This invention is related to the area of adult stem cells. In particular, it relates to harvesting, expansion, and reintroduction of stem cells.
Until recently, prevailing dogma posited that the heart is a terminally-differentiated organ with no regenerative potential. That view was undermined by the demonstration that the adult heart contains a small population of endogenous committed cardiac stem cells (CSCs), also known as cardiac progenitor cells, identifiable by their surface expression of c-Kit, MDR1, or Sca-1 (1-5). CSCs represent a logical cell source to exploit for cardiac regenerative therapy. Their expression of early cardiac transcription factors, and capability for ex vivo and in vivo differentiation toward the cardiac lineages, offer the prospect of enhanced cardiogenicity compared to other cell sources. CSCs can be isolated from human surgical samples without selective pressure and expanded in primary culture (6).
Cardiac surgical biopsies in culture yield spherical, multi-cellular clusters dubbed “cardiospheres” (6). Such cardiospheres are intriguingly cardiac-like in their expression of key myocardial structural proteins; when injected into the hearts of mice, human cardiospheres regenerated myocardium and vasculature in vivo.
There is a continuing need in the art for a simple, non-surgical method for harvesting and expansion of human CSCs for subsequent autologous, allogeneic, syngeneic, or xenogeneic transplantation.
According to one embodiment of the invention a method is provided for increasing function of a damaged or diseased heart of a mammal A population of cells is administered to the mammal. The population of cells thereby increases cardiac function in the mammal. The population of cells is obtained by the process of culturing cells obtained from cardiospheres on a surface as a monolayer.
Another embodiment of the invention provides a method for increasing function of a damaged or diseased heart of a mammal A population of in vitro-expanded cells is administered to the mammal. The cells have the capacity to form cardiospheres in suspension culture. The cells are not, however, in the form of cardiospheres when administered.
Yet another embodiment of the invention provides a method of treating a mammal with a damaged or diseased heart. Heart tissue is obtained from the damaged or diseased heart of the mammal or from a healthy heart of a donor via a percutaneous endomyocardial biopsy. The heart tissue is treated to obtain and expand a population of cardiac stem cells. The cardiac stem cells and/or their progeny are introduced into the damaged or diseased heart of the mammal.
According to another embodiment of the invention a method of treating a cardiac biopsy specimen is provided. The cardiac biopsy specimen is incubated in the presence of a protease. The cells liberated from the biopsy specimen by the protease incubation are collected. The collected cells are cultured on a surface as a monolayer to expand number of cells.
Another aspect of the invention is a method of treating a mammal with a damaged or diseased organ. Tissue is obtained from the damaged or diseased organ of the mammal or from a healthy organ of a donor via a percutaneous biopsy. The tissue is treated to obtain and expand a population of stem cells. The stem cells and/or their progeny are introduced into the damaged or diseased organ of the mammal.
A further aspect of the invention is a method for expanding a population of cardiac stem cells. One or more cardiospheres are disaggregated to individual cells or smaller aggregates of cells. The individual cells or smaller aggregates of cells are cultured on a surface as a monolayer.
The invention also provides a population of in vitro-expanded cells in a monolayer. The cells have the capacity to form cardiospheres in suspension culture. The cells are not, however, in the form of cardiospheres.
Still another aspect of the invention is a population of cells made by the process of culturing cells on a surface as a monolayer. The cells are obtained from disaggregated cardiospheres.
A further ramification of the invention is a method of treating a kidney biopsy specimen. The kidney biopsy specimen is incubated in the presence of a protease. The cells liberated from the biopsy specimen by the protease incubation are collected. The collected cells are cultured on a surface as a monolayer to expand number of cells.
These and other embodiments which will be apparent to those of skill in the art upon reading the specification provide the art with methods and populations for therapy of diseased and damaged organs.
The inventors have developed methods for expanding populations of resident stem cells from organs, such that only small initial samples are required. Such small initial samples can be obtained relatively non-invasively, by a simple percutaneous entry. Such procedures are so simple that that they can be done on an out-patient basis without major surgery or general anesthesia.
Resident stem cells are those which are found in a particular organ. Although applicants do not wish to be bound by any particular theory, it is believed that the stem cells found in a particular organ are not pluripotent, but rather, are committed to a particular branch of differentiation. Thus in the heart, one expects to find cardiac stem cells, and in the kidney one expects to find kidney stem cells. Nonetheless, it is possible that some of the stem cells expanded and isolated by the present invention are able to develop into cells of an organ other than the one from which they were obtained.
Cardiospheres are self-associating aggregates of cells which have been shown to display certain properties of cardiomyocytes. Thus cardiospheres have been shown to “beat” in vitro. They are excitable and contract in synchrony. The cells which form the cardiospheres have been obtained from heart biopsies. The cardiospheres can be disaggregated using standard means known in the art for separating cell clumps or aggregates, including, but not limited to trituration, agitation, shaking, blending. Preferably the cardiospheres are disaggregated to single cells, but at least they are disaggregated to smaller aggregates of cells. After disaggregation, the cells can be grown on a solid surface, such as a culture dish, a vessel wall or bottom, a microtiter dish, a bead, flask, roller bottle, etc. The surface can be glass or plastic, for example. The cells can adhere to the material of the solid surface or the solid surface can be coated with a substance which encourages adherence. Such substances are well known in the art and include, without limitation, fibronectin. hydrogels, polymers, laminin, serum, collagen, gelatin, and poly-L-lysine. Growth on the surface will preferably be monolayer growth.
After growth of disaggregated cells, they can be directly administered to a mammal in need thereof, or they can be grown under conditions which favor formation of cardiospheres. Repeated cycling between surface growth and suspension growth (cardiospheres) leads to a rapid and exponential expansion of desired cells. One can also eliminate the cardiosphere phase and repeatedly expand cells which are grown on a surface without forming cardiospheres at each passage.
The cell culturing of the present invention, whether on cell surfaces or in cardiospheres can be performed in the absence of exogenous growth factors. While fetal bovine serum can be used, other factors have been found to be expendable. For example the cells of the present invention are readily cultured in the absence of added EGF, bFGF, cardiotrophin-1, and thrombin.
Mammals which can be the donors and recipients of cells are not limited. While humans can provide both the cells and be the recipients, often other mammals will be useful. Pig cells can be transplanted into humans, for example. Such cross-species transplantation is known as xenogeneic transplantation. The transplantation can also be allogeneic, syngeneic, or autologous, all within a single species. Suitable mammals for use in the present invention include pets, such as dogs, cats, rabbits; agricultural animals, such as horses, cows, sheep, goats, pigs; as well as humans.
Administration of cells to a mammal can be by any means known in the art. Cardiac cells can be delivered systemically or locally to the heart. The cells are typically not in the form of cardiospheres. Typically they have the capacity to form cardiospheres, however, under suitable conditions. Local administration can be by catheter or during surgery. Systemic administration can be by intravenous or intraarterial injections, perfusion, or infusion. When the populations of cells of the invention are administered systemically, they migrate to the appropriate organ, e.g., the heart, if the cells are derived from resident heart stem cells. The beneficial effects which are observed upon administration of the cells to a mammal may be due to the cells per se, or due to products which are expressed by the cells. For example, it is possible that the engraftment of cells produces a favorable outcome. It is also possible that cytokines or chemokines or other diffusible factors stimulate resident cells to grow, reproduce, or perform better.
An effective dose of cardiac stem cells will typically be between 1×106 and 100×106, preferably between 10×106 and 50×106. Depending on the size of the damaged region of the heart, more or less cells can be used. A larger region of damage may require a larger dose of cells, and a small region of damage may require a smaller does of cells. On the basis of body weight of the recipient, an effective dose may be between 1 and 10×106 per kg of body weight, preferably between 1×106 and 5×106 cells per kg of body weight. Patient age, general condition, and immunological status may be used as factors in determining the dose administered.
Diseases which can be treated according to the present invention include acute and chronic heart disease. For example, the heart may have been subjected to an ischemic incident, or may be the subject of chronic ischemia or congestive heart disease. Patients may be candidates for heart transplants or recipients of heart transplants. In addition, hearts which are damaged due to trauma, such as damage induced during surgery or other accidental damage, can be treated with cells according to the invention.
Because of the excellent expansion of cell populations achieved, the initial cell samples need not be large. Thus, rather than starting with a conventional biopsy sample, obtained during surgery, a smaller sample can be used which eliminates the need for invasive surgery. Such samples can be obtained using a percutaneous bioptome. The bioptome can be used to access a tissue sample from any organ source, including heart, kidney, liver, spleen, and pancreas. Particularly suitable locations within the heart which can be accessed using a bioptome include the crista terminalis, the right ventricular endocardium, the septal or ventricle wall, and the atrial appendages. These locations have been found to provide abundant stem or progenitor cells. Accessing such locations is facilitated by use of a bioptome which is more flexible than the standard bioptome used for accessing the right ventricular endocardium for diagnostic purposes. Preferably the bioptome is also steerable by an external controller.
One of the enhancements that has led to the ability to use small biopsy samples as a starting material is the collection of a cell population which has previously been ignored or discarded. This cell population is formed by treating the biopsy sample with a protease and harvesting or collecting the cells that are liberated from the biopsy sample. The use of these liberated cells enhances the rate of cell population expansion. Examples of proteases which can be employed include collagenase, matrix metalloproteases, trypsin, and chymotrypsin. This technique can be applied to any organ from which resident stem cells are desired, including, for example, heart, kidney, lung, spleen, pancreas, and liver.
The cell populations which are collected, expanded, and/or administered according to the present invention can be genetically modified. They can be transfected with a coding sequence for a protein, for example. The protein can be beneficial for diseased organs, such as hearts. Examples of coding sequences which can be used include without limitation aid, connexin 43, other connexins, HIF1α, VEGF, FGF, PDGF, IGF, SCF, myocardin, cardiotrophin, L-type calcium channel a subunit, L-type calcium channel β subunit, and NRx2.5. The cells may be conveniently genetically modified before the cells are administered to a mammal Techniques for genetically modifying cells to express known proteins are well known in the art.
Cardiosphere-Derived Cells (CDCs) were easily harvested and readily expanded from biopsy specimens, and we have shown them to regenerate myocardium and improve function in an acute MI model. Remarkably, 69 of 70 patients had specimens that yielded cells by our method, making the goal of autologous cellular cardiomyoplasty attainable. Early clinical studies would logically focus on autologous cells, which are a perfect genetic match and thus present fewer safety concerns than allogeneic cells. A practical limitation with the use of autologous cells arises from the delay from tissue harvesting to cell transplantation. To avoid the delay, cell banks can be created of cardiac stem cells (CSCs) from patients with defined immunological features. These should permit matching of immunological antigens of donor cells and recipients for use in allogeneic transplantation. Antigens for matching are known in the art of transplantation.
Previous clinical studies in which bone marrow-derived stem cells were injected into patients within 2 weeks following acute MI, resulted in significantly improved LVEF with intracoronary infusion of 5-80×106 cells (15-17), leaving us to postulate that several million CDCs may constitute an effective therapeutic dose. From single bioptome specimens, millions of CDCs can be derived after just two passages; if biopsies were performed specifically for therapeutic purposes, the amount of starting material could easily be scaled upwards by ten-fold or more, further improving the overall cell yield. Patients with chronic heart failure are also good candidates for CDC therapy.
Minimizing the number of passages for expansion will minimize the risk of cancerous transformation of CDCs, a problem which has been observed in mesenchymal stem cells, but only after >6 passages (18). Another prominent risk of cell transplantation lies in the potential for arrhythmogenicity (19-21). Arrhythmias have not been documented with cardiac stem cells.
We have used CDCs derived from human biopsies without antigenic selection. We have purposely included all cells that are shed from the initial heart specimen and which go on to contribute to the formation of cardiospheres. Thus, our cells differ fundamentally from cardiac “stem cells” which have been isolated by antigenic panning for one or another putative stem cell marker (2, 3). Nevertheless, CDCs include a sizable population of cells that exhibit stem cell markers, and the observed regenerative ability in vivo further supports the notion that CDCs include a number of resident stem cells. We do not yet know whether a subfraction of CDCs suffices to produce the beneficial effects; indeed, we have avoided subfractionation since it would likely delay transplantation and raise regulatory concerns by introducing an artificial selection step.
Adult human cardiac stem cells have been shown to respond to a limited degree to a state of cardiac hypertrophy by proliferation and myocardial regeneration (4) and to acute ischemia by mobilization to the injury border zone and subsequent regeneration, but often ultimately succumb to apoptosis in a chronic ischemic setting (5). Significant progress is currently being made identifying means of enhancing in vivo survival, mobilization, proliferation, and subsequent differentiation of CSCs using animal models (22, 23). Our method for ex vivo expansion of resident stem cells for subsequent autologous transplantation may give these cell populations, the resident and the expanded, the combined ability to mediate myocardial regeneration to an appreciable degree. If so, cardiac stem cell therapy may well change our fundamental approach to the treatment of disorders of cardiac dysfunction.
The above disclosure generally describes the present invention. All references disclosed herein are expressly incorporated by reference. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only, and are not intended to limit the scope of the invention.
Following institutional guidelines, and with patient consent, human biopsy specimens were obtained from patients undergoing clinically-indicated percutaneous endomyocardial biopsy and processed as described (6) with modifications. Specimens consisted of whole or partial bioptome “bites”, stored on ice in high-potassium cardioplegic solution and processed within two hours (
To characterize the antigenic features of cells that form cardiospheres, cells obtained during the first harvesting (
CDCs were passaged two times as adherent monolayers and then used for flow cytometry experiments. c-Kit-APC, CD105-PE, and similarly conjugated isotype-matched control monoclonal antibodies were utilized. Gates were established by 7-AAD fluorescence and forward scatter. Data were collected using a FACScalibur cytofluorometer with CellQuest software.
The E. coli β-galactosidase (lacZ) gene was cloned into an adenoviral shuttle vector pAd-Lox to generate pAd-Lox-LacZ by Cre-Lox recombination in Cre-4293HEK cells as described (9). CDCs were passaged two times and transduced with virus as adherent monolayers. Transduction efficiencies of 90% were achieved with an MOI of 20 for 12 hours.
Adenovirally-transduced CDCs were injected into adult male SCID-beige mice 10-16 weeks of age. Myocardial infarction (MI) was created by ligation of the mid-left anterior descending coronary artery as described (10) and cells or vehicle injected under direct visualization at two peri-infarct sites. CDCs (105) were injected in a volume of 10 μL of PBS (5 μL at each site), with 105 primary human skin fibroblasts or 10 μL of PBS as controls. All mice underwent echocardiography prior to surgery (baseline) and again 20 days post-surgery. Ejection fractions (EFs) were calculated using V1.3.8 software from 2D long-axis views taken through the infarcted area. Mice were then euthanized at 0, 8, or 20 days, and the excised hearts prepared for histology.
Cardiospheres were collected for immunostaining when they had reached 100-1000 cells in size. Primary antibodies against c-Kit, CD105, cardiac myosin heavy chain (cMHC), and cardiac troponin I (cTnI) were used for immunostaining Secondary antibodies conjugated with Alexa fluorochromes were utilized Immunostaining was performed as previously described (6). Confocal fluorescence imaging was performed on an Eclipse TE2000-U equipped with a krypton/argon laser using UltraVIEW software.
Mouse hearts were excised, embedded in OCT compound, frozen, and sectioned in 5 nm slices. Tissue sections were stained with hematoxylin-eosin and b-galactosidase reagent or Masson's trichrome (11). Tissue viability within the infarct zone was calculated from Masson's trichrome stained sections (12, 13) by tracing the infarct borders manually and then using ImageJ software to calculate the percent of viable myocardium within the overall infarcted area, as demonstrated in
All results are presented as means±SEM. The significance of differences between any two groups was determined by the Student's t-test. Multiple groups were compared using GB-Stat software using one-way ANOVA and group pairs compared by the Bonferroni-Dunn method if a significant F value was obtained. A value of p<0.05 was considered significant.
The generalized estimation equation (GEE) approach was employed (14) to identify parameters that were independently associated with high cell yield. Data from patients who donated multiple specimens were treated as repeated measures. Those parameters that were significant (p<0.1) in the univariate models were included in the final, multivariate models. The analysis was performed with the use of SAS software. A final value of p<0.05 was considered significant. All p-values reported are 2-sided.
83 patient specimens (21.0±1.9 mg) were obtained for analysis. 72 of the specimens were obtained from patients who had received a heart transplant and 11 were from patients awaiting transplant. Nine transplanted patients donated multiple specimens. 78 of 83 specimens were processed, and 4 of those specimens never harvested were from repeat patients, yielding growth data from 69 of 70 patients. Cumulative growth curves for each specimen are depicted in
The rationale for using CDCs lies in the unique biology of cardiospheres and their cell progeny. The self-organizing cardiospheres create a niche environment favoring the expression of stem cell antigens (e.g., c-Kit and CD105,
CDCs from 4 different patients were utilized for in vivo experiments. To assess engraftment and cell migration, mice were injected with lac-Z-expressing CDCs and sacrificed at each of 3 time points (0, 8, and 20 days following injection). At day O, CDCs were located at injection sites in the border zone, but at day 8 and day 20 injected cells were distributed mainly within the MI area, forming islands or continuous bands of β-galactosidase positive tissue (
Eight mice were injected with CDCs and followed for 20 days; 11 mice served as controls (4 with fibroblasts, and 7 with PBS).
Echocardiograms were performed for all groups at 20 days;
Pluripotent stem cells may be isolated from cardiac biopsy specimens or other cardiac tissue using a multi-step process (see
Once digestion is complete, the remaining tissue fragments are washed with “Complete Explant Medium” (CEM) containing 20% heat-inactivated fetal calf serum, 100 Units/mL penicillin G, 100 μg/mL streptomycin, 2 mmol/L L-glutamine, and 0.1 mmol/L 2-mercaptoethanol in Iscove's modified Dulbecco medium to quench the digestion process. The tissue fragments are minced again with sterile forceps and scissors and then transferred to fibronectin-coated (25 μg/mL for ≧1 hour) tissue culture plates, where they are placed, evenly spaced, across the surface of the plate. A minimal amount of CEM is added to the plate, after which it is incubated at 37° C. and 5% CO2 for 30 minutes to allow the tissue fragments, now referred to as “explants”, to attach to the plate (
After a period of 8 or more days, a layer of stromal-like cells begins to arise from adherent explants, covering the surface of the plate surrounding the explant. Over this layer a population of small, round, phase-bright cells is seen (
In either media, after a period of 4-28 days, multicellular clusters (“cardiospheres”) will form, detach from the tissue culture surface and begin to grow in suspension (
The disclosure of each reference cited is expressly incorporated herein.
This application is a U.S. National Stage application under 35 U.S.C §371 of International Application No. PCT/US2005/040359 filed Nov. 8, 2005 (published in English as WO 2006/052925), which claims the benefit of provisional applications Ser. Nos. 60/625,695 filed Nov. 8, 2004, the disclosure of which is expressly incorporated herein.
Number | Date | Country | |
---|---|---|---|
60625695 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11666685 | Apr 2008 | US |
Child | 12622143 | US |