Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate

Information

  • Patent Grant
  • 10821288
  • Patent Number
    10,821,288
  • Date Filed
    Wednesday, March 28, 2018
    6 years ago
  • Date Issued
    Tuesday, November 3, 2020
    3 years ago
Abstract
Implantable medical devices (IMD) such as a cardiac pacemakers may include a sensor and electrodes. In some cases, the IMD may include electronics to use the sensor to determine the heart rate of a patient's heart. The electronics may use the electrodes to deliver pacing pulses to the heart at a first energy level if the heart rate is below a threshold and pace the heart at an enhanced energy level if the heart rate is above the threshold.
Description
TECHNICAL FIELD

The disclosure relates generally to implantable medical devices, and more particularly to implantable cardiac pacemakers that have a post shock pacing capability.


BACKGROUND

Implantable medical devices (IMDs) are commonly used to perform a variety of functions, such as monitor one or more conditions and/or delivery therapy to a patient. In some cases, IMDs may treat patients suffering from various heart conditions that may result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. Some heart conditions may lead to low heart rates (e.g. bradycardia), while others may lead to rapid, irregular, and/or inefficient heart contractions (tachycardia). To help alleviate these and other conditions, various devices (e.g., pacemakers, defibrillators, etc.) can be implanted into a patient's body. When so provided, such devices can monitor and provide therapy, such as electrical stimulation therapy, to the patient's heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, an IMD may be configured to deliver pacing and/or defibrillation therapy to a patient's heart. In other cases, a patient may have multiple implanted devices that cooperate to deliver pacing and/or defibrillation therapy to the patient's heart.


In some instances, an IMD may perform demand pacing to help ensure that the heart rate of a patient does not fall below a lower heart rate threshold. When performing demand pacing, the IMD may pace the heart at the lower heart rate threshold when the intrinsic heart rate falls below the lower heart rate threshold. In some instances, the heart may be susceptible to cardiac fibrillation, which may be characterized by rapid, irregular, and/or inefficient heart contractions. When this happens, an Implantable Cardioverter Defibrillator (ICD) can be used to deliver a shock to the heart of the patient to defibrillate the heart. The heart typically stops beating for a moment in response to a delivered shock event, but then resumes in a normal rhythm. Often post-shock pacing pulses are delivered after the shock event to help bring the heart back into the normal rhythm. In some cases, the post-shock pacing pulses are delivered at a higher amplitude than the pacing pulses that are used during demand pacing. In some instances, an ICD may deliver both demand pacing and defibrillation shock therapy. In other instances, an IMD may deliver demand pacing while a separate ICD may deliver defibrillation shock therapy.


What would be desirable is an IMD that can deliver demand pacing, and can also anticipate a coming shock event from a remote ICD based on a detected heart rate condition, and then on its own increasing the energy level for subsequently delivered pacing pulses over a temporarily period of time. Such an IMD may, for example, deliver post shock pacing pulses with increased energy levels without requiring communication between the IMD and the remote ICD.


SUMMARY

The disclosure relates generally to implantable medical devices, and more particularly to implantable cardiac pacemakers that have a post shock pacing capability. While a Leadless Cardiac Pacemaker (LCP) is used as an example implantable cardiac pacemaker, it should be recognized that the disclosure may be applied to any suitable implantable medical device as desired.


In an example of the disclosure, a cardiac pacemaker that is free from an Implantable Cardioverter Defibrillator (ICD) may include one or more sensors for sensing one or more physiological parameters of a patient, and two or more pacing electrodes for delivering pacing pulses to the heart of the patient. Electronics operatively coupled to the one or more sensors and the two or more pacing electrodes may be configured to determine a heart rate of the patient based at least in part on the one or more physiological parameters sensed by the one or more sensors and may pace the heart of the patient via the two or more pacing electrodes in a manner that attempts to keep the heart rate of the patient from falling below a demand heart rate threshold. If the heart rate is below an upper heart rate threshold, the pacing pulses may be delivered at a capture pacing energy level. If the heart rate rises above the upper heart rate threshold, the pacing pulses may be temporarily delivered at an enhanced energy level above the capture pacing energy level for a period of time, and after the period of time, the pacing pulses may again be delivered at the capture energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.


Alternatively or additionally to any of the embodiments above, the one or more sensors may comprise two or more sensing electrodes, and at least one of the physiological parameters may comprise a cardiac electrical signal.


Alternatively or additionally to any of the embodiments above, at least one of the two or more sensing electrodes may be one of the pacing electrodes.


Alternatively or additionally to any of the embodiments above, the one or more sensors may comprise an accelerometer, and at least one of the physiological parameters may comprise one or more of a heart motion and a heart sound.


Alternatively or additionally to any of the embodiments above, the heart rate determined by the electronics may be an average heart rate of “n” previous heart beats, wherein “n” may be an integer greater than one.


Alternatively or additionally to any of the embodiments above, the pacing pulses may have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude may be greater than the first amplitude and the second pulse width may be the same as the first pulse width.


Alternatively or additionally to any of the embodiments above, the pacing pulses may have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude may be the same as the first amplitude and the second pulse width may be greater than the first pulse width.


Alternatively or additionally to any of the embodiments above, the pacing pulses may have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude may be greater than the first amplitude and the second pulse width may be greater than the first pulse width.


Alternatively or additionally to any of the embodiments above, the period of time may be a predetermined period of time.


Alternatively or additionally to any of the embodiments above, the predetermined period of time may be programmable.


Alternatively or additionally to any of the embodiments above, the period of time may be greater than 3 minutes.


Alternatively or additionally to any of the embodiments above, the period of time may be less than 1 hour.


Alternatively or additionally to any of the embodiments above, further comprising a communication module, wherein the electronics can receive commands from a remote device via the communication module, and wherein in response to receive an ATP command, the electronics may be configured to deliver a burst of ATP pacing pulses at the enhanced energy level.


Alternatively or additionally to any of the embodiments above, the cardiac pacemaker may be a leadless cardiac pacemaker (LCP) that may be configured to be implanted within a chamber of the heart of the patient.


In another example of the disclosure, a leadless cardiac pacemaker (LCP) may comprised a housing, and a plurality of electrodes for sensing electrical signals emanating from outside of the housing. An energy storage module may be disposed within the housing. The LCP may further include a pulse generator for delivering pacing pulses via two or more of the plurality of electrodes, wherein the pulse generator may be capable of changing an energy level of the pacing pulses. A control module disposed within the housing may be operatively coupled to the pulse generator and at least two of the plurality of electrodes. The control module may be configured to receive one or more cardiac signals via two or more of the plurality of electrodes, determine a heart rate based at least in part on the received one or more cardiac signals, instruct the pulse generator to pace the heart with pacing pulses at a capture pacing energy level in a manner that attempts to keep the heart rate from falling below a demand heart rate threshold, determine if the heart rate rises above an upper heart rate threshold, and in response to determining that the heart rate has risen above the upper heart rate threshold, instruct the pulse generator to increase the energy level of the pacing pulses to an enhanced energy level for a period of time, and after the period of time, instruct the pulse generator to decrease the energy level of the pacing pulses back to the capture pacing energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.


Alternatively or additionally to any of the embodiments above, the pulse generator may change an amplitude of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.


Alternatively or additionally to any of the embodiments above, the pulse generator may change a pulse width of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.


Alternatively or additionally to any of the embodiments above, the pulse generator may change an amplitude and a pulse width of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.


In another example of the disclosure, a method for pacing a heart of a patient may comprise determining a heart rate of the patient, and pacing the heart of the patient in a manner that attempts to keep the heart rate of the patient from falling below a demand heart rate threshold. If the heart rate is below an upper heart rate threshold, pacing pulses may be delivered at a capture pacing energy level. If the heart rate rises above the upper heart rate threshold, pacing pulses may temporarily be delivered at an enhanced energy level above the capture pacing energy level for a period of time, and after the period of time, the pacing pulses may again be delivered at the capture pacing energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.


Alternatively or additionally to any of the embodiments above, the heart rate may be determined by an average heart rate of “n” previous heart beats, wherein “n” may be an integer greater than one.


The above summary of some illustrative embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures and Description which follow more particularly exemplify these and other illustrative embodiments.





BRIEF DESCRIPTION OF THE FIGURES

The disclosure may be more completely understood in consideration of the following description in connection with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of an illustrative LCP, in accordance with an example of the disclosure;



FIG. 2 is a side view of an illustrative implantable LCP;



FIG. 3 is a schematic diagram of an LCP implanted in a chamber of a patient's heart, in accordance with an example of the disclosure;



FIG. 4 is a schematic diagram of a co-implanted transvenous implantable cardioverter-defibrillator (T-ICD) and LCP, in accordance with an example of the disclosure;



FIG. 5 is a schematic diagram of a co-implanted subcutaneous or substernum implantable cardioverter-defibrillator (S-ICD) and LCP, in accordance with an example of the disclosure; and



FIGS. 6A-6G are timing diagrams showing illustrative operations of an LCP under various operating conditions.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.


The following description should be read with reference to the drawings in which similar structures in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.



FIG. 1 depicts an illustrative cardiac pacemaker (e.g., a leadless cardiac pacemaker (LCP) 100) that may be implanted into a patient and may operate to deliver appropriate therapy to the heart, such as to deliver demand pacing therapy (e.g. for bradycardia), anti-tachycardia pacing (ATP) therapy, post-shock pacing therapy, cardiac resynchronization therapy (CRT) and/or the like. While a Leadless Cardiac Pacemaker (LCP) is used as an example implantable cardiac pacemaker, it should be recognized that the disclosure may be applied to any suitable implantable medical device as desired.


As can be seen in FIG. 1, the LCP 100 may be a compact device with a control module or electronics including all of its components housed within or directly on a housing 120. In some cases, the LCP 100 may be considered as being an example of an implantable medical device (IMD). In the example shown in FIG. 1, the control module or electronics of the LCP 100 may include a communication module 102, a pulse generator module 104, an electrical sensing module 106, a mechanical sensing module 108, a processing module 110, a battery 112, and an electrode arrangement 114. The control module or electronics of the LCP 100 may include more or less modules, depending on the application.


The electrical sensing module 106 may be configured to sense one or more physiological parameters of a patient. In some examples, the physiological parameters may include the cardiac electrical activity of the heart. For example, the electrical sensing module 106 may be connected to sensors 118 and the electrical sensing module 106 may be configured to sense the physiological parameters of the patient via the sensors 118. In some examples, the electrical sensing module 106 may be connected to electrodes 114/114′, and the electrical sensing module 106 may be configured to sense one or more of the physiological parameters of the patient, including cardiac electrical signals, via the electrodes 114/114′. In this case, the electrodes 114/114′ are the sensors.


According to various embodiments, the physiological parameters may be indicative of the state of the patient and/or the state of the heart of the patient. For example, in some cases, the physiological parameters may include temperature (e.g., blood temperature, body tissue temperature, etc.), respiration activity, cardiac electrical signals, etc. In addition, in some examples, the cardiac electrical signals may represent local information from the chamber in which the LCP 100 is implanted. For instance, if the LCP 100 is implanted within a ventricle of the heart (e.g. RV, LV), cardiac electrical signals sensed by the LCP 100 through the electrodes 114/114′ and/or sensors 118 may represent ventricular cardiac electrical signals. In some cases, the LCP 100 may be configured to detect cardiac electrical signals from other chambers (e.g. far field), such as the P-wave from the atrium.


In some examples, the mechanical sensing module 108, when provided, may be configured to sense one or more physiological parameters of the patient. For example, in certain embodiments, the mechanical sensing module 108 may include one or more sensors, such as an accelerometer, a pressure sensor, a heart sound sensor, a blood-oxygen sensor, a chemical sensor, a temperature sensor, a flow sensor and/or any other suitable sensor that is configured to detect one or more mechanical/chemical physiological parameters of the patient (e.g., heart motion, heart sound, etc.). The mechanical sensing module 108 may receive and measure the physiological parameters. Both the electrical sensing module 106 and the mechanical sensing module 108 may be connected to a processing module 110, which may provide signals representative of the sensed parameters. Although described with respect to FIG. 1 as separate sensing modules, in some cases, the electrical sensing module 106 and the mechanical sensing module 108 may be combined into a single sensing module, as desired.


The electrodes 114/114′ can be secured relative to the housing 120 and may be exposed to the tissue and/or blood surrounding the LCP 100. In some cases, depending on the sensor type, the sensors 118 may be internal to the housing or exposed to the tissue and/or blood surrounding the LCP 100. In some cases, the electrodes 114 may be generally disposed on either end of the LCP 100. In some examples, the electrodes 114/114′ and sensors 118 may be in electrical communication with one or more of the modules 102, 104, 106, 108, and 110. The electrodes 114/114′ and/or sensors 118 may be supported by the housing 120. In some examples, the electrodes 114/114′ and/or sensors 118 may be connected to the housing 120 through short connecting wires such that the electrodes 114/114′ and/or sensors 118 are not directly secured relative to the housing 120 but rather located on a tail that is connected the housing. In examples where the LCP 100 includes one or more electrodes 114′, the electrodes 114′ may in some cases be disposed on the sides of the LCP 100, which may increase the number of electrodes by which the LCP 100 may sense physiological parameters, deliver electrical stimulation, and/or communicate with an external medical device. The electrodes 114/114′ and/or sensors 118 can be made up of one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, the electrodes 114/114′ and/or sensors 118 connected to the LCP 100 may have an insulative portion that electrically isolates the electrodes 114/114′ and/or sensors 118 from adjacent electrodes/sensors, the housing 120, and/or other parts of the LCP 100.


The processing module 110 may include electronics that is configured to control the operation of the LCP 100. For example, the processing module 110 may be configured to receive electrical signals from the electrical sensing module 106 and/or the mechanical sensing module 108. Based on the received signals, the processing module 110 may determine, for example, a heart rate of the patient, abnormalities in the operation of the heart, etc. Based on the determined conditions, the processing module 110 may control the pulse generator module 104 to generate and deliver pacing pulses in accordance with one or more therapies to treat the determined conditions. The processing module 110 may further receive information from the communication module 102. In some examples, the processing module 110 may use such received information to help determine the current conditions of the patient, determine whether an abnormality is occurring given the current condition, and/or to take a particular action in response to the information. The processing module 110 may additionally control the communication module 102 to send/receive information to/from other devices.


In some examples, the processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip and/or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of the LCP 100. In some cases, the pre-programmed chip may implement a state machine that performs the desired functions. By using a pre-programmed chip, the processing module 110 may use less power than other programmable circuits (e.g. general purpose programmable microprocessors) while still being able to maintain basic functionality, thereby potentially increasing the battery life of the LCP 100. In other examples, the processing module 110 may include a programmable microprocessor. Such a programmable microprocessor may allow a user to modify the control logic of the LCP 100 even after implantation, thereby allowing for greater flexibility of the LCP 100 than when using a pre-programmed ASIC. In some examples, the processing module 110 may further include a memory, and the processing module 110 may store information on and read information from the memory. In other examples, the LCP 100 may include a separate memory (not shown) that is in communication with the processing module 110, such that the processing module 110 may read and write information to and from the separate memory.


The battery 112 may provide power to the LCP 100 for its operations. In some instances, the battery 112 may a rechargeable battery, which may help increase the useable lifespan of the LCP 100. In still other examples, the battery 112 may be some other type of power source, such as a fuel cell or the like, as desired.


In the example shown in FIG. 1, the pulse generator module 104 may be electrically connected to the electrodes 114/114′. In some cases, the sensors 118 may also have electrical stimulation functionality and may be electrically connected to the pulse generator module 104 when desired. Said another way, one or more of the electrodes 114/114′ may function as a sensor 118 electrode, such as for sensing cardiac electrical signals. In some cases, the LCP 100 may have a controllable switch that connects one or more of the electrodes 114/114′ to the pulse generator module 104 when the pulse generator module 104 delivers a pacing pulse, and may connect one or more of the electrodes 114/114′ to the electrical sensing module 106 when the pulse generator module 104 is not delivering a pacing pulse.


The pulse generator module 104 may be configured to generate electrical stimulation signals. For example, the pulse generator module 104 may generate and deliver electrical pacing pulses by using energy stored in the battery 112 within the LCP 100 and deliver the generated pacing pulses via the electrodes 114, 114′ and/or sensors 118. Alternatively, or additionally, the pulse generator 104 may include one or more capacitors, and the pulse generator 104 may charge the one or more capacitors by drawing energy from the battery 112. The pulse generator 104 may then use the energy of the one or more capacitors to deliver the generated pacing pulses via the electrodes 114, 114′, and/or sensors 118. In at least some examples, the pulse generator 104 of the LCP 100 may include switching circuitry to selectively connect one or more of the electrodes 114, 114′ and/or sensors 118 to the pulse generator 104 in order to select which of the electrodes 114/114′ and/or sensors 118 (and/or other electrodes) the pulse generator 104 uses to deliver the electrical stimulation therapy. The pulse generator module 104 may be configured to deliver pacing pulses at two or more different energy levels. This may be accomplished by controlling the amplitude, pulse width, pulse shape and/or any other suitable characteristic of the pacing pulses.


According to various embodiments, the sensors 118 may be configured to sense one or more physiological parameters of a patient and send a signal to the electrical sensing module 106 and/or the mechanical sensing module 108. For example, the physiological parameters may include a cardiac electrical signal and the sensors 118 may send a response signal to the electrical sensing module 106. In some examples, one or more of the sensors 118 may be an accelerometer and the physiological parameters may alternatively or additionally include heart motion and/or heart sounds and the sensors 118 may send a corresponding signal to the mechanical sensing module 108. Based on the sensed signals, the sensing modules 106 and/or 108 may determine or measure one or more physiological parameters, such as heart rate, respiration rate, activity level of the patient and/or any other suitable physiological parameters. The one or more physiological parameters may then be passed to the processing module 110.


In some cases, the intrinsic heart rate of the patient may reach and/or fall below a demand heart rate threshold and into a “Normal Demand Zone”. In this case, the processing module 110 may perform demand pacing by instructing the pulse generator module 104 to deliver pacing pulses at a set energy level using the electrodes 114/114′ in a manner that attempts to keep the heart rate of the patient from falling below the demand heart rate threshold. The demand heart rate threshold may be a fixed heart rate such as a lower rate limit, or may be a dynamic heart rate that is dependent on the activity level of the patient. In order to help conserve battery power, the pacing pulses may be delivered at a capture pacing energy level, which is above the capture threshold of the heart but less than the maximum allowed pacing energy level.


In some cases, the intrinsic heart rate may rise to and/or above a normal heart rate upper threshold and into an “ATP Zone”. In this case, the intrinsic heart rate observed may be a fast but regular rhythm, such as that observed during ventricular tachycardia. Similar to the demand heart rate threshold, the normal heart rate upper threshold may be a fixed rate or a dynamic heart rate that is dependent on the activity level of the patient. In response to the intrinsic heart rate reaching and/or exceeding the normal heart rate upper threshold, the processing module 110 may be configured to automatically perform anti-tachyarrhythmia-pacing (ATP) therapy by instructing the pulse generator module 104 to deliver ATP pulses at the capture pacing energy level (or an enhanced level if desired). Note, in this case, the LCP 100 may autonomously initiate ATP therapy based on the detected heart rate without having to first receive a command from another medical device notifying the LCP to deliver ATP pulses.


If the intrinsic heart rate rises to and/or above an upper heart rate threshold and into a “Post Shock Zone”, the processing module 110 may instruct the pulse generator module 104 to temporarily set the energy level of pacing pulses, if delivered, to an enhanced energy level above the capture pacing energy level for a period of time. After the period of time expires, the energy level of pacing pulses may be returned to the capture energy level. During the period of time, it is contemplated that the pacing pulses, if delivered, may be demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy by the processing module 110 at any given time.


The upper heart rate threshold may be a threshold that may be fixed or programmable. The upper heart rate threshold may be set at a rate that is above a safe heart rate of the patient, such that if the patient's heart rate rises above the upper heart rate threshold, the patient may be experiencing tachycardia and even cardiac fibrillation. Anticipating that a shock may be delivered to the heart via another medical device (e.g. an Implantable Cardioverter Defibrillator), the processing module 110 may instruct the pulse generator module 104 to temporarily set the energy level of pacing pulses, if delivered, to an enhanced energy level above the capture pacing energy level for a period of time. The period of time may be 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, 1 day, or any other suitable time period. While this may consume extra power during this period of time by delivering some pacing pulses at the enhanced energy level, the pulses will be more appropriate for post-shock pacing should a shock be delivered to the heart by another medical device. Note, this allows the LCP 100 to autonomously set the pacing pulses to an enhanced energy level for post shock-pacing without having to first detect a high energy shock pulse or receive a communication from another medical device notifying the LCP that a shock will be delivered. Whether a shock pulse is actually delivered or not, the processing module 110 may instruct the pulse generator module 104 to temporarily set the energy level of pacing pulses, if delivered, to an enhanced energy level until the end of the time period, and then return the energy level back to the capture energy level. In some cases, the period of time may be reset each time the measured heart rate is above the upper heart rate threshold. When so provided, the pulse generator module 104 keep the energy level at the enhanced energy level until the heart rate remains below the upper heart rate threshold for at least the period of time.


In some case, the processing module 110 may detect when the sensed heart rate falls at a rate that is above a threshold rate and/or falls below a floor heart rate. When the heart rate falls at a rate that is outside the bounds of normal physiology, or falls below a heart rate that is below what is necessary to sustain life, it may be assumed that the heart has been shocked by an ICD or the like. In response, the processing module may instruct the pulse generator module 104 to deliver pacing pulses (e.g. post shock pacing pulses) at the enhanced energy level until the end of the time period, and then return the energy level back to the capture energy level. This may be an alternative trigger for temporarily delivering pacing pulses at the enhanced energy level for a period of time.


In certain embodiments, the LCP 100 may include the communication module 102. In some cases, the communication module 102 may be configured to communicate with devices such as remote sensors, other medical devices such as an SICD, and/or the like, that are located externally to the LCP 100. Such devices may be located either external or internal to the patient's body. Irrespective of the location, external devices (i.e. external to the LCP 100 but not necessarily external to the patient's body) can communicate with the LCP 100 via communication module 102 to accomplish one or more desired functions. For example, the LCP 100 may communicate information, such as sensed electrical signals, data, instructions, messages, R-wave detection markers, etc., to an external medical device (e.g. SICD and/or programmer) through the communication module 102. The external medical device may use the communicated signals, data, instructions, messages, R-wave detection markers, etc., to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, and/or performing any other suitable function. The LCP 100 may additionally receive information such as signals, data, instructions and/or messages from the external medical device through the communication module 102, and the LCP 100 may use the received signals, data, instructions and/or messages to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, and/or performing any other suitable function. The communication module 102 may be configured to use one or more methods for communicating with external devices. For example, the communication module 102 may communicate via radiofrequency (RF) signals, inductive coupling, optical signals, acoustic signals, conducted communication signals, and/or any other signals suitable for communication.


To implant the LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.), may fix the LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, the LCP 100 may include one or more anchors 116. The anchor 116 may include any one of a number of fixation or anchoring mechanisms. For example, the anchor 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some examples, although not shown, the anchor 116 may include threads on its external surface that may run along at least a partial length of the anchor 116. The threads may provide friction between the cardiac tissue and the anchor to help fix the anchor 116 within the cardiac tissue. In other examples, the anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.



FIG. 2 is a side view of an illustrative implantable leadless cardiac pacemaker (LCP) 210. The LCP 210 may be similar in form and function to the LCP 100 described above. The LCP 210 may include the control module having any of the modules and/or structural features described above with respect to the LCP 100 described above. The LCP 210 may include a shell or housing 212 having a proximal end 214 and a distal end 216. The illustrative LCP 210 includes a first electrode 220 secured relative to the housing 212 and positioned adjacent to the distal end 216 of the housing 212 and a second electrode 222 secured relative to the housing 212 and positioned adjacent to the proximal end 214 of the housing 212. The electrodes 220, 222 may be sensing and/or pacing electrodes to provide electro-therapy and/or sensing capabilities. The first electrode 220 may be capable of being positioned against or may otherwise contact the cardiac tissue of the heart while the second electrode 222 may be spaced away from the first electrode 220. The first and/or second electrodes 220, 222 may be exposed to the environment outside the housing 212 (e.g. to blood and/or tissue).


In some cases, the LCP 210 may include a pulse generator (e.g., electrical circuitry) and an energy storage module (e.g., a battery, supercapacitor and/or other power source) within the housing 212 to provide electrical signals to the electrodes 220, 222 to control the pacing/sensing electrodes 220, 222. While not explicitly shown, the LCP 210 may also include, a communications module, an electrical sensing module, a mechanical sensing module, and/or a processing module, and the associated circuitry, similar in form and function to the modules 102, 106, 108, 110 described above. The various modules and electrical circuitry may be disposed within the housing 212. Electrical connections between the pulse generator and the electrodes 220, 222 may allow electrical stimulation to heart tissue and/or sense a physiological parameter.


In the example shown, the LCP 210 includes a fixation mechanism 224 proximate the distal end 216 of the housing 212. The fixation mechanism 224 is configured to attach the LCP 210 to a wall of the heart, or otherwise anchor the LCP 210 to the anatomy of the patient. In some instances, the fixation mechanism 224 may include one or more, or a plurality of hooks or tines 226 anchored into the cardiac tissue of the heart to attach the LCP 210 to a tissue wall. In other instances, the fixation mechanism 224 may include one or more, or a plurality of passive tines, configured to entangle with trabeculae within the chamber of the heart and/or a helical fixation anchor configured to be screwed into a tissue wall to anchor the LCP 210 to the heart. These are just examples.


The LCP 210 may further include a docking member 230 proximate the proximal end 214 of the housing 212. The docking member 230 may be configured to facilitate delivery and/or retrieval of the LCP 210. For example, the docking member 230 may extend from the proximal end 214 of the housing 212 along a longitudinal axis of the housing 212. The docking member 230 may include a head portion 232 and a neck portion 234 extending between the housing 212 and the head portion 232. The head portion 232 may be an enlarged portion relative to the neck portion 234. For example, the head portion 232 may have a radial dimension from the longitudinal axis of the LCP 210 that is greater than a radial dimension of the neck portion 234 from the longitudinal axis of the LCP 210. In some cases, the docking member 230 may further include a tether retention structure 236 extending from or recessed within the head portion 232. The tether retention structure 236 may define an opening 238 configured to receive a tether or other anchoring mechanism therethrough. While the retention structure 236 is shown as having a generally “U-shaped” configuration, the retention structure 236 may take any shape that provides an enclosed perimeter surrounding the opening 238 such that a tether may be securably and releasably passed (e.g. looped) through the opening 238. In some cases, the retention structure 236 may extend though the head portion 232, along the neck portion 234, and to or into the proximal end 214 of the housing 212. The docking member 230 may be configured to facilitate delivery of the LCP 210 to the intracardiac site and/or retrieval of the LCP 210 from the intracardiac site. While this describes one example docking member 230, it is contemplated that the docking member 230, when provided, can have any suitable configuration.


It is contemplated that the LCP 210 may include one or more pressure sensors 240 coupled to or formed within the housing 212 such that the pressure sensor(s) is exposed to the environment outside the housing 212 to measure blood pressure within the heart. For example, if the LCP 210 is placed in the left ventricle, the pressure sensor(s) 240 may measure the pressure within the left ventricle. If the LCP 210 is placed in another portion of the heart (such as one of the atriums or the right ventricle), the pressures sensor(s) may measure the pressure within that portion of the heart. The pressure sensor(s) 240 may include a MEMS device, such as a MEMS device with a pressure diaphragm and piezoresistors on the diaphragm, a piezoelectric sensor, a capacitor-Micro-machined Ultrasonic Transducer (cMUT), a condenser, a micro-monometer, or any other suitable sensor adapted for measuring cardiac pressure. The pressures sensor(s) 240 may be part of a mechanical sensing module described herein. It is contemplated that the pressure measurements obtained from the pressures sensor(s) 240 may be used to generate a pressure curve over cardiac cycles. The pressure readings may be taken in combination with impedance measurements (e.g. the impedance between electrodes 220 and 222) to generate a pressure-impedance loop for one or more cardiac cycles as will be described in more detail below. The impedance may be a surrogate for chamber volume, and thus the pressure-impedance loop may be representative for a pressure-volume loop for the heart.


In some embodiments, the LCP 210 may be configured to measure impedance between the electrodes 220, 222. More generally, the impedance may be measured between other electrode pairs, such as the additional electrodes 114′ described above. In some cases, the impedance may be measured between two spaced LCP's, such as two LCP's implanted within the same chamber (e.g. LV) of the heart, or two LCP's implanted in different chambers of the heart (e.g. RV and LV). The processing module of the LCP 210 and/or external support devices may derive a measure of cardiac volume from intracardiac impedance measurements made between the electrodes 220, 222 (or other electrodes). Primarily due to the difference in the resistivity of blood and the resistivity of the cardiac tissue of the heart, the impedance measurement may vary during a cardiac cycle as the volume of blood (and thus the volume of the chamber) surrounding the LCP changes. In some cases, the measure of cardiac volume may be a relative measure, rather than an actual measure. In some cases, the intracardiac impedance may be correlated to an actual measure of cardiac volume via a calibration process, sometimes performed during implantation of the LCP(s). During the calibration process, the actual cardiac volume may be determined using fluoroscopy or the like, and the measured impedance may be correlated to the actual cardiac volume.


In some cases, the LCP 210 may be provided with energy delivery circuitry operatively coupled to the first electrode 220 and the second electrode 222 for causing a current to flow between the first electrode 220 and the second electrode 222 in order to determine the impedance between the two electrodes 220, 222 (or other electrode pair). It is contemplated that the energy delivery circuitry may also be configured to deliver pacing pulses via the first and/or second electrodes 220, 222. The LCP 210 may further include detection circuitry operatively coupled to the first electrode 220 and the second electrode 222 for detecting an electrical signal received between the first electrode 220 and the second electrode 222. In some instances, the detection circuitry may be configured to detect cardiac signals received between the first electrode 220 and the second electrode 222.


When the energy delivery circuitry delivers a current between the first electrode 220 and the second electrode 222, the detection circuitry may measure a resulting voltage between the first electrode 220 and the second electrode 222 (or between a third and fourth electrode separate from the first electrode 220 and the second electrode 222, not shown) to determine the impedance. When the energy delivery circuitry delivers a voltage between the first electrode 220 and the second electrode 222, the detection circuitry may measure a resulting current between the first electrode 220 and the second electrode 222 (or between a third and fourth electrode separate from the first electrode 220 and the second electrode 222) to determine the impedance.


From these and other measurements, heart rate, respiration, stroke volume, contractility, and other physiological parameters can be derived.



FIG. 3 shows an illustrative LCP 300 implanted in a heart 306. In FIG. 3, the LCP 300 is shown fixed to the interior of the left ventricle (LV) of the heart 306. In some cases, the LCP 300 may be in the right ventricle, right atrium, left ventricle or left atrium of the heart, as desired. In some cases, more than one LCP 300 may be implanted. For example, one LCP 300 may be implanted in the right ventricle and another may be implanted in the right atrium. In another example, one LCP 300 may be implanted in the right ventricle and another may be implanted in the left ventricle. In yet another example, one LCP 300 may be implanted in each of the chambers of the heart.


According to various embodiments, the LCP 300 may include a housing 302 having electrodes 304 for sensing electrical signals emanating from outside of the housing 302. The electrodes 304 may be configured to provide sensed cardiac signals to a control module disposed with the housing 302. The control module may then determine a heart rate of the heart 306 based on the cardiac signals and instruct a pulse generator to deliver pacing pulses to the heart 306 via the electrodes 304.


According to various embodiments, the control module may cause the LCP 300 to deliver demand pacing. In demand pacing, the LCP 300 may monitor the heart rate and send an electrical pacing pulse or electrical pacing pulses to the heart 306 if the intrinsic heart rate is too slow and/or if beats are being missed. Said another way, the LCP 300 may pace the heart at a lower heart rate threshold when the intrinsic heart rate falls below the lower heart rate threshold, and missed intrinsic beats may be paced. In one example, in demand pacing, when the control module receives cardiac signals from the electrodes 304, the control module may analyze the cardiac signals and determine a measure of heart rate. In some cases, the determined measure of the heart rate may be an average heart rate of more than one or a set of previously recorded heart beats. In certain embodiments, the control module may then compare the measure of the heart rate to the lower heart rate threshold (e.g. a fixed heart rate threshold or a demand heart rate threshold). In some cases, the control module may be programmed to keep the measure of the heart rate from falling below the lower heart rate threshold. As a result, if the intrinsic heart rate falls below the lower heart rate threshold, such as 60 bpm, the control module instructs the pulse generator to deliver electrical pacing pulses at the lower heart rate threshold and at a first energy level using the electrodes 304. The lower heart rate threshold may be any suitable heart rate, such as 70 bpm, 60 bpm, 50 bpm, 45 bpm, 40 bpm, etc. It is contemplated that the lower heart rate threshold may be a fixed heart rate such as a lower rate limit, or may be a dynamic heart rate that is dependent on the activity level of the patient.


In various embodiments, the desired energy level of the pacing pulses may dictate the amplitude and/or the pulse width of the electrical pacing pulses that are delivered to the heart. In certain embodiments, the first energy level may deliver pacing pulses each having an electrical pulse width of 1 ms and an amplitude of 5.0 V. In some embodiments, the first energy level may deliver pacing pulses each having an electrical pulse width of 0.5 ms and an amplitude of 4.0 V. In further embodiments, the first energy level may deliver pacing pulses each having an electrical pulse width of 0.25 ms and an amplitude of 3.0 V amplitude. These are just examples and other amplitudes and pulse widths may be designated for the first energy level at which the demand pacemaker delivers electrical pulses. In some instances, the first energy level may be set based on the results of a capture threshold test. For example, the first energy level may be set at the capture threshold plus a capture threshold margin. In some instances, changing the energy level may only change the amplitude and keep the pulse width the same, or change the pulse width and keep the amplitude the same, or change both the amplitude and pulse width.


In some cases, while the pulse generator delivers pacing pulses at the first energy level, the control module may continue to use the electrodes 304 to sense the cardiac signals and determine and monitor the heart rate. In some cases, the control module may continue to instruct the pulse generator to deliver the electrical pacing pulses until the intrinsic rate is above the lower heart rate threshold.


In various embodiments, the control module may cause the LCP 300 to deliver ATP therapy pulses. In ATP therapy, the LCP 300 may monitor the heart rate and send an electrical pacing pulse or electrical pacing pulses to the heart 306 if the intrinsic heart rate is above a normal heart rate. In one example, in ATP therapy, when the control module receives cardiac signals from the electrodes 304, the control module may analyze the cardiac signals and determine a measure of heart rate. In some cases, the determined measure of the heart rate may be an average heart rate of more than one or a set of previously recorded heart beats. In certain embodiments, the control module may then compare the measure of the heart rate to the higher heart rate threshold (e.g. a fixed heart rate threshold or a normal heart rate threshold). In some cases, the control module may be programmed to attempt to keep the measure of the heart rate from rising above the higher heart rate threshold by delivering ATP therapy if appropriate. As a result, if the intrinsic heart rate rises above the higher heart rate threshold, such as 140 bpm, the control module may instruct the pulse generator to deliver ATP therapy pulses at the first energy level using the electrodes 304. The higher heart rate threshold may be any suitable heart rate, such as 155 bpm, 150 bpm, 145 bpm, 135 bpm, etc. It is contemplated that the higher heart rate threshold may be a fixed heart rate such as a higher rate limit, or may be a dynamic heart rate that is dependent on the activity level of the patient.


In some cases, while the pulse generator delivers ATP pulses at the first energy level, the control module may continue to use the electrodes 304 to sense the cardiac signals and determine and monitor the heart rate. In some cases, the control module may continue to instruct the pulse generator to deliver the ATP pulses until the intrinsic rate falls below the higher heart rate threshold or until a predetermined period has passed.


While monitoring the measure of the heart rate, the control module may detect when the heart rate rises above an upper heart rate threshold. If the heart rate is below the upper heart rate threshold, the pacing pulses may be delivered at the first energy level as discussed above. However, if the heart rate rises above the upper heart rate threshold, the control module may cause pacing pulses to be temporarily delivered at an enhanced energy level above the first energy level for a period of time, and after the period of time, the pacing pulses may again be delivered at the first energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.


The upper heart rate threshold may be a threshold that may be fixed or programmable. The upper heart rate threshold may be set at a rate that is above a safe heart rate of the patient, such that if the patient's heart rate rises above the upper heart rate threshold, the patient may be experienced tachycardia and even cardiac fibrillation. Anticipating that a shock may be delivered to the heart via another medical device (e.g. an Implantable Cardioverter Defibrillator), the control module of the LCP 300 may instruct a pulse generator module of the LCP 300 to temporarily deliver pacing pulses at the enhanced energy level above the first energy level for a period of time. The period of time may be 30 seconds, 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 1 hour, 1 day, or any other suitable time period. While this may consume extra power during this period of time by delivering pacing pulses at the enhanced energy level rather than the lower first energy level, the pacing pulses will be delivering pacing pulses that are more appropriate for post-shock pacing pulses should a shock be delivered to the heart by another medical device. Note, this allows the LCP 300 to autonomously set the pacing pulses to an enhanced energy level for post shock-pacing without having to have circuitry to detect a high energy shock pulse or receive a communication from another medical device notifying the LCP 300 that a shock will be delivered. Whether a shock pulse is actually delivered or not, the control module may instruct the pulse generator module to temporarily deliver pacing pulses at the enhanced energy level until the end of the time period, and then return to delivering pacing pulses at the first energy level. In some cases, the period of time may be reset each time the measured heart rate is above the upper heart rate threshold. When so provided, the control module of the LCP 300 may deliver pacing pulses at the enhanced energy level until the heart rate remains below the upper heart rate threshold for the period of time. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what the control module deems appropriate therapy at any given time.


In some case, the control module may detect when the sensed heart rate falls at a rate that is above a threshold and/or falls below a floor heart rate. When the heart rate falls at a rate that is outside the bounds of normal physiology, or falls below a heart rate that is below what is necessary to sustain life, the control module may assume that the heart has just been shocked by an ICD. In response, the control module may instruct the pulse generator module of the LCP 300 to temporarily deliver pacing pulses at the enhanced energy level until the end of a time period, and then return to delivering pacing pulses at the first energy level. This may be an alternative trigger for temporarily delivering pacing pulses at the enhanced energy level for a period of time.


In certain embodiments, the enhanced energy level may have an electrical pulse width of 1.5 ms and a 5.0 V amplitude. In some embodiments, the enhanced energy level may have an electrical pulse width of 1.5 ms and a 7.0 V amplitude. In some embodiments, the enhance energy level may have an electrical pulse width of 2 ms and an 8.0 V amplitude. In further embodiments, the enhanced energy level may have an electrical pulse width of 2.5 ms and an 8.5 V amplitude. These are just examples and other amplitudes and pulse widths may be designated for the enhanced energy level. In some cases, the enhanced energy level may have an amplitude that is a maximum voltage, and the pulse width is the same or larger than that used for the first energy level. In some cases, when changing between the first energy level and the enhanced energy level, the control module may only change the pulse amplitude of the electrical pacing pulses and leave the pulse widths the same, only change the pulse widths and leave the pulse amplitudes the same, or both change pulse amplitude and pulse width.



FIG. 4 is a schematic diagram of a co-implanted transvenous implantable cardioverter-defibrillator (T-ICD) 400 and LCP 402, in accordance with an example of the disclosure. In FIG. 4, the ICD 400 may include a pulse generator 403 coupled to a lead 406 having one or more electrodes 404. In some cases, the electrodes 404 may be positioned in the heart 410. The location of the pulse generator 403, the lead 406, and electrodes 404 are just exemplary. In some cases, the pulse generator 403, the lead 406 and/or electrodes 404 may be disposed in different chambers of the heart 410, or the pulse generator 403 may include additional leads and/or electrodes that are disposed within or adjacent to heart 410. According to various embodiments, the ICD 400 may be configured to deliver a shock to the heart 410.


The LCP 402 may operate similar to the LCPs 100, 210 and 300 discussed above. The LCP 402 may be configured to deliver demand pacing. In demand pacing, the LCP 402 may monitor the heart rate and send an electrical pacing pulse or electrical pacing pulses to the heart 410 if the intrinsic heart rate is too slow and/or if beats are being missed. Said another way, the LCP 402 may pace the heart at a lower heart rate threshold when the intrinsic heart rate falls below the lower heart rate threshold, and missed intrinsic beats may be paced. In one example, in demand pacing, when the LCP 402 receives cardiac signals from its electrodes, the LCP 402 may analyze the cardiac signals and determine a measure of heart rate. In some cases, the determined measure of the heart rate may be an average heart rate of more than one or a set of previously recorded heart beats. In certain embodiments, the LCP 402 may then compare the measure of the heart rate to the lower heart rate threshold (e.g. a fixed heart rate threshold or a demand heart rate threshold). In some cases, the LCP 402 may be programmed to keep the measure of the heart rate from falling below the lower heart rate threshold. As a result, if the intrinsic heart rate falls below the lower heart rate threshold, such as 60 bpm, the LCP 402 delivers electrical pacing pulses at the lower heart rate threshold and at a first energy level.


While monitoring the measure of the heart rate, the control module may detect when the heart rate rises above a higher heart rate threshold. If the heart rate rises above the higher heart rate threshold, the LCP 402 may be configured to deliver ATP therapy. In ATP therapy, the LCP 402 may monitor the heart rate and send an electrical pacing pulse or electrical pacing pulses to the heart 410 if the intrinsic heart rate is too high. In one example, in ATP therapy, when the LCP 402 receives cardiac signals from its electrodes, the LCP 402 may analyze the cardiac signals and determine a measure of heart rate. In some cases, the determined measure of the heart rate may be an average heart rate of more than one or a set of previously recorded heart beats. In certain embodiments, the LCP 402 may then compare the measure of the heart rate to the higher heart rate threshold (e.g. a fixed heart rate threshold or a demand heart rate threshold). In some cases, the LCP 402 may attempt to keep the measure of the heart rate from rising above the higher heart rate threshold by applying ATP therapy if appropriate. As a result, if the intrinsic heart rate rises above the higher heart rate threshold, such as 140 bpm, the LCP 402 may delivers ATP therapy at the first energy level.


While monitoring the measure of the heart rate, the control module may detect when the heart rate rises above an upper heart rate threshold. If the heart rate is below the upper heart rate threshold, the pacing pulses may be delivered at the first energy level as discussed above. However, if the heart rate rises above the upper heart rate threshold, the LCP 402 may cause pacing pulses to be temporarily delivered at an enhanced energy level above the first energy level for a period of time, and after the period of time, the pacing pulses may again be delivered at the first energy level. During the period of time, it is contemplated that the pacing pulses delivered at the enhanced energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what is deemed appropriate therapy at any given time.


The upper heart rate threshold may be a threshold that may be fixed or programmable. The upper heart rate threshold may be set at a rate that is above a safe heart rate of the patient, such that if the patient's heart rate rises above the upper heart rate threshold, the patient may be experiencing tachycardia and even cardiac fibrillation. Anticipating that a shock may be delivered to the heart via the ICD 400, the LCP 402 may temporarily deliver pacing pulses at the enhanced energy level above the first energy level for a period of time. While this may consume extra power during this period of time by delivering pacing pulses at the enhanced energy level rather than the lower first energy level, the pacing pulses will be delivering pacing pulses that are more appropriate for post-shock pacing pulses should a shock be delivered to the heart 410 by the ICD 400. Note, this allows the LCP 402 to autonomously set the pacing pulses to an enhanced energy level for post shock-pacing without having to have circuitry to detect a high energy shock pulse or receive a communication from ICD 400 notifying the LCP 402 that a shock will be delivered. Whether a shock pulse is actually delivered or not by the ICD 400 during the time period, the LCP 402 may temporarily deliver pacing pulses at the enhanced energy level until the end of the time period, and then return to delivering pacing pulses at the first energy level. In some cases, the period of time may be reset each time the measured heart rate is above the upper heart rate threshold. When so provided, the LCP 402 may deliver pacing pulses at the enhanced energy level until the heart rate remains below the upper heart rate threshold for the period of time. During the period of time, it is contemplated that the pacing pulses delivered at the enhance energy level may comprise demand-pacing pacing pulses, post-shock pacing pulses, and/or anti-tachyarrhythmia-pacing (ATP) pulses, depending on what the control module deems appropriate therapy at any given time.


In some case, the LCP 402 may detect when the sensed heart rate falls at a rate that is above a threshold and/or falls below a floor heart rate. When the heart rate falls at a rate that is outside the bounds of normal physiology, or falls below a heart rate that is below what is necessary to sustain life, the LCP 402 may assume that the heart has just been shocked by the ICD 400. In response, the LCP 402 may temporarily deliver pacing pulses at the enhanced energy level until the end of a time period, and then return to delivering pacing pulses at the first energy level. This may be an alternative trigger for temporarily delivering pacing pulses at the enhanced energy level for a period of time.


In some cases, the ICD 400 may monitor the heart 410 and determine if the heart 410 is experiencing cardiac fibrillation or other condition that necessitates delivery of a high energy shock therapy. This may include the detection of rapid, irregular, and/or inefficient heart contractions. In some cases, before delivering the shock therapy, the ICD 400 may communicate an ATP command to the LCP 402 to deliver anti-tachyarrhythmia-pacing (ATP) pulses to the heart 410. In some cases, anti-tachyarrhythmia-pacing (ATP) pulses may cause the heart 410 to return to a normal rhythm without delivering a high energy shock. The LCP 402 may receive the ATP command and deliver the requested ATP pulses. In some cases, the energy level of the ATP pulses may be at an enhanced energy level. In some cases, the LCP 402 may have already detected a high heart rate and already adjusted the energy level of the delivered pulses (for a period of time) to the enhanced energy level. In other cases, the LCP 402 may adjust the energy level of the delivered pulses in response to receiving the ATP command from the ICD 400.



FIG. 5 is a schematic diagram of a co-implanted subcutaneous or substernum implantable cardioverter-defibrillator (S-ICD) 500 and LCP 502, in accordance with an example of the disclosure. In FIG. 5, the LCP 502 is shown fixed to the interior of the left ventricle of the heart 510. A subcutaneous or substernum implantable cardioverter-defibrillator (S-ICD) 500 is shown implanted near the heart. The illustrative subcutaneous or substernum implantable cardioverter-defibrillator (S-ICD) 500 includes a pulse generator 506 that may be implanted subcutaneous, and a lead 512 with one or more electrodes 508a-508c that extends subcutaneous or substernum (e.g. just interior of the sternum) adjacent but outside of the heart 510. The pulse generator 506 is configured to deliver a shock to the heart via one or more of the electrodes 508a-508c. The LCP 502 may operate in a similar manner to that described above with respect to FIG. 4, but with the subcutaneous or substernum implantable cardioverter-defibrillator (S-ICD) 500 configured to deliver the shock therapy rather than the transvenous ICD 400.



FIGS. 6A-6F are timing diagrams showing illustrative operations of an LCP under various operating conditions. As shown in FIGS. 6A-6F, traces for an intrinsic heart rate 602, a demand heart rate threshold 604, an ATP threshold 624, an upper limit threshold 606, a life sustaining threshold 608, an active energy level 610, and a pacing therapy 612. According to various embodiments, an LCP may monitor the intrinsic heart rate 602, and may deliver electrical pacing pulses to the heart when the intrinsic heart rate 602 is too low, when there is a sudden drop in the heart rate, and/or when intrinsic heart beats are being skipped or missed.


Turning specifically to FIG. 6A, the intrinsic heart rate 602 is initially above the demand heart rate threshold 604 and below the upper limit threshold 606. In some cases, the intrinsic heart rate 602 may be an average heart rate of more than one or a set of previously recorded heart beats. The demand heart rate threshold 604 that may vary according to fluctuations in hemodynamic demand, as detected by changes in patient activity, respiration, blood temperature, body tissue temperature, etc. Although not shown in FIGS. 6A-6f, it is contemplated that the demand heart rate threshold 604 may be a fixed heart rate threshold (e.g., 70 bpm, 60 bpm, 50 bpm, 40 bpm, etc.).


The upper limit threshold 606 may be a threshold that may be variable (e.g. depend on fluctuations in hemodynamic demand), fixed and/or programmable. In FIG. 6A, the upper limit threshold 606 is a fixed heart rate threshold. In various embodiments, the upper limit threshold 606 may be set at a rate that is above a safe heart rate for the patient, such that if the patient's heart rate rises above the upper limit threshold 606, the patient may be experiencing tachycardia and even cardiac fibrillation. Initially, the intrinsic heart rate 602 is below the upper limit threshold 606, and because the intrinsic heart rate 602 is not falling at a rate that is above a maximum decrease threshold, the active energy level 610 at which the LCP would delivers pacing pulses may be set at a first energy level.


As shown in FIG. 6A, at point A, the intrinsic heart rate 602 has fallen below the demand heart rate threshold 604. In some cases, the LCP may pace the heart when the intrinsic heart rate falls below the demand heart rate threshold 604. As shown in FIG. 6A, pacing therapy 612 is delivered at the first energy level until point B, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. This is an example of demand pacing, which helps ensure that the heart rate of a patient does not fall below a lower heart rate threshold such as the demand heart rate threshold 604. When performing demand pacing, the LCP may pace the heart at the lower heart rate threshold (e.g. demand heart rate threshold 604) when the intrinsic heart rate falls below the lower heart rate threshold (e.g. demand heart rate threshold 604).


After point B, the active energy level 610 is still set at the first energy level as the intrinsic heart rate 602 continues to rise. At point C, the intrinsic heart rate 602 has reached the upper limit threshold 606, at which point the LCP increases the active energy level 610 to an enhanced energy level. When demand pacing, and as shown in FIG. 6A, the LCP may not deliver pacing therapy 612 to the heart at the enhanced energy level while the intrinsic heart rate 602 remains above the demand heart rate threshold 604. In certain embodiments, the active energy level 610 may be increased to the enhanced energy level for a period time. In FIG. 6A, the period of time has been set for 10 minutes. During the 10 minute time period, it is contemplated that pacing therapy 612 will be delivered with pacing pulses having the enhanced energy level. The pacing therapy 612 may be demand-pacing pacing pulses, post-shock pacing pulses, anti-tachyarrhythmia-pacing (ATP) pulses and/or any other suitable pacing therapy depending on what is deemed appropriate pacing therapy at any given time. As shown in FIG. 6A, the intrinsic heart rate 602 falls back under the upper limit threshold 606 before the 10 minute time period has expired. The LCP then decreases the active energy level 610 back to the first energy level at point D, when the 10 minute time period has expired.


Turning now to FIG. 6B, the intrinsic heart rate 602 is initially below the upper limit threshold 606 and the intrinsic heart rate 602 is not falling at a rate that is above a maximum decrease threshold. As a result, the LCP may set the active energy level 610 at which the LCP would deliver pacing pulses to the first energy level. The intrinsic heart rate 602 then rises and reaches the upper limit threshold 606 at point A. In response, the LCP may set the active energy level 610 to the enhanced energy level for a time period such as 10 minutes. At point B, the intrinsic heart rate 602 falls back under the upper limit threshold 606 before the 10 minutes has expired, but the active energy level 610 may remain at the enhanced energy level. At point C, the intrinsic heart rate 602 once again rises above the upper limit threshold 606. In some cases, as depicted in FIG. 6B, if the intrinsic heart rate 602 rises above the upper limit threshold 606 before the 10 minute time period has expired from the previous time (point A) that the intrinsic heart rate 602 went above the upper limit threshold 606, the time period may be reset back to zero such that the active energy level 610 may remain at the enhanced energy level until 10 minutes after point C. At point D, the intrinsic heart rate 602 falls back under the upper limit threshold 606 before the reset 10 minute timer has expired, and the active energy level 610 may remain at the enhanced energy level. At point E, the intrinsic heart rate 602 again rises above the upper limit threshold 606 for a third time, and the 10 minute time period is once again reset. At point F, the intrinsic heart rate 602 falls back under the upper limit threshold 606 before the 10 minutes has expired. The active energy level 610 remains at the enhanced energy level until point G, when the 10 minute time period finally expires. In this example, the active energy level 610 remains at the enhanced energy level for 10 minutes following the last time the intrinsic heart rate 602 rises in a positive direction above the upper limit threshold 606.


At point H, the intrinsic heart rate 602 again rises to the upper limit threshold 606 and the active energy level 610 may be again increased from the first energy level to the enhanced energy level for a 10 minute time period, which might be extended as described above. At point I, the intrinsic heart rate 602 has started falling at a rate that is above the maximum decrease threshold. This may indicate that an ICD may have delivered a shock to the patient's heart. As a result, the LCP may be configured to deliver post shock pacing therapy 614 at the enhanced energy level. As shown in FIG. 6B, the post shock pacing therapy 614 may be delivered until point J, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. In some cases, the post shock pacing therapy 614 may be delivered for a predetermined period of time or until the intrinsic heart rate 602 has stabilized. Even though the post shock pacing therapy 614 is no longer being delivered after point J, in this example, the active energy level 610 may not decrease back to the first energy level until point K, when the 10 minute window has expired.


Turning now to FIG. 6C, the initial intrinsic heart rate 602 is below the upper limit threshold 606 and the intrinsic heart rate 602 is not falling at a rate that is above the maximum decrease threshold. As a result, the active energy level 610 may be set at a first energy level at which the LCP delivers pacing pulses. At point A, the intrinsic heart rate 602 has started falling at a rate that is above the maximum decrease threshold. In response, in this example, the active energy level 610 may instantaneously be increased to the enhanced energy level and a post shock pacing therapy 614 may be delivered using pulses at the enhanced energy level. As shown in FIG. 6C, the post shock pacing therapy 614 may be delivered until point B, where the intrinsic heart rate 602 has stabilized (or after a predetermined period of time). In this example, because the intrinsic heart rate 602 did not rise above the upper limit threshold 606 before it started falling at a rate above the maximum decrease threshold, the active energy level 610 may be decreased back to the first energy level once the intrinsic heart rate 602 has stabilized (or after a predetermined period of time). However, it is contemplated that the active energy level 610 may remain at the enhanced energy level for a period of time.


At point C, the intrinsic heart rate 602 once again begins falling at a rate that is above the maximum decrease threshold and continues to fall below the demand heart rate threshold 604 and the life sustaining threshold 608. In this case, the active energy level 610 may once again be instantaneously increased to the enhanced energy level and post shock pacing therapy 614 may be delivered until point D, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. In some cases, the post shock pacing therapy 614 may be delivered for a predetermined period of time or until the intrinsic heart rate 602 has stabilized. Once again, in this example, because the intrinsic heart rate 602 did not rise above the upper limit threshold 606 before it started falling at a rate above the maximum decrease threshold, the active energy level 610 may be decreased back to the first energy level once the intrinsic heart rate 602 has stabilized (or after a predetermined period of time). However, it is contemplated that the active energy level 610 may remain at the enhanced energy level for a period of time.


At point E, the intrinsic heart rate 602 has fallen below the demand heart rate threshold 604. In this example, demand pacing therapy 612 is delivered at the first energy level until point F, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. After point F, the active energy level 610 is still set at the first energy level as the intrinsic heart rate 602 continues to rise.


Turning now to FIG. 6D, the initial intrinsic heart rate 602 is below the upper limit threshold 606 and the intrinsic heart rate 602 is not falling at a rate that is above the maximum decrease threshold. As a result, the active energy level 610 may be set at a first energy level at which the LCP delivers pacing pulses. As shown in FIG. 6D, the intrinsic heart rate 602 rises to the upper limit threshold 606 at point A. In response, and in this example, the active energy level 610 may be increased to the enhanced energy level for a 10 minute time period. At point B, the 10 minute time period has expired and the intrinsic heart rate 602 remains above the upper limit threshold 606. In this example, the active energy level 610 may decrease back to the first energy level even though the intrinsic heart rate 602 has not yet fallen below the upper limit threshold 606. At point C, the intrinsic heart rate 602 falls below the upper limit threshold 606. At point D, the intrinsic heart rate 602 once again rises to the upper limit threshold 606 and the active energy level 610 may once again be increased to the enhanced energy level for the 10 minute time period. At point E, the intrinsic heart rate 602 starts falling at a rate that is above the maximum decrease threshold. This may indicate that an ICD may have delivered a shock to the patient's heart. As a result, the post shock pacing therapy 614 may be delivered at the enhanced energy level. As shown in FIG. 6D, the post shock pacing therapy 614 may be delivered until point F, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. In some cases, the post shock pacing therapy 614 may be delivered for a predetermined period of time or until the intrinsic heart rate 602 has stabilized. The active energy level 610 may not decrease back to the first energy level until point G, when the 10 minute time period has expired.


Turning now to FIG. 6E, the initial intrinsic heart rate 602 is below the upper limit threshold 606 and the intrinsic heart rate 602 is not falling at a rate that is above the maximum decrease threshold. As a result, the active energy level 610 may be set at a first energy level at which the LCP delivers pacing pulses. As shown in FIG. 6E, the intrinsic heart rate 602 rises to the upper limit threshold 606 at point A. In response, the active energy level 610 may be increased to the enhanced energy level for a 10 minute time period as shown. At point B, the 10 minute time period has expired and the intrinsic heart rate 602 remains above the upper limit threshold 606. In this example, the active energy level 610 remains at the enhanced energy level even though the 10 time period has expired. At point C, the intrinsic heart rate falls below the upper limit threshold 606 and the active energy level 610 is now decreased back to the first energy level. At point D, the intrinsic heart rate 602 once again rises to the upper limit threshold 606 and the active energy level 610 may once again be increased to the enhanced energy level for another 10 minute time period. At point E, the intrinsic heart rate 602 starts falling at a rate that is above the maximum decrease threshold. This may indicate that an ICD may have delivered a shock to the patient's heart. As a result, post shock pacing therapy 614 may be delivered at the enhanced energy level. As shown in FIG. 6E, the pacing therapy 612 may be delivered until point F, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. In some cases, the post shock pacing therapy 614 may be delivered for a predetermined period of time or until the intrinsic heart rate 602 has stabilized. The active energy level 610 may not decrease back to the first energy level until point G, when the 10 minute time period has expired.


Turning now to FIG. 6F, the intrinsic heart rate 602 is initially below the upper limit threshold 606 and the intrinsic heart rate 602 is not falling at a rate that is above a maximum decrease threshold. As a result, the LCP may set the active energy level 610 at which the LCP would deliver pacing pulses to the first energy level. The intrinsic heart rate then falls below the demand heart rate threshold 604 at point A. As shown in FIG. 6F, demand pacing therapy 612 is delivered at the first energy level until point B, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. This is an example of demand pacing, which helps ensure that the heart rate of a patient does not fall below a lower heart rate threshold such as the demand heart rate threshold 604. When performing demand pacing, the LCP may pace the heart at the lower heart rate threshold (e.g. demand heart rate threshold 604) when the intrinsic heart rate falls below the lower heart rate threshold (e.g. demand heart rate threshold 604).


After point B, the active energy level 610 is still set at the first energy level as the intrinsic heart rate 602 continues to rise. At point C, the intrinsic heart rate 602 has reached the ATP threshold 624. As shown in FIG. 6F, ATP therapy 616 is delivered at the first energy level until point D, where the intrinsic heart rate 602 falls below the ATP threshold 624. This is an example of ATP therapy that was effective at terminating a tachyarrhythmia, which helps ensure that the heart rate of the patient does not rise above a higher heart rate threshold such as the ATP threshold 624. When performing ATP therapy, the LCP may pace the heart with a burst of pulses.


Turning now to FIG. 6G, the intrinsic heart rate 602 is initially below the upper limit threshold 606 and the intrinsic heart rate 602 is not falling at a rate that is above a maximum decrease threshold. As a result, the LCP may set the active energy level 610 at which the LCP would deliver pacing pulses to the first energy level. The intrinsic heart rate then falls below the demand heart rate threshold 604 at point A. As shown in FIG. 6F, demand pacing therapy 612 is delivered at the first energy level until point B, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. After point B, the active energy level 610 is still set at the first energy level as the intrinsic heart rate 602 continues to rise. At point C, the intrinsic heart rate 602 has reached the ATP threshold 624 and ATP therapy 616 is delivered. In some cases, the ATP therapy 616 may not be capable of terminating the tachyarrhythmia and bringing the intrinsic heart rate 602 below the ATP threshold 624. In some cases, as shown in FIG. 6G, the intrinsic heart rate 602 may continue to rise and at point D, reach the upper limit threshold 606. At point D, the LCP may stop delivering the ATP therapy 616 at the first energy level and the active energy level 610 may be increased to the enhanced energy level for a 10 minute time period, which might be extended as described above. At point E, the intrinsic heart rate 602 starts falling at a rate that is above the maximum decrease threshold. This may indicate that an ICD has delivered a shock to the patient's heart. As a result, the LCP may be configured to deliver post shock pacing therapy 614 at the enhanced energy level. As shown in FIG. 6G, the post shock pacing therapy 614 may be delivered until point F, where the intrinsic heart rate 602 rises above the demand heart rate threshold 604. In response, and in some cases, post shock pacing therapy 614 may be delivered for a predetermined period of time or until the intrinsic heart rate 602 has stabilized. Even though the post shock pacing therapy 614 is no longer being delivered after point F, in this example, the active energy level 610 may not decrease back to the first energy level until point G, when the 10 minute window has expired.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments.

Claims
  • 1. A cardiac pacemaker that is free from an Implantable Cardioverter Defibrillator (ICD) that is configured to provide defibrillation therapy, the cardiac pacemaker comprising: one or more sensors for sensing one or more physiological parameters of a patient;two or more pacing electrodes for delivering pacing pulses to the heart of the patient;electronics operatively coupled to the one or more sensors and the two or more pacing electrodes, the electronics configured to: determine a heart rate of the patient based at least in part on the one or more physiological parameters sensed by the one or more sensors;pace the heart of the patient via the two or more pacing electrodes in a manner that attempts to keep the heart rate of the patient from falling below a demand heart rate threshold, wherein: the pacing pulses are delivered at a capture pacing energy level; andwhen the heart rate rises above an upper heart rate threshold, then for a temporary period of time, the pacing pulses are delivered at an enhanced energy level above the capture pacing energy level regardless of whether defibrillation therapy is delivered or not.
  • 2. The cardiac pacemaker of claim 1, wherein the one or more sensors comprises two or more sensing electrodes, and at least one of the physiological parameters comprises a cardiac electrical signal.
  • 3. The cardiac pacemaker of claim 1, wherein at least one of the two or more sensing electrodes is one of the pacing electrodes.
  • 4. The cardiac pacemaker of claim 1, wherein the one or more sensors comprise an accelerometer, and at least one of the physiological parameters comprises one or more of a heart motion and a heart sound.
  • 5. The cardiac pacemaker of claim 1, wherein the heart rate determined by the electronics is an average heart rate of “n” previous heart beats, wherein “n” is an integer greater than one.
  • 6. The cardiac pacemaker of claim 1, wherein the pacing pulses have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude is greater than the first amplitude and the second pulse width is the same as the first pulse width.
  • 7. The cardiac pacemaker of claim 1, wherein the pacing pulses have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude is the same as the first amplitude and the second pulse width is greater than the first pulse width.
  • 8. The cardiac pacemaker of claim 1, wherein the pacing pulses have a first amplitude and first pulse width at the capture pacing energy level, and a second amplitude and second pulse width at the enhanced energy level, wherein the second amplitude is greater than the first amplitude and the second pulse width is greater than the first pulse width.
  • 9. The cardiac pacemaker of claim 1, wherein the period of time is a predetermined period of time.
  • 10. The cardiac pacemaker of claim 9, wherein the predetermined period of time is programmable.
  • 11. The cardiac pacemaker of claim 1, wherein the period of time is greater than 3 minutes.
  • 12. The cardiac pacemaker of claim 1, wherein the period of time is less than 1 hour.
  • 13. The cardiac pacemaker of claim 1, further comprising a communication module, wherein the electronics can receive commands from a remote device via the communication module, and wherein in response to receiving an ATP command, the electronics is configured to deliver a burst of ATP pacing pulses at the enhanced energy level.
  • 14. The cardiac pacemaker of claim 1, wherein the cardiac pacemaker is a leadless cardiac pacemaker (LCP) that is configured to be implanted within a chamber of the heart of the patient.
  • 15. A leadless cardiac pacemaker (LCP) comprising: a housing;a plurality of electrodes for sensing electrical signals emanating from outside of the housing;an energy storage module disposed within the housing;a pulse generator for delivering pacing pulses via two or more of the plurality of electrodes, wherein the pulse generator is capable of changing an energy level of the pacing pulses;a control module disposed within the housing and operatively coupled to the pulse generator and at least two of the plurality of electrodes, wherein the control module is configured to: receive one or more cardiac signals via two or more of the plurality of electrodes;determine a heart rate based at least in part on the received one or more cardiac signals;instruct the pulse generator to pace the heart with pacing pulses of a capture pacing energy level in a manner that attempts to keep the heart rate from falling below a demand heart rate threshold;determine if the heart rate rises above an upper heart rate threshold; andin response to determining that the heart rate has risen above the upper heart rate threshold, regardless of whether any defibrillation therapy has been or will be initiated by a remote device, instruct the pulse generator to increase the energy level of the pacing pulses to an enhanced energy level for a temporary period of time, and after the temporary period of time, instruct the pulse generator to decrease the energy level of the pacing pulses back to the capture pacing energy level.
  • 16. The LCP of claim 15, wherein the pulse generator changes an amplitude of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.
  • 17. The LCP of claim 15, wherein the pulse generator changes a pulse width of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.
  • 18. The LCP of claim 15, wherein the pulse generator changes an amplitude and a pulse width of the pacing pulses to increase the energy level of the pacing pulses to the enhanced energy level.
  • 19. A method for pacing a heart of a patient, the method comprising: determining a heart rate of the patient;pacing the heart of the patient in a manner that attempts to keep the heart rate of the patient from falling below a demand heart rate threshold, wherein: the pacing pulses are delivered at a capture pacing energy level; andwhen the heart rate rises above an upper heart rate threshold, then for a period of time after rising above the upper heart rate threshold and beginning before any defibrillation shocks are delivered to the heart in response to the rising heart rate, delivering pacing pulses at an enhanced energy level above the capture pacing energy level.
  • 20. The method of claim 19, wherein the heart rate determined by an average heart rate of “n” previous heart beats, wherein “n” is an integer greater than one.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/480,784 filed on Apr. 3, 2017, the disclosure of which is incorporated herein by reference.

US Referenced Citations (1182)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3943936 Rasor et al. Mar 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Maas Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4593702 Kepski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4858610 Callaghan et al. Aug 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole Dec 1989 A
4928688 Mower May 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grevious et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5170784 Ramon et al. Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5259387 DePinto Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5342408 deCoriolis et al. Aug 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720770 Nappholz et al. Feb 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Rostami et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 DePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6128529 Esler Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847844 Sun et al. Jan 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6957107 Rogers et al. Oct 2005 B2
6978176 Lattouf Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7310556 Bulkes Dec 2007 B2
7319905 Morgan et al. Jan 2008 B1
7321798 Muhlenberg et al. Jan 2008 B2
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7637867 Zdeblick Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hübinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
8050297 DelMain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8073542 Doerr Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175715 Cox May 2012 B1
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8262578 Bharmi et al. Sep 2012 B1
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380320 Spital Feb 2013 B2
8386051 Rys Feb 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund et al. Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matos Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bornzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8705599 dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903500 Smith et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashvili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Régnier et al. Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishler et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9636511 Carney et al. May 2017 B2
9669223 Auricchio et al. Jun 2017 B2
9687654 Sheldon et al. Jun 2017 B2
9687655 Pertijs et al. Jun 2017 B2
9687659 Von Arx et al. Jun 2017 B2
9694186 Carney et al. Jul 2017 B2
9782594 Stahmann et al. Oct 2017 B2
9782601 Ludwig Oct 2017 B2
9789317 Greenhut et al. Oct 2017 B2
9789319 Sambelashvili Oct 2017 B2
9808617 Ostroff et al. Nov 2017 B2
9808628 Sheldon et al. Nov 2017 B2
9808631 Maile et al. Nov 2017 B2
9808632 Reinke et al. Nov 2017 B2
9808633 Bonner et al. Nov 2017 B2
9808637 Sharma et al. Nov 2017 B2
9855414 Marshall et al. Jan 2018 B2
9855430 Ghosh et al. Jan 2018 B2
9855435 Sahabi et al. Jan 2018 B2
9861815 Tran et al. Jan 2018 B2
10080887 Schmidt et al. Sep 2018 B2
10080888 Kelly et al. Sep 2018 B2
10080900 Ghosh et al. Sep 2018 B2
10080903 Willis et al. Sep 2018 B2
10086206 Sambelashvili Oct 2018 B2
10118026 Grubac et al. Nov 2018 B2
10124163 Ollivier et al. Nov 2018 B2
10124175 Berthiaume et al. Nov 2018 B2
10130821 Grubac et al. Nov 2018 B2
10137305 Kane et al. Nov 2018 B2
10201710 Jackson et al. Feb 2019 B2
10207115 Echt et al. Feb 2019 B2
10207116 Sheldon et al. Feb 2019 B2
10323182 Jun Jun 2019 B2
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030088278 Bardy et al. May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20040024435 Leckrone et al. Feb 2004 A1
20040039422 Russie Feb 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040230283 Prinzen et al. Nov 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080294229 Friedman et al. Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 M. Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100056871 Govari et al. Mar 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100069983 Peacock, III et al. Mar 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100298841 Prinzen et al. Nov 2010 A1
20100312309 Harding Dec 2010 A1
20110022113 Zdeblick et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs et al. Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110270341 Ruben et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120289776 Keast et al. Nov 2012 A1
20120289815 Keast et al. Nov 2012 A1
20120290021 Saurkar et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296381 Mates Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20130012151 Hankins Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourget et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130138006 Bornzin et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130192611 Taepke, II et al. Aug 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130253309 Allan et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039570 Carroll et al. Feb 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100624 Ellingson Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bornzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222015 Keast et al. Aug 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140343348 Kaplan et al. Nov 2014 A1
20140371818 Bond et al. Dec 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150045868 Bonner et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Stahmann et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150126854 Keast et al. May 2015 A1
20150157861 Aghassian Jun 2015 A1
20150157866 Demmer et al. Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150230699 Berul et al. Aug 2015 A1
20150238769 Demmer et al. Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306401 Demmer et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150335884 Khairkhahan et al. Nov 2015 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishler et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160175601 Nabutovsky et al. Jun 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160228701 Huelskamp et al. Aug 2016 A1
20160228718 Koop Aug 2016 A1
20160317825 Jacobson Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170072202 Kane et al. Mar 2017 A1
20170189681 Anderson Jul 2017 A1
20170281261 Shuros et al. Oct 2017 A1
20170281952 Shuros et al. Oct 2017 A1
20170281953 Min et al. Oct 2017 A1
20170281955 Maile et al. Oct 2017 A1
20170312531 Sawchuk Nov 2017 A1
20180256902 Toy et al. Sep 2018 A1
20180256909 Smith et al. Sep 2018 A1
20180264262 Haasl et al. Sep 2018 A1
20180264270 Koop et al. Sep 2018 A1
20180264272 Haasl et al. Sep 2018 A1
20180264273 Haasl et al. Sep 2018 A1
20180264274 Haasl et al. Sep 2018 A1
20180339160 Carroll Nov 2018 A1
Foreign Referenced Citations (49)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
1003904 Jan 1977 CA
202933393 May 2013 CN
0362611 Apr 1990 EP
503823 Sep 1992 EP
1702648 Sep 2006 EP
1904166 Jun 2011 EP
2471452 Jul 2012 EP
2433675 Jan 2013 EP
2441491 Jan 2013 EP
2452721 Nov 2013 EP
2662113 Nov 2013 EP
1948296 Jan 2014 EP
2950881 Dec 2015 EP
2760541 May 2016 EP
2833966 May 2016 EP
2000051373 Feb 2000 JP
2002502640 Jan 2002 JP
2004512105 Apr 2004 JP
2005508208 Mar 2005 JP
2005245215 Sep 2005 JP
2008540040 Nov 2008 JP
2012500050 Jan 2012 JP
5199867 Feb 2013 JP
9500202 Jan 1995 WO
9636134 Nov 1996 WO
9724981 Jul 1997 WO
9826840 Jun 1998 WO
9939767 Aug 1999 WO
0234330 May 2002 WO
02098282 Dec 2002 WO
2005000206 Jan 2005 WO
2005042089 May 2005 WO
2006065394 Jun 2006 WO
2006069215 Jun 2006 WO
2006086435 Aug 2006 WO
2006113659 Oct 2006 WO
2006124833 Nov 2006 WO
2007073435 Jun 2007 WO
2007075974 Jul 2007 WO
2009006531 Jan 2009 WO
2012054102 Apr 2012 WO
2013080038 Jun 2013 WO
2013098644 Jul 2013 WO
2013184787 Dec 2013 WO
2014120769 Aug 2014 WO
2016118814 Jul 2016 WO
Non-Patent Literature Citations (8)
Entry
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
International Search Report and Written Opinion for Application No. PCT/US2018/024875, 15 pages, dated Jul. 5, 2018.
Hügl B et al: “Incremental programming of atrial anti-tachycardia pacing therapies in bradycardia-indicated patients: effects on therapy efficacy and atrial tachyarrhythmia burden” EUROPACE, W.B. Saunders, GB, vol. 5, No. 4, Oct. 1, 2003 (Oct. 1, 2003), pp. 403-409, XP002559877, ISSN: 1099-5129, DOI: 10.1016/S1099-5129(03) 00082-5 the whole document.
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Related Publications (1)
Number Date Country
20180280702 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
62480784 Apr 2017 US