Cardiac resynchronization therapy (CRT) modifies the electrical activation and contractions of the heart's chambers to enhance pumping efficiency. Benefits may include increased exercise capacity and reduced hospitalization and mortality. More particularly, CRT devices operate by affecting the timing of contraction of one or more cardiac chambers relative to one or more other cardiac chambers. For example, contractions of one or more of the ventricle(s) may be timed relative to contraction of the atria, or contractions of the left and right ventricles may be timed relative to one another.
A “fusion” beat occurs when multiple activation signals affect the same cardiac tissue at the same time. For example, electrical fusion between pacing of one ventricle with spontaneous activation of another ventricle (for example, paced left ventricular (LV) activation and intrinsic right ventricular (RV) activation) produces a fusion beat. The generation of fusion beats is a goal of CRT in many circumstances.
Prior systems generally include intracardiac electrodes coupled via transvenous leads to an implanted pulse generator. The leads of such systems are widely known as introducing various morbidities and are prone to eventual conductor and/or insulator failure. Such issues likely reduce usage of CRT within the indicated population of heart failure patients.
Such prior lead systems typically include ventricular and atrial components to facilitate sensing of atrial and ventricular events to optimize CRT timing. For example, in some patients, CRT may be achieved by pacing the left ventricle at a specific time relative to detection of an atrial event. The atrial signal may conduct to the right ventricle (RV) via natural conduction to generate an RV contraction, with paced LV contraction occurring at a desirable time relative to the RV contraction to yield a fusion beat. The interval from the atrial sensed event to the LV pace may be adjusted to optimize cardiac response in prior systems.
Newer generation pacemakers include the leadless cardiac pacemaker (LCP), which can be implanted entirely within the heart and does not require a transvenous (or any) lead. Such devices are commercially available on a limited basis, but are currently indicated for and capable of use in only bradycardia pacing. With further enhancements, the LCP also presents an opportunity to provide an alternative to traditional CRT using transvenous leads. New and alternative systems, devices and methods directed at providing CRT using the LCP are desired.
The present inventors have recognized, among other things, that a problem to be solved is that the absence of an intracardiac lead makes detection of an atrial event for purposes of CRT potentially difficult for a system using one or more ventricular LCP devices. U.S. Provisional Patent Application Ser. No. 62/355,121 suggests certain methods that may use an extracardaic device (such as a subcutaneous cardiac monitor (SCM), a subcutaneous implantable cardiac defibrillator (SICD), or a substernal variant of the SICD) to detect P-waves and provide timing information for use by an LCP. In some patients, however, P-waves may be difficult to detect or highly variable as sensed in the far field by an SCM or SICD, making reliance on P-wave detection possibly difficult.
As an alternative to reliance on atrial event detection, the present invention is directed at a different approach. An LCP is configured to provide pacing therapy at predetermined pace to pace intervals. The morphology (shape) of resulting cardiac electrical signals is monitored by an extracardiac device, such as an SCM or SICD, to determine whether the delivered pacing is resulting in desirable fusion beats. The extracardaic device communicates with the LCP to modify timing of the pace to pace intervals to ensure repeatable fusion.
A first non-limiting example takes the form of a method of providing cardiac resynchronization therapy (CRT) to a patient comprising: in a first device, delivering pacing pulses at predetermined intervals relative to previous pacing pulses; in a second device, monitoring cardiac electrical signals to determine whether pacing therapy is causing: a) one or more fusion beats; b) one or more pace captured beats; or c) one or more intrinsic beats; and selectively communicating from the second device to the first device to adjust the predetermined interval.
Additionally or alternatively, a second non-limiting example takes the form of the first non-limiting example, wherein the step of selectively communicating is performed in order to adjust the predetermined interval such that the pacing pulses cause fusion beats.
Additionally or alternatively, a third non-limiting example takes the form of the first non-limiting example, wherein the step of communicating from the second device to the first device is performed as follows: if b), communicating an extension of the predetermined interval; and if c), communicating a reduction of the predetermined interval.
Additionally or alternatively, a fourth non-limiting example takes the form of the first non-limiting example, wherein the step of monitoring cardiac electrical signals is performed by: obtaining a single cardiac complex following at a pace pulse delivery; and comparing the single cardiac complex to at least one of the following templates: a fusion beat template; a pace captured beat template; and an intrinsic beat template; in order to determine which of a), b), or c) resulted from the pacing pulse.
Additionally or alternatively, a fifth non-limiting example takes the form of the fourth non-limiting example, wherein the step of comparing a portion of the monitored cardiac electrical signals to at least one of the templates is performed using at least one of: a principle components analysis; a wavelet transform analysis; a difference of area comparison; or a correlation waveform analysis.
Additionally or alternatively, a sixth non-limiting example takes the form of the first non-limiting example, wherein the step of monitoring cardiac electrical signals is performed by: capturing a plurality QRS complexes and averaging signals therefrom to generate a composite cardiac complex; and comparing the composite cardiac complex to at least one of a plurality of templates including at least: a fusion beat template; a pace captured beat template; and an intrinsic beat template; in order to determine which of a), b), or c) resulted from a set of pacing pulses.
Additionally or alternatively, a seventh non-limiting example takes the form of the sixth non-limiting example, wherein the step of comparing a portion of the monitored cardiac electrical signals to at least one of the templates is performed using at least one of: a principle components analysis; a wavelet transform analysis; a difference of area comparison; or a correlation waveform analysis.
Additionally or alternatively, an eighth non-limiting example takes the form of the first non-limiting example, wherein the step of monitoring cardiac signals is performed by extracting one or more shape features from one or more QRS complexes, the shape features comprising one or more amplitudes or widths.
Additionally or alternatively, a ninth non-limiting example takes the form of the first non-limiting example, wherein, if c), the second device is further configured to compare a time at which the pacing pulse is delivered relative to the time of the intrinsic beat in order to determine whether: the pacing pulse was delivered too late to capture the heart of the patient and, if so, the step of selectively communicating from the second device is performed to reduce the predetermined interval; or the pacing pulse was delivered at a time which likely would capture the heart and, if so, the step of selectively communicating from the second device is performed to indicate an increase in at least one of pacing pulse amplitude or pacing pulse width.
Additionally or alternatively, a tenth non-limiting example takes the form of the first non-limiting example, wherein the step of selectively communicating is performed after each detected cardiac beat.
Additionally or alternatively, an eleventh non-limiting example takes the form of the first non-limiting example, wherein the step of selectively communicating is performed as follows: if a), communication is performed at an interval; or if b) or c), communication is performed to adjust the pacing parameters after each determination that b) or c) is taking place.
Additionally or alternatively, a twelfth non-limiting example takes the form of the first non-limiting example, wherein neither the first device nor the second device detects an atrial event in order to provide the CRT.
A thirteenth non-limiting example takes the form of a method of providing cardiac resynchronization therapy (CRT) to a patient comprising: in a first device, delivering pacing pulses using a first configuration calling for predetermined intervals relative to previous pacing pulses; in a second device, monitoring cardiac electrical signals to determine whether pacing therapy is causing one or more fusion beats; and: if the pacing therapy is causing one or more fusion beats, the second device preserving the first configuration of the first device; or if the pacing therapy is not causing one or more fusion beats, the second device communicating to the first device to change the first configuration.
Additionally or alternatively, a fourteenth non-limiting example takes the form of the thirteenth non-limiting example, further comprising second device determining how to change the first configuration by: determining that the pacing therapy is causing pace captured beats to take place; and determining that the predetermined intervals should be longer; wherein the step of the second device communicating to the first device to change the first configuration includes communicating that the predetermined intervals should be longer.
Additionally or alternatively, a fifteenth non-limiting example takes the form of the fourteenth non-limiting example, in which the second device is configured to determine that the pacing therapy is causing pace captured beats to take place by: sensing a QRS complex associated with a pacing therapy delivery; comparing the QRS complex to at least a first template associated with a fusion beat and a second template associated with a pace captured beat; and determining that the QRS complex better resembles the second template than the first template.
Additionally or alternatively, a sixteenth non-limiting example takes the form of the thirteenth non-limiting example, further comprising second device determining how to change the first configuration by: determining that the pacing therapy is allowing intrinsic beats to occur; and determining that the predetermined intervals should be longer.
Additionally or alternatively, a seventeenth non-limiting example takes the form of the sixteenth non-limiting example, in which the second device is configured to determine that the pacing therapy is allowing intrinsic beats to occur by: sensing a QRS complex associated with a pacing therapy delivery; comparing the QRS complex to at least a first template associated with a fusion beat and a second template associated with an intrinsic beat; and determining that the QRS complex better resembles the second template than the first template.
Additionally or alternatively, an eighteenth non-limiting example takes the form of the sixteenth non-limiting example, further comprising the second device also determining that one or more characteristics of a pace waveform should be modified to improve a likelihood that delivered therapy will enhance cardiac contraction by at least one of increasing a pace therapy pulse width or increasing a pace therapy amplitude.
A nineteenth non-limiting example takes the form of an implantable medical device (IMD) configured for use as part of a cardiac therapy system comprising a leadless cardiac pacemaker (LCP) and the IMD, the IMD comprising: a plurality of electrodes for sensing cardiac activity; and operational circuitry configured to receive signals from the plurality of electrodes and analyze cardiac activity as follows: sense a QRS complex; analyze the QRS complex to determine whether the QRS complex represents a fusion beat; wherein the operational circuitry is further configured to communicate to the LCP that a pacing interval change is needed to attain fusion if the QRS complex does not represent a fusion beat.
Additionally or alternatively, a twentieth non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to determine whether the pacing interval change is an increase or decrease in the pacing interval.
Additionally or alternatively, a twenty-first non-limiting example takes the form of the twentieth non-limiting example, wherein the operational circuitry is configured to analyze the QRS complex to determine whether the QRS complex represents a left ventricular (LV) paced beat or an intrinsic beat and to determine whether the pacing interval change is an increase or decrease as follows: if the QRS complex represents an LV paced beat, determining that the pacing interval change is an increase in the pacing interval; or if the QRS complex represents an intrinsic beat, determining that the pacing interval change is a decrease in the pacing interval.
Additionally or alternatively, a twenty-second non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to analyze the QRS complex to determine whether the QRS complex represents a left ventricular (LV) paced beat and to determine whether the pacing interval change is an increase or decrease as follows: if the QRS complex represents an LV paced beat, determining that the pacing interval change is an increase in the pacing interval; or otherwise determining that the pacing interval change is a decrease in the pacing interval.
Additionally or alternatively, a twenty-third non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to analyze the QRS complex to determine whether the QRS complex represents an intrinsic beat and is configured to determine whether the pacing interval change is an increase or decrease as follows: if the QRS complex resembles an intrinsic beat, determining that the pacing interval change is a decrease in the pacing interval; or otherwise determining that the pacing interval change is an increase in the pacing interval.
Additionally or alternatively, a twenty-fourth non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to identify delivery of a pacing stimulus by the LCP and to analyze the QRS complex in response to identifying delivery of a pacing stimulus by the LCP.
Additionally or alternatively, a twenty-fifth non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to receive a communication from an LCP indicating delivery of a pacing stimulus by the LCP and to analyze the QRS complex in response receiving the communication.
Additionally or alternatively, a twenty-sixth non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to analyze the QRS complex to determine whether the QRS complex represents a fusion beat by comparing the QRS complex to a template for a fusion beat.
Additionally or alternatively, a twenty-seventh non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to analyze the QRS complex to determine whether the QRS complex represents a fusion beat by comparing the QRS complex to a plurality of templates including at least one template which represents a fusion beat and at least one template which does not represent a fusion beat.
Additionally or alternatively, a twenty-eighth non-limiting example takes the form of the an 1 MB as in either of the twenty-sixth or twenty-seventh non-limiting examples, wherein the operational circuitry is configured to perform comparisons to a template using one of difference of area analysis, principal components analysis, wavelet transform analysis, or correlation waveform analysis.
Additionally or alternatively, a twenty-ninth non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to use a combination of signal features to analyze the QRS complex to determine whether the QRS complex represents a fusion beat, including at least QRS width.
Additionally or alternatively, a thirtieth non-limiting example takes the form of an IMD as in any of the twenty-sixth, twenty-seventh, or twenty-ninth non-limiting examples, wherein the operational circuitry is configured to analyze the QRS complex to determine whether the QRS complex represents a fusion beat by including the QRS complex among a composite cardiac signal encompassing a plurality of QRS complexes.
Additionally or alternatively, a thirty-first non-limiting example takes the form of the thirtieth non-limiting example, wherein the operational circuitry is configured to calculate a composite signal for a plurality of QRS complexes and only analyzes whether the QRS complex represents a fusion beat at intervals of at least two one cardiac cycles.
Additionally or alternatively, a thirty-second non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to recall whether a preceding QRS complex represented a fusion beat and: if so, to analyze the QRS complex to determine whether the QRS complex represents a fusion beat by comparing the QRS complex to the preceding QRS complex and if the QRS complex matches the preceding QRS complex, to determine that the QRS complex represents a fusion beat and otherwise to determine that the QRS complex does not represent a fusion beat; or if not, to analyze the QRS complex by comparing it to at least one stored template including a template that represents a fusion beat.
Additionally or alternatively, a thirty-third non-limiting example takes the form of the nineteenth non-limiting example, wherein the operational circuitry is configured to recall whether a preceding QRS complex represented a fusion beat and: if so, to analyze the QRS complex to determine whether the QRS complex represents a fusion beat by comparing the QRS complex to the preceding QRS complex and if the QRS complex matches the preceding QRS complex, to determine that the QRS complex represents a fusion beat and otherwise to determine that the QRS complex does not represent a fusion beat; or if not, to analyze the QRS complex by reviewing one or more rules including at least a first rule related to width and a second rule related to polarity.
Additionally or alternatively, a thirty-fourth non-limiting example takes the form of system comprising an IMD as in any of the nineteenth to thirty-third non-limiting examples, and an LCP, wherein the LCP is configured to receive a communication from the IMD indicating that a pacing interval change is needed to attain fusion and, in response to the communication, to make a change to a pace to pace interval.
This overview is intended to provide an introduction to the subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.
In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
The following description should be read with reference to the drawings. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.
A second medical device in the form of a subcutaneous implantable defibrillator (SICD) having a left axillary canister 16 and a lead 18 is also present. The illustrative lead 18 is shown with a defibrillation coil 22 and sensing electrodes 24, 26 distal and proximal of the coil 22. The lead 18 may optionally include a bifurcation 28 to provide an additional set of sensing or stimulus providing electrodes, if desired.
In some embodiments the lead may be as shown, for example, in U.S. Pat. No. 9,079,035, titled ELECTRODE SPACING IN A SUBCUTANEOUS IMPLANTABLE CARDIAC STIMULUS DEVICE, the disclosure of which is incorporated herein by reference. Rather than bifurcation, plural leads may be provided as shown, for example, in U.S. Pat. No. 7,149,575, titled SUBCUTANEOUS CARDIAC STIMULATOR DEVICE HAVING AN ANTERIORLY POSITIONED ELECTRODE. Any suitable design for single, multiple, or bifurcated implantable leads may be used.
The lead 18 may be implanted entirely subcutaneously, such as by extending across the anterior or posterior of the chest, or by going partly across the chest in a lateral/medial direction and then superiorly toward the head along the sternum. Some examples and discussion of subcutaneous lead implantation may be found in U.S. Pat. No. 8,157,813, titled APPARATUS AND METHOD FOR SUBCUTANEOUS ELECTRODE INSERTION, and US PG Publication No. 20120029335, titled SUBCUTANEOUS LEADS AND METHODS OF IMPLANT AND EXPLANT, the disclosures of which are incorporated herein by reference. Additional subcutaneous placements are discussed in U.S. Pat. No. 6,721,597, titled SUBCUTANEOUS ONLY IMPLANTABLE CARDIOVERTER DEFIBRILLATOR AND OPTIONAL PACER, and the above mentioned U.S. Pat. No. 7,149,575, the disclosures of which are incorporated herein by reference.
A substernal placement may be used instead, with one finger 18/20 or the entire distal end of the lead (that is, the end distant from the canister 16) going beneath the sternum. Some examples of such placement are described in US PG Patent Pub. No. 2017/0021159, titled SUBSTERNAL PLACEMENT OF A PACING OR DEFIBRILLATING ELECTRODE, the disclosure of which is incorporated herein by reference. Still another alternative placement is shown in U.S. Provisional Patent Application No. 62/371,343, titled IMPLANTATION OF AN ACTIVE MEDICAL DEVICE USING THE INTERNAL THORACIC VASCULATURE, the disclosure of which is incorporated herein by reference.
The devices 14 and 16 may communicate with one another and/or with an external programmer 30 using conducted communication, in some examples. Conducted communication is communication via electrical signals which propagate via patient tissue and are generated by more or less ordinary electrodes. By using the existing electrodes of the implantable devices, conducted communication does not rely on an antenna and an oscillator/resonant circuit having a tuned center frequency or frequencies common to both transmitter and receiver. RF or inductive communication may be used instead. Alternatively the devices 14 and 16 may communicate via inductive, optical, sonic, or RF communication, or any other suitable medium.
The programmer 30 may optionally use a wand (not shown) and/or skin electrodes 32 and 34 to facilitate communication. For example, skin electrodes 32 and 34 may be used for conducted communication with an implantable device. For other communication approaches such as RF or inductive communication, the programmer 30 may use a programming wand or may have an antenna integral with the programmer 30 housing for communication. Though not shown in detail, the programmer 30 may include any suitable user interface, including a screen, buttons, keyboard, touchscreen, speakers, and various other features widely known in the art.
Subcutaneous implantable defibrillators may include, for example, the Emblem S-ICD System™ offered by Boston Scientific Corporation. Combinations of subcutaneous defibrillators and LCP devices are discussed, for example, in US PG Patent Publication Nos. 20160059025, 20160059024, 20160059022, 20160059007, 20160038742, 20150297902, 20150196769, 20150196758, 20150196757, and 20150196756, the disclosures of which are incorporated herein by reference. The subcutaneous defibrillator and LCP may, for example, exchange data related to cardiac function or device status, and may operate together as a system to ensure appropriate determination of cardiac condition (such as whether or not a ventricular tachyarrhythmia is occurring), as well as to coordinate therapy such as by having the LCP deliver antitachycardia pacing in an attempt to convert certain arrhythmias before the subcutaneous defibrillator delivers a defibrillation shock.
In some examples, rather than a therapy device such as the SICD 16 shown in
Several examples focus on using a left ventricular LCP 14. However, some examples may instead use a right ventricular LCP 40, and other examples may include both the left ventricular LCP 14 and right ventricular LCP 40. In other examples, a three implant system may include two LCP devices 14, 40, as well as a subcutaneous device such as the SICD 16. In still other examples, an atrial-placed LCP (not shown) may also be included or may take the place of one of the ventricular LCP devices 14, 40.
The processing block 52 will generally control operations in the device 50 and may include a microprocessor or microcontroller and/or other circuitry and logic suitable to its purpose. A state machine may be included. Processing block 52 may include dedicated circuits or logic for device functions such as converting analog signals to digital data, processing digital signals, detecting events in a biological signal, etc. The memory block may include RAM, ROM, flash and/or other memory circuits for storing device parameters, programming code, and data related to the use, status, and history of the device 50. The power supply 56 typically includes one to several batteries, which may or may not be rechargeable depending on the device 50. For rechargeable systems there would additionally be charging circuitry for the battery (not shown).
The I/O circuitry 58 may include various switches or multiplexors for selecting inputs and outputs for use. I/O circuitry 58 may also include filtering circuitry and amplifiers for pre-processing input signals. In some applications the I/O circuitry will include an H-Bridge to facilitate high power outputs, though other circuit designs may also be used. Therapy block 60 may include capacitors and charging circuits, modulators, and frequency generators for providing electrical outputs. A monitoring device may omit the therapy block 60 and may have a simplified I/O circuitry used simply to capture electrical or other signals such as chemical or motion signals.
The communication circuitry 62 may be coupled to an antenna 74 for radio communication (such as Medradio, ISM, or other RF), or alternatively to a coil for inductive communication, and/or may couple via the I/O circuitry 58 to a combination of electrodes 64, 66, 72, for conducted communication. Communications circuitry 62 may include a frequency generator/oscillator and mixer for creating output signals to transmit via the antenna 74. Some devices 50 may include a separate or even off-the shelf ASIC for the communications circuitry 62, for example. For devices using an inductive communication output, an inductive coil may be included. Devices may use optical or acoustic communication, and suitable circuits, transducers, generators and receivers may be included for these modes of communication as well or instead of those discussed above.
As those skilled in the art will understand, additional circuits may be provided beyond those shown in
The device is shown with a first end electrode at 114 and a second end electrode at 116. A number of tines 118 may extend from the device in several directions. The tines 118 maybe used to secure the device in place within a heart chamber. Another attachment structure is shown at 120 and may take the form of a helical screw, if desired. In some examples, tines 118 are used as the only attachment features. Tissue attachment and retrieval features may be included in the LCP including those features shown in US PG Patent Publications 20150051610, titled LEADLESS CARDIAC PACEMAKER AND RETRIEVAL DEVICE, and 20150025612, titled SYSTEM AND METHODS FOR CHRONIC FIXATION OF MEDICAL DEVICES, the disclosures of which are incorporated herein by reference. Fixation and retrieval structures may instead resemble that of the Micra™ (Medtronic) or Nanostim™ (St. Jude Medical) leadless pacemakers.
In some examples, if block 152 is to deliver the first pacing pulse of a CRT therapy (that is, the first pacing pulse after some period of at least one cardiac cycle during which no pacing is delivered), specific rules may be applied. For example, the intrinsic cardiac rate may be determined by, for example, measuring the interval between R-waves for two or more recent non-paced cardiac cycles. The “first” pace can then be delivered at a reduced interval, such as in the range of 75% to 90% of the measured interval, or at a fixed reduction, such as in the range of 50 to 150 milliseconds less than the R-R interval. If desired, an in-clinic measurement may be made to determine, at rest, in one or more postures, or at rest and while exercising, the typical P-R interval for the patient, and the first pace therapy may then be delivered at a time determined by subtracting a portion (20% to 50%, for example) of that patient's typical P-R interval from the measured R-R interval. In still another alternative, to the extent an extracardaic device such as an SICD or SCM may detect the P-wave and calculate a typical P-R interval, the “first pace” may be delivered at a time that is approximately centered between the expected P-wave and the expected R-wave.
In an example, an in-clinic measurement may be performed to identify the P-R interval for the patient at a given R-R interval. An in-clinic P-R:R-R ratio is calculated and stored. Later, in the ambulatory context, a measured R-R interval is multiplied by the in-clinic R-R:R-R ratio, to yield a value for the expected P-R interval. This P-R interval is then reduced by a value in the range of 20% to 50% (40% for example) to give a foreshortening value. The “first pace interval” is calculated by subtracting the foreshortening value from the measured R-R interval. A first pace is delivered after expiration of the first pace interval following an R-wave. A second pace may be delivered following the first pace after an interval that is equal to the measured intrinsic R-R interval. Subsequent pace therapies are delivered at intervals that may be modified in light of the fusion promotion methods further described below.
At block 154, a second medical device, such as an SICD or SCM, senses for and obtains a QRS complex from the cardiac signal, and compares the QRS complex shape to a “desired” shape. The method in block 154 may occur as part of ordinary operation of the second medical device, which for either an SICD or SCM would typically include monitoring the cardiac signal to identify arrhythmias. The specific analysis at 154 may be triggered to include the comparison to the desired shape over and above analysis for arrhythmia detection. For example, analysis may be triggered by having the LCP that delivers the pace at 152 issue a communication to the second medical device indicating that a pace therapy has been delivered. Analysis may also be triggered by the second medical device being aware that that a pacing regimen for CRT is ongoing, rather than triggering on individual pace therapies. Analysis may also be triggered if the second device detects the pacing therapy delivery itself, which may be identifiable from within the cardiac electrical signal (a pacing spike may be observed), or may be identifiable using dedicated analysis such as a sensing channel having filtering or triggering analyses applied thereto intended to identify a pace therapy. For example, a pacing output may be a square wave output in the voltage or current domain and so may have specific frequency content different from that of the surrounding cardiac tissue, and a pace identification circuit be configured to identify the frequency signature of the pace output.
As discussed in further examples below, various analyses may be performed to determine a match, or mismatch, to the desired shape. For example, a template may be compared using difference of area, correlation waveform analysis (CWA), principal components analysis (PCA), wavelet transformation, etc. In other examples, specific features, such as slopes, width between identified points, the quantity and timing of inflection or turning points, amplitude, polarity type, or other features, may be analyzed. Using the result of the comparison, the second implantable device determines whether an adjustment is needed, as indicated.
For example, if the comparison determines that the detected QRS resembles a pace captured beat, rather than the desired fusion beat, an adjustment to the pacing parameters extend a pace to pace interval to allow the intrinsic signal to catch up and fuse with the pace. If the comparison determines that the detection QRS resembles an intrinsic beat, then the pace to pace interval may be shortened to help the paced beat catch up to the intrinsic signal and fuse with the intrinsic signal.
If an adjustment is needed, the method proceed to block 156 where the first medical device makes an adjustment to the pace to pace interval in order to maintain or re-impose the desired shape. For example, if the detected QRS is not a fusion beat, then the first medical device can adjust the pace to pace interval to preferably promote fusion by shortening (in the event of an intrinsic beat) or extending (in the event of a capture beat) the pace to pace interval.
If an exception occurs, the method jumps from either block 154 or 156 to exception handling 158. Exception handling 158 may handle cases in which a ventricular extra-systole (VES) takes place such as a premature ventricular contraction (PVC) or a premature atrial contraction (PAC), as shown below by
Exception handling may follow multiple paths as indicated at 160 by returning to any of blocks 152, 154, or 156. In some examples, if the QRS shape matches the desired fusion shape, rather than following patch 170 to go to block 156, the system may simply return to block 152 and await a next pace delivery, without adjusting pace to pace intervals at 156. In still another example, even if the desired shape occurs at block 154, the system may adjust pace to pace parameters to maintain dithering around an ideal pacing interval.
In an alternative example, rather than the second device determining whether and how to make an adjustment, the second device may communicate to the first device whether a match appears at block 154, and the first device may determine whether and how to make an adjustment using the match information. Various further examples follow.
As noted in U.S. Provisional Patent Application Ser. No. 62/355,121 pre-implant screening may also determine whether the patient is well suited to have a combined LCP/SICD or LCP/SCM system for CRT by assessing the presence or absence of a P-wave. P-wave related screening may be optional with the present invention, as various examples rely on SICD or SCM analysis of the QRS complex (or other cardiac signal) to confirm fusion, rather than the appearance or timing of the P-wave.
The system(s) are then implanted at 212. Implantation may include the placement of an LCP on or in the heart, as well as placement of an SCM or SICD elsewhere in the patient such as between the ribs and the skin. The system may undergo intraoperative testing as is known in the art for each of LCP, SCM and SICD devices, to ensure adequate sensing configurations and/or therapy capability.
Next, the system undergoes initialization, at 220. Initialization may include, for example, the setting of various sensing and other parameters. Examples of initialization may include selecting of a sensing vector or combination of sensing vectors, such as in U.S. Pat. No. 7,783,340, titled SYSTEMS AND METHODS FOR SENSING VECTOR SELECTION IN AN IMPLANTABLE MEDICAL DEVICE USING A POLYNOMIAL APPROACH, and U.S. Pat. No. 8,483,843 SENSING VECTOR SELECTION IN A CARDIAC STIMULUS DEVICE WITH POSTURAL ASSESSMENT, the disclosures of which are incorporated herein by reference. Related concepts are also disclosed in US PG Patent Pub. Nos. 2017/0112399, 2017/0113040, 2017/0113050, and 2017/0113053, the disclosures of which are incorporated herein by reference. Methods as discussed in US PG Patent Pub. No. 2017/0156617, titled AUTOMATIC DETERMINATION AND SELECTION OF FILTERING IN A CARDIAC RHYTHM MANAGEMENT DEVICE, the disclosure of which is incorporated herein by reference, may be used as well for setting filtering characteristics.
Thus, initialization may include methods for selecting a sensing vector as shown by
Once initialization 220 is completed, normal operation can occur as indicated at 222. Normal operation may include operation as in
As needed, additional exceptions may be handled at 224. Exceptions may occur if sensed cardiac signals do not match any of a fusion, captured, or intrinsic beat template, for example. Exceptions may also occur if an arrhythmia such as a ventricular or atrial tachyarrhythmia or fibrillation occurs. The exceptions 224 may allow return to normal operation 222 once handled, or may require re-initialization 220.
Selected factors 252, 254, 256 may be used to analyze a plurality of sensed signals along one or a number of cardiac sensing vectors. For example, as shown in
As shown on the right-hand side of
Data is captured by the SICD or SCM during this pacing regimen of the LCP. That data can be used to generate several templates in the manner illustrated by
An additional template is formed as shown at 320, in which some fusion occurs but the pace 322 is later 324 than appropriate to generate fusion, yielding an R-wave at 326 that is used for template 328. It may be noted that for purposes of illustration, simple monophasic pace pulses are shown in the figures. In implementation, monophasic, biphasic, or other multiphasic pace pulses may be delivered in any desired polarity and may take forms including constant, ramped, or decaying current or voltage controlled therapies.
Another template is formed at 330, this time with fusion based on well-timed pace 332. At 340, the pace 342 occurs too early for fusion, yielding another template at 344 that does not show fusion. Finally, at 350, the pace 350 occurs early enough that no fusion occurs, instead resulting in a pure capture of the left ventricle (LV), assuming for this example that the LCP is in the LV.
A total of five templates are suggested in
To accomplish template formation, it may be desirable to have the LCP and the SICD or SCM communicate with one another to indicate which pace timing is being attempted during the process. For example, the LCP may determine an intrinsic R-R interval, and may then communicate to the SICD or SCM that it is about to deliver a pace pulse at an interval that is 100 milliseconds less than the intrinsic interval, which could be done to generate template 328. It should be understood that relying on the intrinsic R-R interval to achieve desired fusion is not a long term approach to fusion promotion, insofar as once pacing begins to take place, the intrinsic R-R interval would no longer be available.
It may also be desirable to perform the template formation in a setting that is relatively controlled. For example, one or more of the LCP and SICD/SCM may be configured to determine that the patient is at rest prior to gathering the templates by using the outputs of an activity or motion sensor (such an accelerometer), and/or confirming that the patient's cardiac rate indicates a resting state. Respiration and/or posture may also be monitored. If desired, separate templates may be captured for different postures in a clinical setting with physician supervision, using methods as in U.S. Pat. No. 8,200,341, titled SENSING VECTOR SELECTION IN A CARDIAC STIMULUS DEVICE WITH POSTURAL ASSESSMENT, the disclosure of which is incorporated herein by reference. On the other hand, the implantable devices (LCP and/or SICD/SCM) may be configured to determine a patient posture, and may perform template formation methods for each of several sensed/determined patient postures over time.
The example at 300 may use signals from multiple sense vectors in combination with one another. In another example, the method 300 may determine a first template for a first waveform type using a first sensing configuration, and a second template for a second waveform type using a second sensing configuration. For example, the native template 312 may be generated on a sensing vector that does not pick up the pacing artifact since a pacing artifact is likely to occur close to the cardiac complex itself and could make a match relatively easy to obtain; the paced beat 354, on the other hand, occurs well after the pacing therapy stimulus and therefore a template captured using a sensing vector that can observe the pacing artifact may be useful.
The template formed may be a stored shape, that is, a time-ordered series of amplitude values. The template may instead be stored as a mathematical transform of the original signal using, for example, wavelet analysis, principal components analysis, or other transform. Alternatively, the template may take the form of a set of signal features as further illustrated below.
The resulting library of templates may be updated periodically if desired. For example, a new library of templates may be generated at each clinical follow-up visit, or on a daily, weekly, or monthly basis. In addition to periodic updating, the template library may be updated as needed. For example, if no templates can be matched using the below methods for some period of time, the library may be regenerated.
Referring back to
Next, a cardiac complex is sensed, as shown at 510. The cardiac complex may be sensed at 510 by an SICD or an SCM. The sensed cardiac complex 510 may be sensed by the SICD or SCM being triggered by delivery of the pace therapy at 500 as, for example, may take place if the SICD or SCM is configured to specifically detect a pacing output or, alternatively, if the SICD or SCM receives a communication from an LCP that the pace therapy delivery 500 is to occur at a specific time.
More likely, however, the SICD or SCM may sense the cardiac complex at 510 through normal operation 514. For example, the SICD or SCM may use an R-wave detection method in which a sensed signal is compared to a time varying threshold. Illustrative examples may be found in U.S. Pat. No. 8,565,878, titled ACCURATE CARDIAC EVENT DETECTION IN AN IMPLANTABLE CARDIAC STIMULUS DEVICE, the disclosure of which is incorporated herein by reference.
Next, the sensed cardiac complex from 510 is compared 520 to a template or set of feature characteristics indicative of fusion. For example, a sensed cardiac complex from 510 may be compared 520 to a prior sensed cardiac complex 522. The sensed cardiac complex from 510 may be compared 520 to one or more templates 524. In still another example, the sensed cardiac complex from 510 may be compared 520 to one or more rules 526 specifying, for example, width, amplitude or other characteristics of one or more peaks, inflection points or other features of the sensed cardiac complex. A set of specific examples follow, after the rest of
Blocks 510 and 520 may be performed by an SICD or SCM device. Next, a communication 530 may issue from the SICD or SCM to the LCP. Such communication may be continuous 532—that is, after every pace delivery and/or sensed cardiac complex. Alternatively, communication may be periodic 534, occurring at set intervals. Preferably, however, communication is occasional 536, being issued when it is determined that some element of the operation of the LCP needs to change. The communication may indicate an adjustment as described below at 540, to the pacing interval and/or timing or may indicate that the pacing interval and/or timing is already providing desired fusion. In one example, the occasional or periodic communication 534, 536 is tied to how often the comparison 520 is performed, where the comparison may be performed using a composite cardiac signal (
For example, the communication 530 may indicate that an intrinsic beat has been detected, and so pacing should be delivered earlier and/or with a different level of energy (greater or different combination of amplitude or pulsewidth). Alternatively, the communication 530 may indicate that fusion has not been detected, and that it appears the pacing should take place earlier to attain desired fusion. In another example, the communication 530 may indicate that desired fusion has been attained, and so settings should be preserved. As an alternative, the communication may indicate that desired fusion has been attained and a dithering protocol, in which pacing intervals are increased and/or decreased to continuously modify the pacing therapy while staying close to desired fusion, should be initiated. In another example, the communication may indicate that the sensed cardiac complex does not suggest desired fusion, and it appears the pacing should take place later to attain desired fusion. In yet another example the communication may indicate that LV capture has been detected, and so the pacing should take place later—at a longer interval—to attain desired fusion.
Next, the method includes the LCP adjusting pacing, if requested by the communication at 530. Not shown on
Alternatively, the sensing device (the SICD or SCM) may calculate a proposed adjustment to pace timing, as indicated at 544, using device history or information related to the pace timing used to generate the various templates shown in
In still another alternative, the pace device may calculate an adjustment to pace timing as indicated at 546, again using device history or information related to the pace timing used to generate the various templates shown in
The system would then wait for the next pace delivery to occur.
In an illustrative example, the compare step at 520 may take the sensed cardiac complex from 510 and compare to one or more of the templates identified above in
In another illustrative example, a comparison to prior detected cardiac complex 522 is used to maintain fusion once it is attained. For example, the templates 524 may be used in a first iteration or several iterations of the method in
In yet another illustrative example, the rules 526 may be used. Referring to
At 610, a second device senses and characterizes the cardiac response to the pace delivered in block 600. Various aspects of the sensing and characterization are noted to the left. Outcomes of the characterization are noted at 612 and may include, for this example, a determination of pace captured beat, fusion, or intrinsic morphology. Alternatively, block 612 may include simply characterization of fusion or no fusion. Other characterization sets are noted below and may be used instead of that shown at 612.
The manner of performing characterization may take several forms. If template data is stored and compared to the current cardiac cycle data, this may occur using one of several shape comparison methods noted at 614 including difference of area, principal components analysis (PCA), wavelet transforms, or correlation waveform analysis (CWA). The comparisons at 614 may also be tiered by, for example, reserving more computationally intensive comparisons (PCA, wavelet or CWA) for use in relation to non-fusion templates if/when a difference of area analysis comparing the current cardiac cycle to a fusion template fails to yield a match.
If, instead, a rule set is used to perform characterization, some details that may be used are noted at 616. These may include, for example signal features (such as finding turning points, inflection points, patterns of such points), amplitude(s), and/or width. Some illustrations are shown above in relation to
Finally a communication is made at 630. As noted with reference to
In some examples, additional adjustments may be communicated to change amplitude and/or pulsewidth 638, particularly if there an intrinsic beat is detected suggesting a lack of capture. One such example would have Device 2 determining when the pace therapy was delivered relative to a detected R-wave or QRS complex; if the pace therapy was delivered at a time that should have caused capture or even a fusion event to take place, then Device 2 may conclude that a detected intrinsic beat occurred due to failure to deliver a pacing pulse of sufficient strength. Thus, Device 2 would indicate that amplitude and/or pulse width may be adjusted, as indicated at 638.
In an alternative illustration, block 612 may consider a current and prior characterization by having outcomes of fusion, no fusion (better)—which would indicate that the morphology of the current cardiac cycle is closer to a fusion morphology than a prior cycle, or no fusion (worse)—indicating that the morphology of the current cardiac cycle is more different from a fusion morphology than a prior cycle. In the event that fusion is identified, dithering change or no change may be communicated in block 630.
A “dithering” change is intended to convey dynamic adjustment to the pacing intervals, making them shorter and/or longer over time to attain “best” fusion. A dithering change may shorten or lengthen the pace-pace intervals until the morphology changes enough to reduce the match to the desired fusion beat. Further categorization of the characterization of the detected beat may be used in conjunction with dithering by including categories for “fusion (better)” and “fusion (worse)” to indicate that a fusion morphology was determined and was either more correlated (better) or less correlated (worse) than a preceding characterization. Dithering may be omitted in some examples.
If a non-fusion morphology is identified, the device history would next be considered. For example, if a preceding cardiac cycle has a non-fusion morphology, and an adjustment was made to extend or shorten the pace-pace interval before the current cardiac cycle, and the current cycle is characterized as no fusion (worse), then the prior change would in pace-pace interval would be reversed. On the other hand, if the current cycle is characterized as no fusion (better), then whatever change was made after the prior cardiac cycle would be repeated by further extending or shortening the pace-pace interval. With this example, a single template could be used, rather than multiple templates. In this example, both current cardiac cycle and historical data may be used to establish a trend and/or to determine, based on prior steps, what the next step to attain desired fusion would be.
As shown at 660, a pace therapy is delivered. This “first” pace following the intrinsic QRS at 652 is delivered after expiration of an initial interval 656. The initial interval 656 may, as described above, be calculated by use of determining an expected P-R interval (or by measuring, if the P-wave can be detected), and discounting the P-R interval by some amount to yield a foreshortening factor. Interval 656 may equal to the intrinsic R-R interval calculated for one or more cardiac cycles prior to QRS complex 652, less the foreshortening factor.
If the first pace therapy 660 is delivered at an appropriate time, the following QRS complex will have a morphology typical of fusion as shown at 662. The shape will be different at 662 than at 652 if fusion is generated. For example, in this particular sensing vector view of the heart, the R-wave peak is narrower, and follows a more negative Q wave, than the intrinsic QRS complex at 652. If the first pace therapy 660 is too late, or if the therapy 660 is delivered at too low an energy, for example, the waveform may not change at all; on the other hand, if the first pace therapy 660 is too early, an LV pace capture waveform may appear instead. For purposes of the present invention, failure to generate fusion with the first pace delivery is acceptable; the aim is to enhance fusion pacing in a series of therapy deliveries over time. Once fusion is attained, the goal changes maintaining fusion.
Following pace therapy 660, a pace-pace interval 664 expires, leading to delivery of a next pacing pulse at 670. In the first iteration of pace-pace intervals at 664, the interval may be set equal to the intrinsic R-R interval measured for one or more cardiac cycles preceding QRS complex 652. If the pace-pace interval 664 is appropriate for fusion, the QRS complex at 672 will have similar morphology features as the prior fusion QRS complex 662, which is the case in the example shown. If the morphology at 672 did not match the fusion morphology and instead resembled an intrinsic beat morphology, as decided by the SICD or SCM, then a communication from the SICD or SCM to the LCP would occur to cause shortening of the pace-pace interval 674 prior to the next pace delivery at 680. On the other hand, if the morphology at 672 did not match the fusion morphology and instead resembled an LV pace-captured beat, then a communication from the SICD or SCM to the LCP would occur to cause an extension of the pace-pace interval 674 prior to the next pace delivery at 680.
In some examples, an analytical result for QRS complex 672 may not be ready in time to adjust interval 674. For example, the SICD or SCM may wait until completion of the QRS complex 672 before initiating analysis of it, making for some delay before a conclusion can be reached. Then, communication of the conclusion may add additional time lag. As a result, the interval following pace 680 may be modified in light of the QRS complex at 672, rather than interval 674 being adjusted. In other examples, analysis of QRS 672 may be performed to allow adjustment of interval 674, adjusting pace delivery at 680 to maintain fusion.
If the prior beat is not matched at 752 (or if the prior beat is known to have been a non-fusion beat), comparison may be made to one or more other templates, or analysis may be performed using one or more other factors, such as a set of rules as described above, as indicated at 754. Next, the obtained QRS complex is characterized as indicated at 756. If the obtained QRS complex is characterized as representing desirable fusion, the method may return to block 750. Alternatively, a communication may be made to indicate that fusion was observed, or that an adjustment is desired to achieve better fusion, as indicated at 758. The method illustrated in
Once the interval is adjusted at 802, the device waits for the adjusted interval to expire, as indicated at 804. In an alternative, an adjustment may be made to a subsequent pace-pace interval if, for example, the ongoing interval is already counting down. On expiration of the interval, the next pace is delivered with a return to block 800. While waiting for the interval to expire at 804, the device may actively sense for incoming cardiac signals or additional communications from one or more second devices. The detection of a cardiac signal or additional communication may be used to inhibit 806 the pacing therapy delivery 800. If, for example, a ventricular extra-systolic event (VES), such as a premature ventricular contraction (PVC), is found to have occurred, the device may return to the wait state at 804, but in this example restarts or doubles the interval in order to resume desired timing.
If a cardiac R-wave is detected, this may cause inhibition at 806 which sends the device back to block 802 to adjust the pace-pace interval. For example, as described above, the occurrence and identification of an intrinsic R-wave may cause the system to modify the pace-pace interval by shortening the interval. In addition, pacing parameters may also be adjusted to, for example, increase amplitude or pulsewidth, or to make other changes to polarity or waveform, as desired. The device would again enter the wait state at 804 and, on expiration, paces 800 at the new interval using, if adjusted, new pacing parameters.
The method of
A PVC occurs as shown at 880. The next pacing pulse at 882 is inhibited because the PVC took place prior to expiration of interval 884. There are several ways this may occur, including by the LCP sensing and detecting the PVC 880, or by an SICD or SCM detecting the PVC and communicating to the LCP. The PVC 880 is handled in this case by tacking on another interval 886 to interval 884, with new interval 886 being the same length as interval 884. Thus a next pace pulse is delivered at 890. In the example shown, the pace therapy 890 again causes a fusion beat 892.
A series of illustrative and non-limiting examples follows. These examples are provided for further illumination and is should be understood that other embodiments using other combinations of features are also contemplated.
A first illustrative non-limiting example takes the form of an implantable medical device (IMD) configured for use as part of a cardiac therapy system comprising a leadless cardiac pacemaker (LCP) and the IMD, the IMD comprising: a plurality of electrodes for sensing cardiac activity; communication circuitry for communicating with at least the LCP; operational circuitry configured to receive signals from the plurality of electrodes and analyze cardiac activity, the operational circuitry comprising: sensing means to sense QRS complexes; QRS complex analysis means to determine whether a selected QRS complex represents a fusion beat; and interval change means to cause the communication circuitry to communicate a pacing interval change to the LCP in order to promote fusion beats if the QRS complex does not represent a fusion beat.
An IMD as recited is shown in
Operational circuitry is also illustrated at
QRS complex analysis means to determine whether a selected QRS complex represents a fusion beat may comprise executable instructions stored in a memory for operation by a controller to perform as illustrated, for example, at block 154 in
Interval change means to cause the communication circuitry to communicate a pacing interval change to the LCP in order to promote fusion beats if the QRS complex does not represent a fusion beat may comprise executable instructions stored in a memory for operation by a controller to perform as illustrated, for example, at block 156 of
A second illustrative non-limiting example takes the form of an IMD as in the first illustrative non-limiting example, wherein the QRS complex analysis means is configured to determine whether the selected QRS complex represents any of: a left ventricular (LV) paced beat, a fusion beat, or an intrinsic beat, wherein the interval change means is configured to communicate the following pacing interval changes based on the analysis of the QRS complex analysis means: if the QRS complex represents an LV paced beat, communicating an increase in the pacing interval is needed to the LCP; or if the QRS complex represents an intrinsic beat, communicating a decrease in the pacing interval is needed to the LCP.
A third illustrative non-limiting example takes the form of an IMD as in the first illustrative, non-limiting example, wherein the QRS complex analysis means is configured to determine whether the QRS complex represents a left ventricular (LV) paced beat or a fusion beat; wherein the interval change means is configured to communicate the following pacing interval changes based on the analysis of the QRS complex analysis means: if the QRS complex represents an LV paced beat, communicating an increase in the pacing interval is needed to the LCP; or otherwise communicating a decrease in the pacing interval is needed to the LCP.
A fourth illustrative non-limiting example takes the form of an IMD as in the first illustrative non-limiting example, wherein the QRS complex analysis means is configured to determine whether the QRS complex represents an intrinsic beat or a fusion beat; wherein the interval change means is configured to communicate the following pacing interval changes based on the analysis of the QRS complex analysis means: if the QRS complex represents an intrinsic beat, communicating a decrease in the pacing interval is needed to the LCP; or otherwise communicating an increase in the pacing interval is needed to the LCP.
A fifth illustrative non-limiting example takes the form of an IMD as any of the first to fourth illustrative non-limiting examples, wherein the operational circuitry comprises pace identification means to identify delivery of a pacing stimulus by the LCP and prompt analysis by the QRS complex analysis means in response to identifying delivery of the pacing stimulus. Pace identification means may take the form of executable instruction sets stored in a memory or dedicated hardware for performing a function configured to operate as described in association with block 512 in
A sixth illustrative non-limiting example takes the form of an IMD as in any of the first to fourth illustrative non-limiting examples, wherein the communications circuitry is configured to receive a communication from an LCP indicating delivery of a pacing stimulus by the LCP and prompt analysis by the QRS complex analysis means in response to receiving the communication from the LCP indicating delivery of the pacing stimulus.
A seventh illustrative non-limiting example takes the form of an IMD as in any of the first to sixth illustrative non-limiting examples wherein the QRS complex analysis means is configured to analyze the QRS complex to determine whether the QRS complex represents a fusion beat by comparing the QRS complex to a template for a fusion beat.
An eighth illustrative non-limiting example takes the form of an IMD as in any of the first to sixth illustrative non-limiting examples wherein the QRS complex analysis means is configured to analyze the QRS complex to determine whether the QRS complex represents a fusion beat by comparing the QRS complex to a plurality of templates including at least one template which represents a fusion beat and at least one template which does not represent a fusion beat.
A ninth illustrative non-limiting example takes the form of an IMD as in any of the first to sixth illustrative non-limiting examples, wherein the QRS complex analysis means is configured to use a combination of signal features to analyze the QRS complex to determine whether the QRS complex represents a fusion beat, including at least QRS width.
A tenth illustrative non-limiting example takes the form of an IMD as in any of the first to ninth illustrative non-limiting examples, wherein the QRS complex analysis means comprises composite signal means configured to combine the selected QRS complex with a plurality of other QRS complexes to generate a composite QRS complex, and wherein the QRS complex analysis means is configured to analyze the composite QRS complex to determine whether the selected QRS complex represents a fusion beat. The composite signal means may include executable instructions stored in a memory for operation by a controller, or may include dedicated hardware to generate a composite cardiac signal 410 from plural QRS complexes 402, 404, 406, as described above in association with
An eleventh illustrative non-limiting example takes the form of an IMD as in the first illustrative, non-limiting example, wherein the QRS complex analysis means comprise current complex analysis means and prior complex analysis means, as follows: the prior complex analysis means is configured to compare the selected QRS complex to a preceding QRS complex, and if the QRS complex matches the preceding QRS complex and the preceding QRS complex represented a fusion beat, to determine that the selected QRS complex represents a fusion beat and otherwise to determine that the QRS complex does not represent a fusion beat; the current complex analysis means is configured to analyze the QRS complex by comparing it to at least one stored template including a template that represents a fusion beat; wherein the QRS complex analysis means is configured to determine whether the preceding QRS complex represented a fusion beat and: if so, to use the prior complex analysis means to determine whether the selected QRS complex represents a fusion beat; or if not, to use the current complex analysis means to determine whether the selected QRS complex represents a fusion beat.
A twelfth illustrative non-limiting example takes the form of an IMD as in the first illustrative, non-limiting example, wherein the QRS complex analysis means comprise current complex analysis means and prior complex analysis means, as follows: the prior complex analysis means is configured to compare the selected QRS complex to a preceding QRS complex, and if the QRS complex matches the preceding QRS complex and the preceding QRS complex represented a fusion beat, to determine that the selected QRS complex represents a fusion beat and otherwise to determine that the QRS complex does not represent a fusion beat; the current complex analysis means is configured to analyze the QRS complex by reviewing one or more rules including at least a first rule related to width and a second rule related to polarity; wherein the QRS complex analysis means is configured to determine whether the preceding QRS complex represented a fusion beat and: if so, to use the prior complex analysis means to determine whether the selected QRS complex represents a fusion beat; or if not, to use the current complex analysis means to determine whether the selected QRS complex represents a fusion beat.
A thirteenth illustrative non-limiting example takes the form of an IMD as in any of the first to twelfth illustrative non-limiting examples, the IMD taking the form of an implantable cardiac monitor. A fourteenth illustrative non-limiting example takes the form of an IMD as in any of the first to twelfth illustrative non-limiting examples, the IMD taking the form of an implantable cardiac therapy device having therapy delivery circuitry configured to use at least first and second electrodes for delivery of therapy to the patient to address cardiac arrhythmia.
A fifteenth illustrative non-limiting example takes the form of a system comprising an IMD as in any of the first to fourteenth illustrative non-limiting examples, and further comprising an LCP, wherein the LCP is configured to receive a communication from the IMD indicating that a pacing interval change is needed to attain fusion and, in response to the communication, to make a change to a pace to pace interval.
Each of these non-limiting examples can stand on its own, or can be combined in various permutations or combinations with one or more of the other examples.
The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown or described. However, the present inventors also contemplate examples in which only those elements shown or described are provided. Moreover, the present inventors also contemplate examples using any combination or permutation of those elements shown or described (or one or more aspects thereof), either with respect to a particular example (or one or more aspects thereof), or with respect to other examples (or one or more aspects thereof) shown or described herein.
In the event of inconsistent usages between this document and any documents so incorporated by reference, the usage in this document controls.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
Method examples described herein can be machine or computer-implemented at least in part. Some examples can include a computer-readable medium or machine-readable medium encoded with instructions operable to configure an electronic device to perform methods as described in the above examples. An implementation of such methods can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, in an example, the code can be tangibly stored on one or more volatile, non-transitory, or non-volatile tangible computer-readable media, such as during execution or at other times. Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic or optical disks, magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.
The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description.
The Abstract is provided to comply with 37 C.F.R. § 1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description as examples or embodiments, with each claim standing on its own as a separate embodiment, and it is contemplated that such embodiments can be combined with each other in various combinations or permutations. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
The present application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/378,866, filed Aug. 24, 2016, the disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3835864 | Rasor et al. | Sep 1974 | A |
3943936 | Rasor et al. | Mar 1976 | A |
4142530 | Wittkampf | Mar 1979 | A |
4151513 | Menken et al. | Apr 1979 | A |
4157720 | Greatbatch | Jun 1979 | A |
RE30366 | Rasor et al. | Aug 1980 | E |
4243045 | Maas | Jan 1981 | A |
4250884 | Hartlaub et al. | Feb 1981 | A |
4256115 | Bilitch | Mar 1981 | A |
4263919 | Levin | Apr 1981 | A |
4310000 | Lindemans | Jan 1982 | A |
4312354 | Walters | Jan 1982 | A |
4323081 | Wiebusch | Apr 1982 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4365639 | Goldreyer | Dec 1982 | A |
4440173 | Hudziak et al. | Apr 1984 | A |
4476868 | Thompson | Oct 1984 | A |
4522208 | Buffet | Jun 1985 | A |
4537200 | Widrow | Aug 1985 | A |
4556063 | Thompson et al. | Dec 1985 | A |
4562841 | Brockway et al. | Jan 1986 | A |
4593702 | Kepski et al. | Jun 1986 | A |
4593955 | Leiber | Jun 1986 | A |
4630611 | King | Dec 1986 | A |
4635639 | Hakala et al. | Jan 1987 | A |
4674508 | DeCote | Jun 1987 | A |
4712554 | Garson | Dec 1987 | A |
4729376 | DeCote | Mar 1988 | A |
4754753 | King | Jul 1988 | A |
4759366 | Callaghan | Jul 1988 | A |
4776338 | Lekholm et al. | Oct 1988 | A |
4787389 | Tarjan | Nov 1988 | A |
4793353 | Borkan | Dec 1988 | A |
4819662 | Heil et al. | Apr 1989 | A |
4858610 | Callaghan et al. | Aug 1989 | A |
4886064 | Strandberg | Dec 1989 | A |
4887609 | Cole, Jr. | Dec 1989 | A |
4928688 | Mower | May 1990 | A |
4967746 | Vandegriff | Nov 1990 | A |
4987897 | Funke | Jan 1991 | A |
4989602 | Sholder et al. | Feb 1991 | A |
5012806 | De Bellis | May 1991 | A |
5036849 | Hauck et al. | Aug 1991 | A |
5040534 | Mann et al. | Aug 1991 | A |
5058581 | Silvian | Oct 1991 | A |
5078134 | Heilman et al. | Jan 1992 | A |
5109845 | Yuuchi et al. | May 1992 | A |
5113859 | Funke | May 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5117824 | Keimel et al. | Jun 1992 | A |
5127401 | Grevious et al. | Jul 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5144950 | Stoop et al. | Sep 1992 | A |
5170784 | Ramon et al. | Dec 1992 | A |
5179945 | Van Hofwegen et al. | Jan 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5241961 | Henry | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5259387 | dePinto | Nov 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5284136 | Hauck et al. | Feb 1994 | A |
5300107 | Stokes et al. | Apr 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5305760 | McKown et al. | Apr 1994 | A |
5312439 | Loeb | May 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5314459 | Swanson et al. | May 1994 | A |
5318597 | Hauck et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5334222 | Salo et al. | Aug 1994 | A |
5342408 | deCoriolis et al. | Aug 1994 | A |
5370667 | Alt | Dec 1994 | A |
5372606 | Lang et al. | Dec 1994 | A |
5376106 | Stahmann et al. | Dec 1994 | A |
5383915 | Adams | Jan 1995 | A |
5388578 | Yomtov et al. | Feb 1995 | A |
5404877 | Nolan et al. | Apr 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5411031 | Yomtov | May 1995 | A |
5411525 | Swanson et al. | May 1995 | A |
5411535 | Fujii et al. | May 1995 | A |
5456691 | Snell | Oct 1995 | A |
5458622 | Alt | Oct 1995 | A |
5466246 | Silvian | Nov 1995 | A |
5468254 | Hahn et al. | Nov 1995 | A |
5472453 | Alt | Dec 1995 | A |
5522866 | Fernald | Jun 1996 | A |
5540727 | Tockman et al. | Jul 1996 | A |
5545186 | Olson et al. | Aug 1996 | A |
5545202 | Dahl et al. | Aug 1996 | A |
5571146 | Jones et al. | Nov 1996 | A |
5591214 | Lu | Jan 1997 | A |
5620466 | Haefner et al. | Apr 1997 | A |
5634938 | Swanson et al. | Jun 1997 | A |
5649968 | Alt et al. | Jul 1997 | A |
5662688 | Haefner et al. | Sep 1997 | A |
5674259 | Gray | Oct 1997 | A |
5683426 | Greenhut et al. | Nov 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5702427 | Ecker et al. | Dec 1997 | A |
5706823 | Wodlinger | Jan 1998 | A |
5709215 | Perttu et al. | Jan 1998 | A |
5720770 | Nappholz et al. | Feb 1998 | A |
5728154 | Crossett et al. | Mar 1998 | A |
5741314 | Daly et al. | Apr 1998 | A |
5741315 | Lee et al. | Apr 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5752977 | Grevious et al. | May 1998 | A |
5755736 | Gillberg et al. | May 1998 | A |
5759199 | Snell et al. | Jun 1998 | A |
5774501 | Halpern et al. | Jun 1998 | A |
5792195 | Carlson et al. | Aug 1998 | A |
5792202 | Rueter | Aug 1998 | A |
5792203 | Schroeppel | Aug 1998 | A |
5792205 | Alt et al. | Aug 1998 | A |
5792208 | Gray | Aug 1998 | A |
5814089 | Stokes et al. | Sep 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836985 | Goyal et al. | Nov 1998 | A |
5836987 | Baumann et al. | Nov 1998 | A |
5842977 | Lesho et al. | Dec 1998 | A |
5855593 | Olson et al. | Jan 1999 | A |
5873894 | Vandegriff et al. | Feb 1999 | A |
5891184 | Lee et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5899876 | Flower | May 1999 | A |
5899928 | Sholder et al. | May 1999 | A |
5919214 | Ciciarelli et al. | Jul 1999 | A |
5935078 | Feierbach | Aug 1999 | A |
5941906 | Barreras, Sr. et al. | Aug 1999 | A |
5944744 | Paul et al. | Aug 1999 | A |
5954757 | Gray | Sep 1999 | A |
5978713 | Prutchi et al. | Nov 1999 | A |
5991660 | Goyal | Nov 1999 | A |
5991661 | Park et al. | Nov 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999857 | Weijand et al. | Dec 1999 | A |
6016445 | Baura | Jan 2000 | A |
6026320 | Carlson et al. | Feb 2000 | A |
6029085 | Olson et al. | Feb 2000 | A |
6041250 | dePinto | Mar 2000 | A |
6044298 | Salo et al. | Mar 2000 | A |
6044300 | Gray | Mar 2000 | A |
6055454 | Heemels | Apr 2000 | A |
6073050 | Griffith | Jun 2000 | A |
6076016 | Feierbach | Jun 2000 | A |
6077236 | Cunningham | Jun 2000 | A |
6080187 | Alt et al. | Jun 2000 | A |
6083248 | Thompson | Jul 2000 | A |
6106551 | Crossett et al. | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6128526 | Stadler et al. | Oct 2000 | A |
6141581 | Olson et al. | Oct 2000 | A |
6141588 | Cox et al. | Oct 2000 | A |
6141592 | Pauly | Oct 2000 | A |
6144879 | Gray | Nov 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167310 | Grevious | Dec 2000 | A |
6201993 | Kruse et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6211799 | Post et al. | Apr 2001 | B1 |
6221011 | Bardy | Apr 2001 | B1 |
6240316 | Richmond et al. | May 2001 | B1 |
6240317 | Villaseca et al. | May 2001 | B1 |
6256534 | Dahl | Jul 2001 | B1 |
6259947 | Olson et al. | Jul 2001 | B1 |
6266558 | Gozani et al. | Jul 2001 | B1 |
6266567 | Ishikawa et al. | Jul 2001 | B1 |
6270457 | Bardy | Aug 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6273856 | Sun et al. | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6285907 | Kramer et al. | Sep 2001 | B1 |
6292698 | Duffin et al. | Sep 2001 | B1 |
6295473 | Rosar | Sep 2001 | B1 |
6297943 | Carson | Oct 2001 | B1 |
6298271 | Weijand | Oct 2001 | B1 |
6307751 | Bodony et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6336903 | Bardy | Jan 2002 | B1 |
6345202 | Richmond et al. | Feb 2002 | B2 |
6351667 | Godie | Feb 2002 | B1 |
6351669 | Hartley et al. | Feb 2002 | B1 |
6353759 | Hartley et al. | Mar 2002 | B1 |
6358203 | Bardy | Mar 2002 | B2 |
6361780 | Ley et al. | Mar 2002 | B1 |
6368284 | Bardy | Apr 2002 | B1 |
6371922 | Baumann et al. | Apr 2002 | B1 |
6398728 | Bardy | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6400990 | Silvian | Jun 2002 | B1 |
6408208 | Sun | Jun 2002 | B1 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411848 | Kramer et al. | Jun 2002 | B2 |
6424865 | Ding | Jul 2002 | B1 |
6434429 | Kraus et al. | Aug 2002 | B1 |
6438410 | Hsu et al. | Aug 2002 | B2 |
6438417 | Rockwell et al. | Aug 2002 | B1 |
6438421 | Stahmann et al. | Aug 2002 | B1 |
6440066 | Bardy | Aug 2002 | B1 |
6441747 | Khair et al. | Aug 2002 | B1 |
6442426 | Kroll | Aug 2002 | B1 |
6442432 | Lee | Aug 2002 | B2 |
6443891 | Grevious | Sep 2002 | B1 |
6445953 | Bulkes et al. | Sep 2002 | B1 |
6453200 | Koslar | Sep 2002 | B1 |
6459929 | Hopper et al. | Oct 2002 | B1 |
6470215 | Kraus et al. | Oct 2002 | B1 |
6471645 | Warkentin et al. | Oct 2002 | B1 |
6480745 | Nelson et al. | Nov 2002 | B2 |
6487443 | Olson et al. | Nov 2002 | B2 |
6490487 | Kraus et al. | Dec 2002 | B1 |
6498951 | Larson et al. | Dec 2002 | B1 |
6505077 | Kast et al. | Jan 2003 | B1 |
6507755 | Gozani et al. | Jan 2003 | B1 |
6507759 | Prutchi et al. | Jan 2003 | B1 |
6512940 | Brabec et al. | Jan 2003 | B1 |
6522915 | Ceballos et al. | Feb 2003 | B1 |
6526311 | Begemann | Feb 2003 | B2 |
6539253 | Thompson et al. | Mar 2003 | B2 |
6542775 | Ding et al. | Apr 2003 | B2 |
6553258 | Stahmann et al. | Apr 2003 | B2 |
6561975 | Pool et al. | May 2003 | B1 |
6564807 | Schulman et al. | May 2003 | B1 |
6574506 | Kramer et al. | Jun 2003 | B2 |
6584351 | Ekwall | Jun 2003 | B1 |
6584352 | Combs et al. | Jun 2003 | B2 |
6597948 | Rockwell et al. | Jul 2003 | B1 |
6597951 | Kramer et al. | Jul 2003 | B2 |
6622046 | Fraley et al. | Sep 2003 | B2 |
6628985 | Sweeney et al. | Sep 2003 | B2 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6666844 | Igo et al. | Dec 2003 | B1 |
6689117 | Sweeney et al. | Feb 2004 | B2 |
6690959 | Thompson | Feb 2004 | B2 |
6694189 | Begemann | Feb 2004 | B2 |
6704602 | Berg et al. | Mar 2004 | B2 |
6718212 | Parry et al. | Apr 2004 | B2 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6738670 | Almendinger et al. | May 2004 | B1 |
6746797 | Benson et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6763269 | Cox | Jul 2004 | B2 |
6778860 | Ostroff et al. | Aug 2004 | B2 |
6788971 | Sloman et al. | Sep 2004 | B1 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6807442 | Myklebust et al. | Oct 2004 | B1 |
6847844 | Sun et al. | Jan 2005 | B2 |
6871095 | Stahmann et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6885889 | Chinchoy | Apr 2005 | B2 |
6892094 | Ousdigian et al. | May 2005 | B2 |
6897788 | Khair et al. | May 2005 | B2 |
6904315 | Panken et al. | Jun 2005 | B2 |
6922592 | Thompson et al. | Jul 2005 | B2 |
6931282 | Esler | Aug 2005 | B2 |
6934585 | Schloss et al. | Aug 2005 | B1 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6978176 | Lattouf | Dec 2005 | B2 |
6985773 | Von Arx et al. | Jan 2006 | B2 |
6990375 | Kloss et al. | Jan 2006 | B2 |
7001366 | Ballard | Feb 2006 | B2 |
7003350 | Denker et al. | Feb 2006 | B2 |
7006864 | Echt et al. | Feb 2006 | B2 |
7013178 | Reinke et al. | Mar 2006 | B2 |
7027871 | Burnes et al. | Apr 2006 | B2 |
7050849 | Echt et al. | May 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7063693 | Guenst | Jun 2006 | B2 |
7082336 | Ransbury et al. | Jul 2006 | B2 |
7085606 | Flach et al. | Aug 2006 | B2 |
7092758 | Sun et al. | Aug 2006 | B2 |
7110824 | Amundson et al. | Sep 2006 | B2 |
7120504 | Osypka | Oct 2006 | B2 |
7130681 | Gebhardt et al. | Oct 2006 | B2 |
7139613 | Reinke et al. | Nov 2006 | B2 |
7142912 | Wagner et al. | Nov 2006 | B2 |
7146225 | Guenst et al. | Dec 2006 | B2 |
7146226 | Lau et al. | Dec 2006 | B2 |
7149575 | Ostroff et al. | Dec 2006 | B2 |
7149581 | Goedeke | Dec 2006 | B2 |
7149588 | Lau et al. | Dec 2006 | B2 |
7158839 | Lau | Jan 2007 | B2 |
7162307 | Patrias | Jan 2007 | B2 |
7164952 | Lau et al. | Jan 2007 | B2 |
7177700 | Cox | Feb 2007 | B1 |
7181505 | Haller et al. | Feb 2007 | B2 |
7184830 | Echt et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7189204 | Ni et al. | Mar 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7200437 | Nabutovsky et al. | Apr 2007 | B1 |
7200439 | Zdeblick et al. | Apr 2007 | B2 |
7206423 | Feng et al. | Apr 2007 | B1 |
7209785 | Kim et al. | Apr 2007 | B2 |
7209790 | Thompson et al. | Apr 2007 | B2 |
7211884 | Davis et al. | May 2007 | B1 |
7212871 | Morgan | May 2007 | B1 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7228183 | Sun et al. | Jun 2007 | B2 |
7236821 | Cates et al. | Jun 2007 | B2 |
7236829 | Farazi et al. | Jun 2007 | B1 |
7254448 | Almendinger et al. | Aug 2007 | B2 |
7260436 | Kilgore et al. | Aug 2007 | B2 |
7270669 | Sra | Sep 2007 | B1 |
7272448 | Morgan et al. | Sep 2007 | B1 |
7277755 | Falkenberg et al. | Oct 2007 | B1 |
7280872 | Mosesov et al. | Oct 2007 | B1 |
7288096 | Chin | Oct 2007 | B2 |
7289847 | Gill et al. | Oct 2007 | B1 |
7289852 | Helfinstine et al. | Oct 2007 | B2 |
7289853 | Campbell et al. | Oct 2007 | B1 |
7289855 | Nghiem et al. | Oct 2007 | B2 |
7302294 | Kamath et al. | Nov 2007 | B2 |
7305266 | Kroll | Dec 2007 | B1 |
7310556 | Bulkes | Dec 2007 | B2 |
7319905 | Morgan et al. | Jan 2008 | B1 |
7333853 | Mazar et al. | Feb 2008 | B2 |
7336994 | Hettrick et al. | Feb 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7366572 | Heruth et al. | Apr 2008 | B2 |
7373207 | Lattouf | May 2008 | B2 |
7376458 | Palreddy et al. | May 2008 | B2 |
7384403 | Sherman | Jun 2008 | B2 |
7386342 | Falkenberg et al. | Jun 2008 | B1 |
7392090 | Sweeney et al. | Jun 2008 | B2 |
7406105 | DelMain et al. | Jul 2008 | B2 |
7406349 | Seeberger et al. | Jul 2008 | B2 |
7410497 | Hastings et al. | Aug 2008 | B2 |
7425200 | Brockway et al. | Sep 2008 | B2 |
7433739 | Salys et al. | Oct 2008 | B1 |
7477935 | Palreddy et al. | Jan 2009 | B2 |
7496409 | Greenhut et al. | Feb 2009 | B2 |
7496410 | Heil | Feb 2009 | B2 |
7502652 | Gaunt et al. | Mar 2009 | B2 |
7512448 | Malick et al. | Mar 2009 | B2 |
7515969 | Tockman et al. | Apr 2009 | B2 |
7526342 | Chin et al. | Apr 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7532933 | Hastings et al. | May 2009 | B2 |
7536222 | Bardy et al. | May 2009 | B2 |
7536224 | Ritscher et al. | May 2009 | B2 |
7539541 | Quiles et al. | May 2009 | B2 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7558631 | Cowan et al. | Jul 2009 | B2 |
7565195 | Kroll et al. | Jul 2009 | B1 |
7584002 | Burnes et al. | Sep 2009 | B2 |
7590455 | Heruth et al. | Sep 2009 | B2 |
7606621 | Brisken et al. | Oct 2009 | B2 |
7610088 | Chinchoy | Oct 2009 | B2 |
7610092 | Cowan et al. | Oct 2009 | B2 |
7610099 | Almendinger et al. | Oct 2009 | B2 |
7610104 | Kaplan et al. | Oct 2009 | B2 |
7616991 | Mann et al. | Nov 2009 | B2 |
7617001 | Penner et al. | Nov 2009 | B2 |
7617007 | Williams et al. | Nov 2009 | B2 |
7630767 | Poore et al. | Dec 2009 | B1 |
7634313 | Kroll et al. | Dec 2009 | B1 |
7637867 | Zdeblick | Dec 2009 | B2 |
7640060 | Zdeblick | Dec 2009 | B2 |
7647109 | Hastings et al. | Jan 2010 | B2 |
7650186 | Hastings et al. | Jan 2010 | B2 |
7657311 | Bardy et al. | Feb 2010 | B2 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7682316 | Anderson et al. | Mar 2010 | B2 |
7691047 | Ferrari | Apr 2010 | B2 |
7702392 | Echt et al. | Apr 2010 | B2 |
7713194 | Zdeblick | May 2010 | B2 |
7713195 | Zdeblick | May 2010 | B2 |
7729783 | Michels et al. | Jun 2010 | B2 |
7734333 | Ghanem et al. | Jun 2010 | B2 |
7734343 | Ransbury et al. | Jun 2010 | B2 |
7738958 | Zdeblick et al. | Jun 2010 | B2 |
7738964 | Von Arx et al. | Jun 2010 | B2 |
7742812 | Ghanem et al. | Jun 2010 | B2 |
7742816 | Masoud et al. | Jun 2010 | B2 |
7742822 | Masoud et al. | Jun 2010 | B2 |
7743151 | Vallapureddy et al. | Jun 2010 | B2 |
7747335 | Williams | Jun 2010 | B2 |
7751881 | Cowan et al. | Jul 2010 | B2 |
7758521 | Morris et al. | Jul 2010 | B2 |
7761150 | Ghanem et al. | Jul 2010 | B2 |
7761164 | Verhoef et al. | Jul 2010 | B2 |
7765001 | Echt et al. | Jul 2010 | B2 |
7769452 | Ghanem et al. | Aug 2010 | B2 |
7783340 | Sanghera et al. | Aug 2010 | B2 |
7783362 | Whitehurst et al. | Aug 2010 | B2 |
7792588 | Harding | Sep 2010 | B2 |
7797059 | Bornzin et al. | Sep 2010 | B1 |
7801596 | Fischell et al. | Sep 2010 | B2 |
7809438 | Echt et al. | Oct 2010 | B2 |
7809441 | Kane et al. | Oct 2010 | B2 |
7840281 | Kveen et al. | Nov 2010 | B2 |
7844331 | Li et al. | Nov 2010 | B2 |
7844348 | Swoyer et al. | Nov 2010 | B2 |
7846088 | Ness | Dec 2010 | B2 |
7848815 | Brisken et al. | Dec 2010 | B2 |
7848823 | Drasler et al. | Dec 2010 | B2 |
7860455 | Fukumoto et al. | Dec 2010 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7877136 | Moffitt et al. | Jan 2011 | B1 |
7877142 | Moaddeb et al. | Jan 2011 | B2 |
7881786 | Jackson | Feb 2011 | B2 |
7881798 | Miesel et al. | Feb 2011 | B2 |
7881810 | Chitre et al. | Feb 2011 | B1 |
7890173 | Brisken et al. | Feb 2011 | B2 |
7890181 | Denzene et al. | Feb 2011 | B2 |
7890192 | Kelsch et al. | Feb 2011 | B1 |
7894885 | Bartal et al. | Feb 2011 | B2 |
7894894 | Stadler et al. | Feb 2011 | B2 |
7894907 | Cowan et al. | Feb 2011 | B2 |
7894910 | Cowan et al. | Feb 2011 | B2 |
7894915 | Chitre et al. | Feb 2011 | B1 |
7899537 | Kroll et al. | Mar 2011 | B1 |
7899541 | Cowan et al. | Mar 2011 | B2 |
7899542 | Cowan et al. | Mar 2011 | B2 |
7899554 | Williams et al. | Mar 2011 | B2 |
7901360 | Yang et al. | Mar 2011 | B1 |
7904170 | Harding | Mar 2011 | B2 |
7907993 | Ghanem et al. | Mar 2011 | B2 |
7920928 | Yang et al. | Apr 2011 | B1 |
7925343 | Min et al. | Apr 2011 | B1 |
7930022 | Zhang et al. | Apr 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7937135 | Ghanem et al. | May 2011 | B2 |
7937148 | Jacobson | May 2011 | B2 |
7937161 | Hastings et al. | May 2011 | B2 |
7941214 | Kleckner et al. | May 2011 | B2 |
7945333 | Jacobson | May 2011 | B2 |
7946997 | Hubinette | May 2011 | B2 |
7949404 | Hill | May 2011 | B2 |
7949405 | Feher | May 2011 | B2 |
7953486 | Daum et al. | May 2011 | B2 |
7953493 | Fowler et al. | May 2011 | B2 |
7962202 | Bhunia | Jun 2011 | B2 |
7974702 | Fain et al. | Jul 2011 | B1 |
7979136 | Young et al. | Jul 2011 | B2 |
7983753 | Severin | Jul 2011 | B2 |
7991467 | Markowitz et al. | Aug 2011 | B2 |
7991471 | Ghanem et al. | Aug 2011 | B2 |
7996087 | Cowan et al. | Aug 2011 | B2 |
8000791 | Sunagawa et al. | Aug 2011 | B2 |
8000807 | Morris et al. | Aug 2011 | B2 |
8001975 | DiSilvestro et al. | Aug 2011 | B2 |
8002700 | Ferek-Petric et al. | Aug 2011 | B2 |
8010209 | Jacobson | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8019434 | Quiles et al. | Sep 2011 | B2 |
8027727 | Freeberg | Sep 2011 | B2 |
8027729 | Sunagawa et al. | Sep 2011 | B2 |
8032219 | Neumann et al. | Oct 2011 | B2 |
8036743 | Savage et al. | Oct 2011 | B2 |
8046080 | Von Arx et al. | Oct 2011 | B2 |
8050297 | DelMain et al. | Nov 2011 | B2 |
8050759 | Stegemann et al. | Nov 2011 | B2 |
8050774 | Kveen et al. | Nov 2011 | B2 |
8055345 | Li et al. | Nov 2011 | B2 |
8055350 | Roberts | Nov 2011 | B2 |
8060212 | Rios et al. | Nov 2011 | B1 |
8065018 | Haubrich et al. | Nov 2011 | B2 |
8073542 | Doerr | Dec 2011 | B2 |
8078278 | Penner | Dec 2011 | B2 |
8078283 | Cowan et al. | Dec 2011 | B2 |
8079959 | Sanghera et al. | Dec 2011 | B2 |
8095123 | Gray | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103359 | Reddy | Jan 2012 | B2 |
8103361 | Moser | Jan 2012 | B2 |
8112148 | Giftakis et al. | Feb 2012 | B2 |
8114021 | Robertson et al. | Feb 2012 | B2 |
8116867 | Ostroff | Feb 2012 | B2 |
8121680 | Falkenberg et al. | Feb 2012 | B2 |
8123684 | Zdeblick | Feb 2012 | B2 |
8126545 | Flach et al. | Feb 2012 | B2 |
8131334 | Lu et al. | Mar 2012 | B2 |
8140161 | Willerton et al. | Mar 2012 | B2 |
8150521 | Crowley et al. | Apr 2012 | B2 |
8157813 | Ko et al. | Apr 2012 | B2 |
8160672 | Kim et al. | Apr 2012 | B2 |
8160702 | Mann et al. | Apr 2012 | B2 |
8160704 | Freeberg | Apr 2012 | B2 |
8165694 | Carbanaru et al. | Apr 2012 | B2 |
8175715 | Cox | May 2012 | B1 |
8180451 | Hickman et al. | May 2012 | B2 |
8185213 | Kveen et al. | May 2012 | B2 |
8187161 | Li et al. | May 2012 | B2 |
8195293 | Limousin et al. | Jun 2012 | B2 |
8195308 | Frank et al. | Jun 2012 | B2 |
8200341 | Sanghera et al. | Jun 2012 | B2 |
8204595 | Pianca et al. | Jun 2012 | B2 |
8204605 | Hastings et al. | Jun 2012 | B2 |
8209014 | Doerr | Jun 2012 | B2 |
8214043 | Matos | Jul 2012 | B2 |
8224244 | Kim et al. | Jul 2012 | B2 |
8229556 | Li | Jul 2012 | B2 |
8233985 | Bulkes et al. | Jul 2012 | B2 |
8265748 | Liu et al. | Sep 2012 | B2 |
8265757 | Mass et al. | Sep 2012 | B2 |
8262578 | Bharmi et al. | Oct 2012 | B1 |
8280521 | Haubrich et al. | Oct 2012 | B2 |
8285387 | Utsi et al. | Oct 2012 | B2 |
8290598 | Boon et al. | Oct 2012 | B2 |
8290600 | Hastings et al. | Oct 2012 | B2 |
8295939 | Jacobson | Oct 2012 | B2 |
8301254 | Mosesov et al. | Oct 2012 | B2 |
8315701 | Cowan et al. | Nov 2012 | B2 |
8315708 | Berthelsdorf et al. | Nov 2012 | B2 |
8321021 | Kisker et al. | Nov 2012 | B2 |
8321036 | Brockway et al. | Nov 2012 | B2 |
8332034 | Patangay et al. | Dec 2012 | B2 |
8332036 | Hastings et al. | Dec 2012 | B2 |
8335563 | Stessman | Dec 2012 | B2 |
8335568 | Heruth et al. | Dec 2012 | B2 |
8340750 | Prakash et al. | Dec 2012 | B2 |
8340780 | Hastings et al. | Dec 2012 | B2 |
8352025 | Jacobson | Jan 2013 | B2 |
8352028 | Wenger | Jan 2013 | B2 |
8352038 | Mao et al. | Jan 2013 | B2 |
8359098 | Lund et al. | Jan 2013 | B2 |
8364261 | Stubbs et al. | Jan 2013 | B2 |
8364276 | Willis | Jan 2013 | B2 |
8369959 | Meskens | Feb 2013 | B2 |
8369962 | Abrahamson | Feb 2013 | B2 |
8380320 | Spital | Feb 2013 | B2 |
8386051 | Rys | Feb 2013 | B2 |
8391981 | Mosesov | Mar 2013 | B2 |
8391990 | Smith et al. | Mar 2013 | B2 |
8406874 | Liu et al. | Mar 2013 | B2 |
8406879 | Shuros et al. | Mar 2013 | B2 |
8406886 | Gaunt et al. | Mar 2013 | B2 |
8412352 | Griswold et al. | Apr 2013 | B2 |
8417340 | Goossen | Apr 2013 | B2 |
8417341 | Freeberg | Apr 2013 | B2 |
8423149 | Hennig | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8433402 | Ruben et al. | Apr 2013 | B2 |
8433409 | Johnson et al. | Apr 2013 | B2 |
8433420 | Bange et al. | Apr 2013 | B2 |
8447412 | Dal Molin et al. | May 2013 | B2 |
8452413 | Young et al. | May 2013 | B2 |
8457740 | Osche | Jun 2013 | B2 |
8457742 | Jacobson | Jun 2013 | B2 |
8457744 | Janzig et al. | Jun 2013 | B2 |
8457761 | Wariar | Jun 2013 | B2 |
8478399 | Degroot et al. | Jul 2013 | B2 |
8478407 | Demmer et al. | Jul 2013 | B2 |
8478408 | Hastings et al. | Jul 2013 | B2 |
8478431 | Griswold et al. | Jul 2013 | B2 |
8483843 | Sanghera et al. | Jul 2013 | B2 |
8494632 | Sun et al. | Jul 2013 | B2 |
8504156 | Bonner et al. | Aug 2013 | B2 |
8509910 | Sowder et al. | Aug 2013 | B2 |
8515559 | Roberts et al. | Aug 2013 | B2 |
8525340 | Eckhardt et al. | Sep 2013 | B2 |
8527068 | Ostroff | Sep 2013 | B2 |
8532790 | Griswold | Sep 2013 | B2 |
8538526 | Stahmann et al. | Sep 2013 | B2 |
8541131 | Lund et al. | Sep 2013 | B2 |
8543205 | Ostroff | Sep 2013 | B2 |
8547248 | Zdeblick et al. | Oct 2013 | B2 |
8548605 | Ollivier | Oct 2013 | B2 |
8554333 | Wu et al. | Oct 2013 | B2 |
8565878 | Allavatam et al. | Oct 2013 | B2 |
8565882 | Matos | Oct 2013 | B2 |
8565897 | Regnier et al. | Oct 2013 | B2 |
8571678 | Wang | Oct 2013 | B2 |
8577327 | Makdissi et al. | Nov 2013 | B2 |
8588926 | Moore et al. | Nov 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8615310 | Khairkhahan et al. | Dec 2013 | B2 |
8626280 | Allavatam et al. | Jan 2014 | B2 |
8626294 | Sheldon et al. | Jan 2014 | B2 |
8626310 | Barror et al. | Jan 2014 | B2 |
8634908 | Cowan | Jan 2014 | B2 |
8634912 | Bornzin et al. | Jan 2014 | B2 |
8634919 | Hou et al. | Jan 2014 | B1 |
8639335 | Peichel et al. | Jan 2014 | B2 |
8644934 | Hastings et al. | Feb 2014 | B2 |
8649859 | Smith et al. | Feb 2014 | B2 |
8670842 | Bornzin et al. | Mar 2014 | B1 |
8676319 | Knoll | Mar 2014 | B2 |
8676335 | Katoozi et al. | Mar 2014 | B2 |
8700173 | Edlund | Apr 2014 | B2 |
8700181 | Bornzin et al. | Apr 2014 | B2 |
8705599 | dal Molin et al. | Apr 2014 | B2 |
8718766 | Wahlberg | May 2014 | B2 |
8718773 | Willis et al. | May 2014 | B2 |
8725260 | Shuros et al. | May 2014 | B2 |
8738133 | Shuros et al. | May 2014 | B2 |
8738147 | Hastings et al. | May 2014 | B2 |
8744555 | Allavatam et al. | Jun 2014 | B2 |
8744572 | Greenhut et al. | Jun 2014 | B1 |
8747314 | Stahmann et al. | Jun 2014 | B2 |
8755884 | Demmer et al. | Jun 2014 | B2 |
8758365 | Bonner et al. | Jun 2014 | B2 |
8768483 | Schmitt et al. | Jul 2014 | B2 |
8774572 | Hamamoto | Jul 2014 | B2 |
8781605 | Bornzin et al. | Jul 2014 | B2 |
8788035 | Jacobson | Jul 2014 | B2 |
8788053 | Jacobson | Jul 2014 | B2 |
8798740 | Samade et al. | Aug 2014 | B2 |
8798745 | Jacobson | Aug 2014 | B2 |
8798762 | Fain et al. | Aug 2014 | B2 |
8798770 | Reddy | Aug 2014 | B2 |
8805505 | Roberts | Aug 2014 | B1 |
8805528 | Corndort | Aug 2014 | B2 |
8812109 | Blomqvist et al. | Aug 2014 | B2 |
8818504 | Bodner et al. | Aug 2014 | B2 |
8827913 | Havel et al. | Sep 2014 | B2 |
8831747 | Min et al. | Sep 2014 | B1 |
8855789 | Jacobson | Oct 2014 | B2 |
8868186 | Kroll | Oct 2014 | B2 |
8886325 | Boling et al. | Nov 2014 | B2 |
8886339 | Faltys et al. | Nov 2014 | B2 |
8903473 | Rogers et al. | Dec 2014 | B2 |
8903500 | Smith et al. | Dec 2014 | B2 |
8903513 | Ollivier | Dec 2014 | B2 |
8909336 | Navarro-Paredes et al. | Dec 2014 | B2 |
8914131 | Bornzin et al. | Dec 2014 | B2 |
8923795 | Makdissi et al. | Dec 2014 | B2 |
8923963 | Bonner et al. | Dec 2014 | B2 |
8938300 | Rosero | Jan 2015 | B2 |
8942806 | Sheldon et al. | Jan 2015 | B2 |
8958892 | Khairkhahan et al. | Feb 2015 | B2 |
8977358 | Ewert et al. | Mar 2015 | B2 |
8989873 | Locsin | Mar 2015 | B2 |
8996109 | Karst et al. | Mar 2015 | B2 |
9002467 | Smith et al. | Apr 2015 | B2 |
9008776 | Cowan et al. | Apr 2015 | B2 |
9008777 | Dianaty et al. | Apr 2015 | B2 |
9014818 | Deterre et al. | Apr 2015 | B2 |
9017341 | Bornzin et al. | Apr 2015 | B2 |
9020611 | Khairkhahan et al. | Apr 2015 | B2 |
9037262 | Regnier et al. | May 2015 | B2 |
9042984 | Demmer et al. | May 2015 | B2 |
9072911 | Hastings et al. | Jul 2015 | B2 |
9072913 | Jacobson | Jul 2015 | B2 |
9072914 | Greenhut et al. | Jul 2015 | B2 |
9079035 | Sanghera et al. | Jul 2015 | B2 |
9155882 | Grubac et al. | Oct 2015 | B2 |
9168372 | Fain | Oct 2015 | B2 |
9168380 | Greenhut et al. | Oct 2015 | B1 |
9168383 | Jacobson et al. | Oct 2015 | B2 |
9180285 | Moore et al. | Nov 2015 | B2 |
9192774 | Jacobson | Nov 2015 | B2 |
9205225 | Khairkhahan et al. | Dec 2015 | B2 |
9216285 | Boling et al. | Dec 2015 | B1 |
9216293 | Berthiaume et al. | Dec 2015 | B2 |
9216298 | Jacobson | Dec 2015 | B2 |
9227077 | Jacobson | Jan 2016 | B2 |
9238145 | Wenzel et al. | Jan 2016 | B2 |
9242102 | Khairkhahan et al. | Jan 2016 | B2 |
9242113 | Smith et al. | Jan 2016 | B2 |
9248300 | Rys et al. | Feb 2016 | B2 |
9265436 | Min et al. | Feb 2016 | B2 |
9265962 | Dianaty et al. | Feb 2016 | B2 |
9272155 | Ostroff | Mar 2016 | B2 |
9278218 | Karst et al. | Mar 2016 | B2 |
9278229 | Reinke et al. | Mar 2016 | B1 |
9283381 | Grubac et al. | Mar 2016 | B2 |
9283382 | Berthiaume et al. | Mar 2016 | B2 |
9289612 | Sambelashvili et al. | Mar 2016 | B1 |
9302115 | Molin et al. | Apr 2016 | B2 |
9333364 | Echt et al. | May 2016 | B2 |
9358387 | Suwito et al. | Jun 2016 | B2 |
9358400 | Jacobson | Jun 2016 | B2 |
9364675 | Deterre et al. | Jun 2016 | B2 |
9370663 | Moulder | Jun 2016 | B2 |
9375580 | Bonner et al. | Jun 2016 | B2 |
9375581 | Baru et al. | Jun 2016 | B2 |
9381365 | Kibler et al. | Jul 2016 | B2 |
9393424 | Demmer et al. | Jul 2016 | B2 |
9393436 | Doerr | Jul 2016 | B2 |
9399139 | Demmer et al. | Jul 2016 | B2 |
9399140 | Cho et al. | Jul 2016 | B2 |
9409033 | Jacobson | Aug 2016 | B2 |
9427594 | Bornzin et al. | Aug 2016 | B1 |
9433368 | Stahmann et al. | Sep 2016 | B2 |
9433780 | Régnier et al. | Sep 2016 | B2 |
9457193 | Klimovitch et al. | Oct 2016 | B2 |
9492668 | Sheldon et al. | Nov 2016 | B2 |
9492669 | Demmer et al. | Nov 2016 | B2 |
9492674 | Schmidt et al. | Nov 2016 | B2 |
9492677 | Greenhut et al. | Nov 2016 | B2 |
9511233 | Sambelashvili | Dec 2016 | B2 |
9511236 | Varady et al. | Dec 2016 | B2 |
9511237 | Deterre et al. | Dec 2016 | B2 |
9522276 | Shen et al. | Dec 2016 | B2 |
9522280 | Fishier et al. | Dec 2016 | B2 |
9526522 | Wood et al. | Dec 2016 | B2 |
9526891 | Eggen et al. | Dec 2016 | B2 |
9526909 | Stahmann et al. | Dec 2016 | B2 |
9533163 | Klimovitch et al. | Jan 2017 | B2 |
9561382 | Persson et al. | Feb 2017 | B2 |
9566012 | Greenhut et al. | Feb 2017 | B2 |
9636511 | Carney et al. | May 2017 | B2 |
9669223 | Auricchio et al. | Jun 2017 | B2 |
9687654 | Sheldon et al. | Jun 2017 | B2 |
9687655 | Pertijs et al. | Jun 2017 | B2 |
9687659 | Von Arx et al. | Jun 2017 | B2 |
9694186 | Carney et al. | Jul 2017 | B2 |
9782594 | Stahmann et al. | Oct 2017 | B2 |
9782601 | Ludwig | Oct 2017 | B2 |
9789317 | Greenhut et al. | Oct 2017 | B2 |
9789319 | Sambelashvili | Oct 2017 | B2 |
9808617 | Ostroff et al. | Nov 2017 | B2 |
9808628 | Sheldon et al. | Nov 2017 | B2 |
9808631 | Maile et al. | Nov 2017 | B2 |
9808632 | Reinke et al. | Nov 2017 | B2 |
9808633 | Bonner et al. | Nov 2017 | B2 |
9808637 | Sharma et al. | Nov 2017 | B2 |
9855414 | Marshall et al. | Jan 2018 | B2 |
9855430 | Ghosh et al. | Jan 2018 | B2 |
9855435 | Sahabi et al. | Jan 2018 | B2 |
9861815 | Tran et al. | Jan 2018 | B2 |
20020032470 | Linberg | Mar 2002 | A1 |
20020035376 | Bardy et al. | Mar 2002 | A1 |
20020035377 | Bardy et al. | Mar 2002 | A1 |
20020035378 | Bardy et al. | Mar 2002 | A1 |
20020035380 | Rissmann et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042629 | Bardy et al. | Apr 2002 | A1 |
20020042630 | Bardy et al. | Apr 2002 | A1 |
20020042634 | Bardy et al. | Apr 2002 | A1 |
20020049475 | Bardy et al. | Apr 2002 | A1 |
20020052636 | Bardy et al. | May 2002 | A1 |
20020068958 | Bardy et al. | Jun 2002 | A1 |
20020072773 | Bardy et al. | Jun 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020091414 | Bardy et al. | Jul 2002 | A1 |
20020095196 | Linberg | Jul 2002 | A1 |
20020099423 | Berg et al. | Jul 2002 | A1 |
20020103510 | Bardy et al. | Aug 2002 | A1 |
20020107545 | Rissmann et al. | Aug 2002 | A1 |
20020107546 | Ostroff et al. | Aug 2002 | A1 |
20020107547 | Erlinger et al. | Aug 2002 | A1 |
20020107548 | Bardy et al. | Aug 2002 | A1 |
20020107549 | Bardy et al. | Aug 2002 | A1 |
20020107559 | Sanders et al. | Aug 2002 | A1 |
20020120299 | Ostroff et al. | Aug 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20020193846 | Pool et al. | Dec 2002 | A1 |
20030009203 | Lebel et al. | Jan 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030040779 | Engmark et al. | Feb 2003 | A1 |
20030041866 | Linberg et al. | Mar 2003 | A1 |
20030045805 | Sheldon et al. | Mar 2003 | A1 |
20030088278 | Bardy et al. | May 2003 | A1 |
20030097153 | Bardy et al. | May 2003 | A1 |
20030105497 | Zhu et al. | Jun 2003 | A1 |
20030114908 | Flach | Jun 2003 | A1 |
20030144701 | Mehra et al. | Jul 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030187461 | Chin | Oct 2003 | A1 |
20040024435 | Leckrone et al. | Feb 2004 | A1 |
20040068302 | Rodgers et al. | Apr 2004 | A1 |
20040087938 | Leckrone et al. | May 2004 | A1 |
20040088035 | Guenst et al. | May 2004 | A1 |
20040102830 | Williams | May 2004 | A1 |
20040127959 | Amundson et al. | Jul 2004 | A1 |
20040133242 | Chapman et al. | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040147973 | Hauser | Jul 2004 | A1 |
20040167558 | Igo et al. | Aug 2004 | A1 |
20040167587 | Thompson | Aug 2004 | A1 |
20040172071 | Bardy et al. | Sep 2004 | A1 |
20040172077 | Chinchoy | Sep 2004 | A1 |
20040172104 | Berg et al. | Sep 2004 | A1 |
20040176817 | Wahlstrand et al. | Sep 2004 | A1 |
20040176818 | Wahlstrand et al. | Sep 2004 | A1 |
20040176830 | Fang | Sep 2004 | A1 |
20040186529 | Bardy et al. | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040210292 | Bardy et al. | Oct 2004 | A1 |
20040210293 | Bardy et al. | Oct 2004 | A1 |
20040210294 | Bardy et al. | Oct 2004 | A1 |
20040215308 | Bardy et al. | Oct 2004 | A1 |
20040220624 | Ritscher et al. | Nov 2004 | A1 |
20040220626 | Wagner | Nov 2004 | A1 |
20040220639 | Mulligan et al. | Nov 2004 | A1 |
20040249431 | Ransbury et al. | Dec 2004 | A1 |
20040260348 | Bakken et al. | Dec 2004 | A1 |
20040267303 | Guenst | Dec 2004 | A1 |
20050061320 | Lee et al. | Mar 2005 | A1 |
20050070962 | Echt et al. | Mar 2005 | A1 |
20050102003 | Grabek et al. | May 2005 | A1 |
20050149138 | Min et al. | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182465 | Ness | Aug 2005 | A1 |
20050203410 | Jenkins | Sep 2005 | A1 |
20050283208 | Arx et al. | Dec 2005 | A1 |
20050288743 | Ahn et al. | Dec 2005 | A1 |
20060042830 | Maghribi et al. | Mar 2006 | A1 |
20060052829 | Sun et al. | Mar 2006 | A1 |
20060052830 | Spinelli et al. | Mar 2006 | A1 |
20060064135 | Brockway | Mar 2006 | A1 |
20060064149 | Belacazar et al. | Mar 2006 | A1 |
20060085039 | Hastings et al. | Apr 2006 | A1 |
20060085041 | Hastings et al. | Apr 2006 | A1 |
20060085042 | Hastings et al. | Apr 2006 | A1 |
20060095078 | Tronnes | May 2006 | A1 |
20060106442 | Richardson et al. | May 2006 | A1 |
20060116746 | Chin | Jun 2006 | A1 |
20060135999 | Bodner et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060161061 | Echt et al. | Jul 2006 | A1 |
20060200002 | Guenst | Sep 2006 | A1 |
20060206151 | Lu | Sep 2006 | A1 |
20060212079 | Routh et al. | Sep 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241705 | Neumann et al. | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060259088 | Pastore et al. | Nov 2006 | A1 |
20060265018 | Smith et al. | Nov 2006 | A1 |
20070004979 | Wojciechowicz et al. | Jan 2007 | A1 |
20070016098 | Kim et al. | Jan 2007 | A1 |
20070027508 | Cowan | Feb 2007 | A1 |
20070078490 | Cowan et al. | Apr 2007 | A1 |
20070088394 | Jacobson | Apr 2007 | A1 |
20070088396 | Jacobson | Apr 2007 | A1 |
20070088397 | Jacobson | Apr 2007 | A1 |
20070088398 | Jacobson | Apr 2007 | A1 |
20070088405 | Jacobson | Apr 2007 | A1 |
20070135882 | Drasler et al. | Jun 2007 | A1 |
20070135883 | Drasler et al. | Jun 2007 | A1 |
20070150037 | Hastings et al. | Jun 2007 | A1 |
20070150038 | Hastings et al. | Jun 2007 | A1 |
20070156190 | Cinbis | Jul 2007 | A1 |
20070219525 | Gelfand et al. | Sep 2007 | A1 |
20070219590 | Hastings et al. | Sep 2007 | A1 |
20070225545 | Ferrari | Sep 2007 | A1 |
20070233206 | Frikart et al. | Oct 2007 | A1 |
20070239244 | Morgan et al. | Oct 2007 | A1 |
20070255376 | Michels et al. | Nov 2007 | A1 |
20070276444 | Gelbart et al. | Nov 2007 | A1 |
20070293900 | Sheldon et al. | Dec 2007 | A1 |
20070293904 | Gelbart et al. | Dec 2007 | A1 |
20080004663 | Jorgenson | Jan 2008 | A1 |
20080021505 | Hastings et al. | Jan 2008 | A1 |
20080021519 | De Geest et al. | Jan 2008 | A1 |
20080021532 | Kveen et al. | Jan 2008 | A1 |
20080065183 | Whitehurst et al. | Mar 2008 | A1 |
20080065185 | Worley | Mar 2008 | A1 |
20080071318 | Brooke et al. | Mar 2008 | A1 |
20080109054 | Hastings et al. | May 2008 | A1 |
20080119911 | Rosero | May 2008 | A1 |
20080130670 | Kim et al. | Jun 2008 | A1 |
20080154139 | Shuros et al. | Jun 2008 | A1 |
20080154322 | Jackson et al. | Jun 2008 | A1 |
20080228234 | Stancer | Sep 2008 | A1 |
20080234771 | Chinchoy et al. | Sep 2008 | A1 |
20080243217 | Wildon | Oct 2008 | A1 |
20080269814 | Rosero | Oct 2008 | A1 |
20080269825 | Chinchoy et al. | Oct 2008 | A1 |
20080275518 | Ghanem et al. | Nov 2008 | A1 |
20080275519 | Ghanem et al. | Nov 2008 | A1 |
20080275522 | Dong et al. | Nov 2008 | A1 |
20080288039 | Reddy | Nov 2008 | A1 |
20080294208 | Willis et al. | Nov 2008 | A1 |
20080294210 | Rosero | Nov 2008 | A1 |
20080306359 | Zdeblick et al. | Dec 2008 | A1 |
20090018599 | Hastings et al. | Jan 2009 | A1 |
20090024180 | Kisker et al. | Jan 2009 | A1 |
20090036941 | Corbucci | Feb 2009 | A1 |
20090048646 | Katoozi et al. | Feb 2009 | A1 |
20090062895 | Stahmann et al. | Mar 2009 | A1 |
20090082827 | Kveen et al. | Mar 2009 | A1 |
20090082828 | Ostroff | Mar 2009 | A1 |
20090088813 | Brockway et al. | Apr 2009 | A1 |
20090131907 | Chin et al. | May 2009 | A1 |
20090135886 | Robertson et al. | May 2009 | A1 |
20090143835 | Pastore et al. | Jun 2009 | A1 |
20090171408 | Solem | Jul 2009 | A1 |
20090171414 | Kelly et al. | Jul 2009 | A1 |
20090204163 | Shuros et al. | Aug 2009 | A1 |
20090204170 | Hastings et al. | Aug 2009 | A1 |
20090210024 | Brooke | Aug 2009 | A1 |
20090216292 | Pless et al. | Aug 2009 | A1 |
20090234407 | Hastings et al. | Sep 2009 | A1 |
20090234411 | Sambelashvili et al. | Sep 2009 | A1 |
20090264949 | Dong et al. | Oct 2009 | A1 |
20090266573 | Engmark et al. | Oct 2009 | A1 |
20090270937 | Yonce et al. | Oct 2009 | A1 |
20090275998 | Burnes et al. | Nov 2009 | A1 |
20090275999 | Burnes et al. | Nov 2009 | A1 |
20090299447 | Jensen et al. | Dec 2009 | A1 |
20100013668 | Kantervik | Jan 2010 | A1 |
20100016911 | Willis et al. | Jan 2010 | A1 |
20100023085 | Wu et al. | Jan 2010 | A1 |
20100030061 | Canfield et al. | Feb 2010 | A1 |
20100030327 | Chatel | Feb 2010 | A1 |
20100042108 | Hibino | Feb 2010 | A1 |
20100056871 | Govari et al. | Mar 2010 | A1 |
20100063375 | Kassab et al. | Mar 2010 | A1 |
20100063562 | Cowan et al. | Mar 2010 | A1 |
20100094367 | Sen | Apr 2010 | A1 |
20100114209 | Krause et al. | May 2010 | A1 |
20100114214 | Morelli et al. | May 2010 | A1 |
20100125281 | Jacobson et al. | May 2010 | A1 |
20100168761 | Kassab et al. | Jul 2010 | A1 |
20100168819 | Freeberg | Jul 2010 | A1 |
20100198288 | Ostroff | Aug 2010 | A1 |
20100198304 | Wang | Aug 2010 | A1 |
20100217367 | Belson | Aug 2010 | A1 |
20100228308 | Cowan et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100234924 | Willis | Sep 2010 | A1 |
20100241185 | Mahapatra et al. | Sep 2010 | A1 |
20100249729 | Morris et al. | Sep 2010 | A1 |
20100286744 | Echt et al. | Nov 2010 | A1 |
20100305646 | Schulte | Dec 2010 | A1 |
20100312309 | Harding | Dec 2010 | A1 |
20100331905 | Li et al. | Dec 2010 | A1 |
20110022113 | Zdeblick et al. | Jan 2011 | A1 |
20110071586 | Jacobson | Mar 2011 | A1 |
20110077708 | Ostroff | Mar 2011 | A1 |
20110112600 | Cowan et al. | May 2011 | A1 |
20110118588 | Komblau et al. | May 2011 | A1 |
20110118810 | Cowan et al. | May 2011 | A1 |
20110137187 | Yang et al. | Jun 2011 | A1 |
20110144720 | Cowan et al. | Jun 2011 | A1 |
20110152970 | Jollota et al. | Jun 2011 | A1 |
20110160558 | Rassatt et al. | Jun 2011 | A1 |
20110160565 | Stubbs et al. | Jun 2011 | A1 |
20110160801 | Markowitz et al. | Jun 2011 | A1 |
20110160806 | Lyden et al. | Jun 2011 | A1 |
20110166620 | Cowan et al. | Jul 2011 | A1 |
20110166621 | Cowan et al. | Jul 2011 | A1 |
20110178567 | Pei et al. | Jul 2011 | A1 |
20110184491 | Kivi | Jul 2011 | A1 |
20110190835 | Brockway et al. | Aug 2011 | A1 |
20110208260 | Jacobson | Aug 2011 | A1 |
20110218587 | Jacobson | Sep 2011 | A1 |
20110230734 | Fain et al. | Sep 2011 | A1 |
20110237967 | Moore et al. | Sep 2011 | A1 |
20110245890 | Brisben et al. | Oct 2011 | A1 |
20110251660 | Griswold | Oct 2011 | A1 |
20110251662 | Griswold et al. | Oct 2011 | A1 |
20110270099 | Ruben et al. | Nov 2011 | A1 |
20110270339 | Murray, III et al. | Nov 2011 | A1 |
20110270340 | Pellegrini et al. | Nov 2011 | A1 |
20110276102 | Cohen | Nov 2011 | A1 |
20110282423 | Jacobson | Nov 2011 | A1 |
20120004527 | Thompson et al. | Jan 2012 | A1 |
20120029323 | Zhao | Feb 2012 | A1 |
20120029335 | Sudam et al. | Feb 2012 | A1 |
20120041508 | Rousso et al. | Feb 2012 | A1 |
20120059433 | Cowan et al. | Mar 2012 | A1 |
20120059436 | Fontaine et al. | Mar 2012 | A1 |
20120065500 | Rogers et al. | Mar 2012 | A1 |
20120078322 | Molin et al. | Mar 2012 | A1 |
20120089198 | Ostroff | Apr 2012 | A1 |
20120093245 | Makdissi et al. | Apr 2012 | A1 |
20120095521 | Hintz | Apr 2012 | A1 |
20120095539 | Khairkhahan et al. | Apr 2012 | A1 |
20120101540 | O'Brien et al. | Apr 2012 | A1 |
20120101553 | Reddy | Apr 2012 | A1 |
20120109148 | Bonner et al. | May 2012 | A1 |
20120109149 | Bonner et al. | May 2012 | A1 |
20120109236 | Jacobson et al. | May 2012 | A1 |
20120109259 | Bond et al. | May 2012 | A1 |
20120116489 | Khairkhahan et al. | May 2012 | A1 |
20120150251 | Giftakis et al. | Jun 2012 | A1 |
20120158111 | Khairkhahan et al. | Jun 2012 | A1 |
20120165827 | Khairkhahan et al. | Jun 2012 | A1 |
20120172690 | Anderson et al. | Jul 2012 | A1 |
20120172891 | Lee | Jul 2012 | A1 |
20120172892 | Grubac et al. | Jul 2012 | A1 |
20120172942 | Berg | Jul 2012 | A1 |
20120197350 | Roberts et al. | Aug 2012 | A1 |
20120197373 | Khairkhahan et al. | Aug 2012 | A1 |
20120215285 | Tahmasian et al. | Aug 2012 | A1 |
20120232565 | Kveen et al. | Sep 2012 | A1 |
20120277600 | Greenhut | Nov 2012 | A1 |
20120277606 | Ellingson et al. | Nov 2012 | A1 |
20120283795 | Stancer et al. | Nov 2012 | A1 |
20120283807 | Deterre et al. | Nov 2012 | A1 |
20120290025 | Keimel | Nov 2012 | A1 |
20120296381 | Matos | Nov 2012 | A1 |
20120303082 | Dong et al. | Nov 2012 | A1 |
20120316613 | Keefe et al. | Dec 2012 | A1 |
20130012151 | Hankins | Jan 2013 | A1 |
20130023975 | Locsin | Jan 2013 | A1 |
20130030484 | Zhang et al. | Jan 2013 | A1 |
20130035748 | Bonner et al. | Feb 2013 | A1 |
20130041422 | Jacobson | Feb 2013 | A1 |
20130053908 | Smith et al. | Feb 2013 | A1 |
20130053915 | Holmstrom et al. | Feb 2013 | A1 |
20130053921 | Bonner et al. | Feb 2013 | A1 |
20130060298 | Splett et al. | Mar 2013 | A1 |
20130066169 | Rys et al. | Mar 2013 | A1 |
20130072770 | Rao et al. | Mar 2013 | A1 |
20130079798 | Tran et al. | Mar 2013 | A1 |
20130079861 | Reinert et al. | Mar 2013 | A1 |
20130085350 | Schugt et al. | Apr 2013 | A1 |
20130085403 | Gunderson et al. | Apr 2013 | A1 |
20130085550 | Polefko et al. | Apr 2013 | A1 |
20130096649 | Martin et al. | Apr 2013 | A1 |
20130103047 | Steingisser et al. | Apr 2013 | A1 |
20130103109 | Jacobson | Apr 2013 | A1 |
20130110008 | Bourget et al. | May 2013 | A1 |
20130110127 | Bornzin et al. | May 2013 | A1 |
20130110192 | Tran et al. | May 2013 | A1 |
20130110219 | Bornzin et al. | May 2013 | A1 |
20130116529 | Min et al. | May 2013 | A1 |
20130116738 | Samade et al. | May 2013 | A1 |
20130116740 | Bornzin et al. | May 2013 | A1 |
20130116741 | Bornzin et al. | May 2013 | A1 |
20130123872 | Bornzin et al. | May 2013 | A1 |
20130123875 | Varady et al. | May 2013 | A1 |
20130131591 | Berthiaume et al. | May 2013 | A1 |
20130131693 | Berthiaume et al. | May 2013 | A1 |
20130138006 | Bornzin et al. | May 2013 | A1 |
20130150695 | Biela et al. | Jun 2013 | A1 |
20130150911 | Perschbacher et al. | Jun 2013 | A1 |
20130150912 | Perschbacher et al. | Jun 2013 | A1 |
20130184776 | Shuros et al. | Jul 2013 | A1 |
20130196703 | Masoud et al. | Aug 2013 | A1 |
20130197609 | Moore et al. | Aug 2013 | A1 |
20130231710 | Jacobson | Sep 2013 | A1 |
20130238072 | Deterre et al. | Sep 2013 | A1 |
20130238073 | Makdissi et al. | Sep 2013 | A1 |
20130245709 | Bohn et al. | Sep 2013 | A1 |
20130253342 | Griswold et al. | Sep 2013 | A1 |
20130253343 | Waldhauser et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253345 | Griswold et al. | Sep 2013 | A1 |
20130253346 | Griswold et al. | Sep 2013 | A1 |
20130253347 | Griswold et al. | Sep 2013 | A1 |
20130261497 | Pertijs et al. | Oct 2013 | A1 |
20130265144 | Banna et al. | Oct 2013 | A1 |
20130268042 | Hastings et al. | Oct 2013 | A1 |
20130274828 | Willis | Oct 2013 | A1 |
20130274847 | Ostroff | Oct 2013 | A1 |
20130282070 | Cowan et al. | Oct 2013 | A1 |
20130282073 | Cowan et al. | Oct 2013 | A1 |
20130296727 | Sullivan et al. | Nov 2013 | A1 |
20130303872 | Taff et al. | Nov 2013 | A1 |
20130310890 | Sweeney | Nov 2013 | A1 |
20130324825 | Ostroff et al. | Dec 2013 | A1 |
20130325081 | Karst et al. | Dec 2013 | A1 |
20130345770 | Dianaty et al. | Dec 2013 | A1 |
20140012344 | Hastings et al. | Jan 2014 | A1 |
20140018876 | Ostroff | Jan 2014 | A1 |
20140018877 | Demmer et al. | Jan 2014 | A1 |
20140031836 | Ollivier | Jan 2014 | A1 |
20140039570 | Carroll et al. | Feb 2014 | A1 |
20140039591 | Drasler et al. | Feb 2014 | A1 |
20140043146 | Makdissi et al. | Feb 2014 | A1 |
20140046395 | Regnier et al. | Feb 2014 | A1 |
20140046420 | Moore et al. | Feb 2014 | A1 |
20140058240 | Mothilal et al. | Feb 2014 | A1 |
20140058494 | Ostroff et al. | Feb 2014 | A1 |
20140074114 | Khairkhahan et al. | Mar 2014 | A1 |
20140074186 | Faltys et al. | Mar 2014 | A1 |
20140094891 | Pare et al. | Apr 2014 | A1 |
20140100627 | Min | Apr 2014 | A1 |
20140107723 | Hou et al. | Apr 2014 | A1 |
20140121719 | Bonner et al. | May 2014 | A1 |
20140121720 | Bonner et al. | May 2014 | A1 |
20140121722 | Sheldon et al. | May 2014 | A1 |
20140128935 | Kumar et al. | May 2014 | A1 |
20140135865 | Hastings et al. | May 2014 | A1 |
20140142648 | Smith et al. | May 2014 | A1 |
20140148675 | Nordstrom et al. | May 2014 | A1 |
20140148815 | Wenzel et al. | May 2014 | A1 |
20140155950 | Hastings et al. | Jun 2014 | A1 |
20140163631 | Maskara et al. | Jun 2014 | A1 |
20140169162 | Romano et al. | Jun 2014 | A1 |
20140172060 | Bornzin et al. | Jun 2014 | A1 |
20140180306 | Grubac et al. | Jun 2014 | A1 |
20140180366 | Edlund | Jun 2014 | A1 |
20140207013 | Lian et al. | Jul 2014 | A1 |
20140207149 | Hastings et al. | Jul 2014 | A1 |
20140207210 | Willis et al. | Jul 2014 | A1 |
20140214104 | Greenhut et al. | Jul 2014 | A1 |
20140222098 | Baru et al. | Aug 2014 | A1 |
20140222099 | Sweeney | Aug 2014 | A1 |
20140222109 | Moulder | Aug 2014 | A1 |
20140228913 | Molin et al. | Aug 2014 | A1 |
20140236172 | Hastings et al. | Aug 2014 | A1 |
20140236253 | Ghosh et al. | Aug 2014 | A1 |
20140243848 | Auricchio et al. | Aug 2014 | A1 |
20140255298 | Cole et al. | Sep 2014 | A1 |
20140257324 | Fain | Sep 2014 | A1 |
20140257422 | Herken | Sep 2014 | A1 |
20140257444 | Cole et al. | Sep 2014 | A1 |
20140276929 | Foster et al. | Sep 2014 | A1 |
20140303704 | Suwito et al. | Oct 2014 | A1 |
20140309706 | Jacobson | Oct 2014 | A1 |
20140379041 | Foster | Dec 2014 | A1 |
20150025612 | Haasl et al. | Jan 2015 | A1 |
20150032173 | Ghosh | Jan 2015 | A1 |
20150039041 | Smith et al. | Feb 2015 | A1 |
20150051609 | Schmidt et al. | Feb 2015 | A1 |
20150051610 | Schmidt et al. | Feb 2015 | A1 |
20150051611 | Schmidt et al. | Feb 2015 | A1 |
20150051612 | Schmidt et al. | Feb 2015 | A1 |
20150051613 | Schmidt et al. | Feb 2015 | A1 |
20150051614 | Schmidt et al. | Feb 2015 | A1 |
20150051615 | Schmidt et al. | Feb 2015 | A1 |
20150051616 | Haasl et al. | Feb 2015 | A1 |
20150051682 | Schmidt et al. | Feb 2015 | A1 |
20150057520 | Foster et al. | Feb 2015 | A1 |
20150057558 | Stahmann et al. | Feb 2015 | A1 |
20150057721 | Stahmann et al. | Feb 2015 | A1 |
20150088155 | Stahmann et al. | Mar 2015 | A1 |
20150105836 | Bonner et al. | Apr 2015 | A1 |
20150142069 | Sambelashvili | May 2015 | A1 |
20150142070 | Sambelashvili | May 2015 | A1 |
20150157861 | Aghassian | Jun 2015 | A1 |
20150165199 | Karst et al. | Jun 2015 | A1 |
20150173655 | Demmer et al. | Jun 2015 | A1 |
20150182751 | Ghosh et al. | Jul 2015 | A1 |
20150190638 | Smith et al. | Jul 2015 | A1 |
20150196756 | Stahmann et al. | Jul 2015 | A1 |
20150196757 | Stahmann et al. | Jul 2015 | A1 |
20150196758 | Stahmann et al. | Jul 2015 | A1 |
20150196769 | Stahmann et al. | Jul 2015 | A1 |
20150217119 | Nikolski et al. | Aug 2015 | A1 |
20150221898 | Chi et al. | Aug 2015 | A1 |
20150224315 | Stahmann | Aug 2015 | A1 |
20150224320 | Stahmann | Aug 2015 | A1 |
20150258345 | Smith et al. | Sep 2015 | A1 |
20150290468 | Zhang | Oct 2015 | A1 |
20150297902 | Stahmann et al. | Oct 2015 | A1 |
20150297905 | Greenhut et al. | Oct 2015 | A1 |
20150297907 | Zhang | Oct 2015 | A1 |
20150305637 | Greenhut et al. | Oct 2015 | A1 |
20150305638 | Zhang | Oct 2015 | A1 |
20150305639 | Greenhut et al. | Oct 2015 | A1 |
20150305640 | Reinke et al. | Oct 2015 | A1 |
20150305641 | Stadler et al. | Oct 2015 | A1 |
20150305642 | Reinke et al. | Oct 2015 | A1 |
20150306374 | Seifert et al. | Oct 2015 | A1 |
20150306375 | Marshall et al. | Oct 2015 | A1 |
20150306406 | Crutchfield et al. | Oct 2015 | A1 |
20150306407 | Crutchfield et al. | Oct 2015 | A1 |
20150306408 | Greenhut et al. | Oct 2015 | A1 |
20150321016 | O'Brien et al. | Nov 2015 | A1 |
20150328459 | Chin et al. | Nov 2015 | A1 |
20150360036 | Kane et al. | Dec 2015 | A1 |
20160007873 | Huelskamp et al. | Jan 2016 | A1 |
20160015322 | Anderson et al. | Jan 2016 | A1 |
20160023000 | Cho et al. | Jan 2016 | A1 |
20160030757 | Jacobson | Feb 2016 | A1 |
20160033177 | Barot et al. | Feb 2016 | A1 |
20160038742 | Stahmann et al. | Feb 2016 | A1 |
20160045131 | Siejko | Feb 2016 | A1 |
20160045132 | Siejko | Feb 2016 | A1 |
20160045136 | Siejko et al. | Feb 2016 | A1 |
20160059007 | Koop | Mar 2016 | A1 |
20160059022 | Stahmann et al. | Mar 2016 | A1 |
20160059024 | Stahmann et al. | Mar 2016 | A1 |
20160059025 | Stahmann et al. | Mar 2016 | A1 |
20160089539 | Gilkerson et al. | Mar 2016 | A1 |
20160121127 | Klimovitch et al. | May 2016 | A1 |
20160121128 | Fishier et al. | May 2016 | A1 |
20160121129 | Persson et al. | May 2016 | A1 |
20160144190 | Cao et al. | May 2016 | A1 |
20160151621 | Maile et al. | Jun 2016 | A1 |
20160175601 | Nabutovsky et al. | Jun 2016 | A1 |
20160213919 | Suwito et al. | Jul 2016 | A1 |
20160213937 | Reinke et al. | Jul 2016 | A1 |
20160213939 | Carney et al. | Jul 2016 | A1 |
20160228026 | Jackson | Aug 2016 | A1 |
20160271406 | Maile et al. | Sep 2016 | A1 |
20160277097 | Ludwig et al. | Sep 2016 | A1 |
20160296131 | An et al. | Oct 2016 | A1 |
20160317825 | Jacobson | Nov 2016 | A1 |
20160367823 | Cowan et al. | Dec 2016 | A1 |
20170014629 | Ghosh et al. | Jan 2017 | A1 |
20170021159 | Reddy et al. | Jan 2017 | A1 |
20170035315 | Jackson | Feb 2017 | A1 |
20170043173 | Sharma et al. | Feb 2017 | A1 |
20170043174 | Greenhut et al. | Feb 2017 | A1 |
20170056665 | Kane et al. | Mar 2017 | A1 |
20170056666 | Kane et al. | Mar 2017 | A1 |
20170112399 | Brisben et al. | Apr 2017 | A1 |
20170113040 | Brisben et al. | Apr 2017 | A1 |
20170113050 | Brisben et al. | Apr 2017 | A1 |
20170113053 | Brisben et al. | Apr 2017 | A1 |
20170156617 | Allavatam et al. | Jun 2017 | A1 |
20170189681 | Anderson | Jul 2017 | A1 |
20170281261 | Shuros et al. | Oct 2017 | A1 |
20170281952 | Shuros et al. | Oct 2017 | A1 |
20170281953 | Min et al. | Oct 2017 | A1 |
20170281955 | Maile et al. | Oct 2017 | A1 |
20170312531 | Sawchuk | Nov 2017 | A1 |
20170368360 | Hahn et al. | Dec 2017 | A1 |
20180008829 | An et al. | Jan 2018 | A1 |
20180008831 | An et al. | Jan 2018 | A1 |
20180021567 | An et al. | Jan 2018 | A1 |
20180021581 | An et al. | Jan 2018 | A1 |
20180021582 | An et al. | Jan 2018 | A1 |
20180021584 | An et al. | Jan 2018 | A1 |
20180036527 | Reddy et al. | Feb 2018 | A1 |
20180056075 | Hahn et al. | Mar 2018 | A1 |
20180056079 | Hahn et al. | Mar 2018 | A1 |
20180078773 | Thakur et al. | Mar 2018 | A1 |
20180116593 | An et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2008279789 | Oct 2011 | AU |
2008329620 | May 2014 | AU |
2014203793 | Jul 2014 | AU |
1003904 | Jan 1977 | CA |
202933393 | May 2013 | CN |
0362611 | Apr 1990 | EP |
503823 | Sep 1992 | EP |
1702648 | Sep 2006 | EP |
1904166 | Jun 2011 | EP |
2433675 | Jan 2013 | EP |
2441491 | Jan 2013 | EP |
2452721 | Nov 2013 | EP |
1948296 | Jan 2014 | EP |
2662113 | Jan 2014 | EP |
2471452 | Dec 2014 | EP |
2760541 | May 2016 | EP |
2833966 | May 2016 | EP |
2000051373 | Feb 2000 | JP |
2002502640 | Jan 2002 | JP |
2004512105 | Apr 2004 | JP |
2005508208 | Mar 2005 | JP |
2005245215 | Sep 2005 | JP |
2008540040 | Nov 2008 | JP |
5199867 | Feb 2013 | JP |
9500202 | Jan 1995 | WO |
9636134 | Nov 1996 | WO |
9724981 | Jul 1997 | WO |
9826840 | Jun 1998 | WO |
9939767 | Aug 1999 | WO |
0234330 | Jan 2003 | WO |
02098282 | May 2003 | WO |
2005000206 | Apr 2005 | WO |
2005042089 | May 2005 | WO |
2006065394 | Jun 2006 | WO |
2006086435 | Aug 2006 | WO |
2006113659 | Oct 2006 | WO |
2006124833 | May 2007 | WO |
2007075974 | Jul 2007 | WO |
2009006531 | Jan 2009 | WO |
2010088485 | Aug 2010 | WO |
2012054102 | Apr 2012 | WO |
2013080038 | Jun 2013 | WO |
2013098644 | Aug 2013 | WO |
2013184787 | Dec 2013 | WO |
2014120769 | Aug 2014 | WO |
2016118735 | Jul 2016 | WO |
Entry |
---|
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn) |
International Search Report and Written Opinion dated Nov. 23, 2017 for International Application No. PCT/US2017/048179. |
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013. |
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003. |
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970. |
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007. |
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013. |
Number | Date | Country | |
---|---|---|---|
20180056079 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62378866 | Aug 2016 | US |