | Jan 2015 | A1 |
20150039041 | Smith et al. | Feb 2015 | A1 |
20150045868 | Bonner et al. | Feb 2015 | A1 |
20150051609 | Schmidt et al. | Feb 2015 | A1 |
20150051610 | Schmidt et al. | Feb 2015 | A1 |
20150051611 | Schmidt et al. | Feb 2015 | A1 |
20150051612 | Schmidt et al. | Feb 2015 | A1 |
20150051613 | Schmidt et al. | Feb 2015 | A1 |
20150051614 | Schmidt et al. | Feb 2015 | A1 |
20150051615 | Schmidt et al. | Feb 2015 | A1 |
20150051616 | Haasl et al. | Feb 2015 | A1 |
20150051682 | Schmidt et al. | Feb 2015 | A1 |
20150057520 | Foster et al. | Feb 2015 | A1 |
20150057558 | Stahmann et al. | Feb 2015 | A1 |
20150057721 | Stahmann et al. | Feb 2015 | A1 |
20150088155 | Stahmann et al. | Mar 2015 | A1 |
20150105836 | Bonner et al. | Apr 2015 | A1 |
20150126854 | Keast et al. | May 2015 | A1 |
20150157861 | Aghassian | Jun 2015 | A1 |
20150157866 | Demmer et al. | Jun 2015 | A1 |
20150173655 | Demmer et al. | Jun 2015 | A1 |
20150190638 | Smith et al. | Jul 2015 | A1 |
20150196756 | Stahmann et al. | Jul 2015 | A1 |
20150196757 | Stahmann et al. | Jul 2015 | A1 |
20150196758 | Stahmann et al. | Jul 2015 | A1 |
20150196769 | Stahmann et al. | Jul 2015 | A1 |
20150217119 | Nikolski et al. | Aug 2015 | A1 |
20150221898 | Chi et al. | Aug 2015 | A1 |
20150224315 | Stahmann | Aug 2015 | A1 |
20150224320 | Stahmann | Aug 2015 | A1 |
20150230699 | Berul et al. | Aug 2015 | A1 |
20150238769 | Demmer et al. | Aug 2015 | A1 |
20150258345 | Smith et al. | Sep 2015 | A1 |
20150290468 | Zhang | Oct 2015 | A1 |
20150297905 | Greenhut et al. | Oct 2015 | A1 |
20150297907 | Zhang | Oct 2015 | A1 |
20150305637 | Greenhut et al. | Oct 2015 | A1 |
20150305638 | Zhang | Oct 2015 | A1 |
20150305639 | Greenhut et al. | Oct 2015 | A1 |
20150305640 | Reinke et al. | Oct 2015 | A1 |
20150305641 | Stadler et al. | Oct 2015 | A1 |
20150305642 | Reinke et al. | Oct 2015 | A1 |
20150306374 | Seifert et al. | Oct 2015 | A1 |
20150306375 | Marshall et al. | Oct 2015 | A1 |
20150306401 | Demmer et al. | Oct 2015 | A1 |
20150306406 | Crutchfield et al. | Oct 2015 | A1 |
20150306407 | Crutchfield et al. | Oct 2015 | A1 |
20150306408 | Greenhut et al. | Oct 2015 | A1 |
20150321016 | O'Brien et al. | Nov 2015 | A1 |
20150328459 | Chin et al. | Nov 2015 | A1 |
20150335884 | Khairkhahan et al. | Nov 2015 | A1 |
20160015322 | Anderson et al. | Jan 2016 | A1 |
20160023000 | Cho et al. | Jan 2016 | A1 |
20160030757 | Jacobson | Feb 2016 | A1 |
20160033177 | Barot et al. | Feb 2016 | A1 |
20160121127 | Klimovitch et al. | May 2016 | A1 |
20160121128 | Fishler et al. | May 2016 | A1 |
20160121129 | Persson et al. | May 2016 | A1 |
20160175601 | Nabutovsky et al. | Jun 2016 | A1 |
20160213919 | Suwito et al. | Jul 2016 | A1 |
20160213937 | Reinke et al. | Jul 2016 | A1 |
20160213939 | Carney et al. | Jul 2016 | A1 |
20160228026 | Jackson | Aug 2016 | A1 |
20160228701 | Huelskamp et al. | Aug 2016 | A1 |
20160228718 | Koop | Aug 2016 | A1 |
20160317825 | Jacobson | Nov 2016 | A1 |
20160367823 | Cowan et al. | Dec 2016 | A1 |
20170014629 | Ghosh et al. | Jan 2017 | A1 |
20170035315 | Jackson | Feb 2017 | A1 |
20170043173 | Sharma et al. | Feb 2017 | A1 |
20170043174 | Greenhut et al. | Feb 2017 | A1 |
20170072202 | Kane et al. | Mar 2017 | A1 |
20170189681 | Anderson | Jul 2017 | A1 |
20170281261 | Shuros et al. | Oct 2017 | A1 |
20170281952 | Shuros et al. | Oct 2017 | A1 |
20170281953 | Min et al. | Oct 2017 | A1 |
20170281955 | Maile et al. | Oct 2017 | A1 |
20170312531 | Sawchuk | Nov 2017 | A1 |
20180256902 | Toy et al. | Sep 2018 | A1 |
20180256909 | Smith et al. | Sep 2018 | A1 |
20180264262 | Haasl et al. | Sep 2018 | A1 |
20180264270 | Koop et al. | Sep 2018 | A1 |
20180264272 | Haasl et al. | Sep 2018 | A1 |
20180264273 | Haasl et al. | Sep 2018 | A1 |
20180264274 | Haasl et al. | Sep 2018 | A1 |
20180339160 | Carroll | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
2008279789 | Oct 2011 | AU |
2008329620 | May 2014 | AU |
2014203793 | Jul 2014 | AU |
1003904 | Jan 1977 | CA |
202933393 | May 2013 | CN |
0362611 | Apr 1990 | EP |
503823 | Sep 1992 | EP |
1702648 | Sep 2006 | EP |
1904166 | Jun 2011 | EP |
2471452 | Jul 2012 | EP |
2433675 | Jan 2013 | EP |
2441491 | Jan 2013 | EP |
2452721 | Nov 2013 | EP |
2662113 | Nov 2013 | EP |
1948296 | Jan 2014 | EP |
2950881 | Dec 2015 | EP |
2760541 | May 2016 | EP |
2833966 | May 2016 | EP |
2000051373 | Feb 2000 | JP |
2002502640 | Jan 2002 | JP |
2004512105 | Apr 2004 | JP |
2005508208 | Mar 2005 | JP |
2005245215 | Sep 2005 | JP |
2008540040 | Nov 2008 | JP |
2012500050 | Jan 2012 | JP |
5199867 | Feb 2013 | JP |
9500202 | Jan 1995 | WO |
9636134 | Nov 1996 | WO |
9724981 | Jul 1997 | WO |
9826840 | Jun 1998 | WO |
9939767 | Aug 1999 | WO |
0234330 | May 2002 | WO |
02098282 | Dec 2002 | WO |
2005000206 | Jan 2005 | WO |
2005042089 | May 2005 | WO |
2006065394 | Jun 2006 | WO |
2006069215 | Jun 2006 | WO |
2006086435 | Aug 2006 | WO |
2006113659 | Oct 2006 | WO |
2006124833 | Nov 2006 | WO |
2007073435 | Jun 2007 | WO |
2007075974 | Jul 2007 | WO |
2009006531 | Jan 2009 | WO |
2012054102 | Apr 2012 | WO |
2013080038 | Jun 2013 | WO |
2013098644 | Jul 2013 | WO |
2013184787 | Dec 2013 | WO |
2014120769 | Aug 2014 | WO |
2016118814 | Jul 2016 | WO |
Entry |
---|
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn) |
International Search Report and Written Opinion for Application No. PCT/US2018/024875, 15 pages, dated Jul. 5, 2018. |
Hügl B et al: “Incremental programming of atrial anti-tachycardia pacing therapies in bradycardia-indicated patients: effects on therapy efficacy and atrial tachyarrhythmia burden” EUROPACE, W.B. Saunders, GB, vol. 5, No. 4, Oct. 1, 2003 (Oct. 1, 2003), pp. 403-409, XP002559877, ISSN: 1099-5129, DOI: 10.1016/S1099-5129(03) 00082-5 the whole document. |
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013. |
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003. |
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013. |
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970. |
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007. |
Number | Date | Country | |
---|---|---|---|
20180280702 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
62480784 | Apr 2017 | US |