The mitral valve controls blood flow from the left atrium to the left ventricle of the heart, preventing blood from flowing backwards from the left ventricle into the left atrium so that it is instead forced through the aortic valve for delivery of oxygenated blood throughout the body. A properly functioning mitral valve opens and closes to enable blood flow in one direction. However, in some circumstances the mitral valve is unable to close properly, allowing blood to regurgitate back into the atrium. Such regurgitation can result in shortness of breath, fatigue, heart arrhythmias, and even heart failure.
Mitral valve regurgitation has several causes. Functional mitral valve regurgitation (FMR) is characterized by structurally normal mitral valve leaflets that are nevertheless unable to properly coapt with one another to close properly due to other structural deformations of surrounding heart structures. Other causes of mitral valve regurgitation are related to defects of the mitral valve leaflets, mitral valve annulus, or other mitral valve tissues. In some circumstances, mitral valve regurgitation is a result of infective endocarditis, blunt chest trauma, rheumatic fever, Marfan syndrome, carcinoid syndrome, or congenital defects to the structure of the heart. Other cardiac valves, in particular the tricuspid valve, can similarly fail to properly close, resulting in undesirable regurgitation.
Heart valve regurgitation is often treated by replacing the faulty valve with a replacement valve implant or by repairing the valve through an interventional procedure. In many instances, a procedure for implanting a replacement heart valve is performed on a patient that has undergone a previous repair procedure for treating the targeted valve, and the targeted valve to be replaced is already associated with an interventional implant. For example, a clip device may have been deployed at the targeted heart valve to fix or approximate leaflets of the valve to reduce regurgitation at the valve. In some circumstances, however, further degradation of the treated heart valve or other clinical circumstances can necessitate that the valve be replaced. In such cases, the previously deployed interventional implant must first be unfixed and/or extracted to prepare the site for deployment and positioning of the replacement valve. As a result, challenges can arise related to the handling of the prior implant(s) and preparation of the targeted site.
The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one exemplary technology area where some embodiments described herein may be practiced.
Certain embodiments described herein are directed to interventional devices for cutting tissue at a targeted cardiac valve, such as a mitral valve. One or more embodiments described herein enable detachment and/or removal of an implanted repair device from the cardiac valve in order to prepare the valve site to subsequently receive a replacement cardiac valve or other implant, or to receive other treatment.
In some embodiments, an interventional device includes a catheter having a proximal end and a distal end. The distal end is positionable at the targeted cardiac valve. A cutting mechanism is positionable at the distal end of the catheter. The cutting mechanism includes one or more cutting elements configured to cut valve tissue when engaged against the valve tissue. In some embodiments, the interventional device also includes a handle coupled to the proximal end of the catheter. The handle includes one or more cutting controls operatively coupled to the cutting mechanism to provide selective actuation of the cutting mechanism.
In some embodiments, the catheter is configured as a steerable catheter having a steerable distal end. The catheter includes one or more control lines extending from one or more steering controls of the handle to the distal end such that adjusting the tension of the one or more control lines causes deflection of the steerable distal end.
In some embodiments, the cutting mechanism is translatable within the catheter such that it is routable through the catheter to be passed beyond the distal end of the catheter and/or to be retracted proximally into the catheter. In some embodiments, the cutting mechanism includes blades arranged in a scissor-like fashion. In some embodiments, the cutting mechanism includes a cutting element configured as a needle structure and/or includes a cutting element configured as a blade structure. In some embodiments, the cutting mechanism is operatively coupled to the one or more cutting controls via one or more cutting control lines and/or an actuator rod.
In some embodiments, the handle includes or is connected to an electrical source for powering oscillating motion of the one or more cutting elements. In some embodiments, the cutting mechanism is configured to pass radio frequency electrical current and/or thermal energy to the targeted valve to cut the targeted valve.
In some embodiments, the cutting mechanism includes a noose structure positionable around valve tissue, the noose structure being configured to be selectively tightened around valve tissue to cut the valve tissue. In certain embodiments, the noose structure is formed from a hooked wire and a snare, the snare being configured to engage with the hooked wire to complete the noose structure, wherein one or both of the hooked wire and the snare are translatable relative to the distal end of the catheter. In other embodiments, the cutting system includes a first wire and a second wire, each extending distally past the distal end of the catheter, and first and second magnets (e.g., permanent magnets or electromagnets) respectively attached to the distal ends of the first and second wires. The magnets may be coupled to one another such that the first and second wires form the noose. In some embodiments including a noose structure, the targeted leaflet tissue may be cut by mechanically tightening the noose. Alternately, the targeted leaflet may be cut by contacting the noose to the tissue and applying radio frequency electrical and/or thermal energy.
In some embodiments, the cutting system includes one or more stabilizing prongs extendable distally past the distal end of the catheter, the one or more stabilizing prongs being configured to engage against tissue at the targeted valve to stabilize the distal end of the catheter relative to the targeted valve. In some embodiments, the cutting system includes a stabilizing cup which is extendable distally past the distal end of the catheter and is configured to engage with targeted leaflet tissue. The cup may also be configured to hold an interventional device implanted into the leaflet tissue such that the interventional device may be captured and removed from the patient after the surrounding and/or adjacent leaflet tissue has been cut.
Certain embodiments are directed to methods of cutting cardiac valve tissue at a targeted cardiac valve, such as a mitral valve. In some embodiments, a method includes positioning a delivery catheter within a body so that a distal end of the delivery catheter is positioned near the targeted cardiac valve, routing a cutting mechanism through the delivery catheter so that the cutting mechanism at least partially extends distally beyond the distal end of the catheter to enable the cutting mechanism to engage with leaflet tissue of the targeted cardiac valve, and actuating the cutting mechanism to cut at least one leaflet of the approximated adjacent leaflets.
In some implementations, the targeted cardiac valve is associated with an interventional implant (such as an interventional clip) that approximates adjacent leaflets of the targeted cardiac valve. Performance of the method therefore results in the cutting mechanism detaching the interventional implant from the at least one cut leaflet. Some methods include cutting all leaflets to which the interventional implant is attached. For example, both the anterior and the posterior leaflet of a mitral valve may be cut. The excised implant may then be removed from the patient (e.g., using a stabilizing cup).
In some embodiments, the targeted cardiac valve is a mitral valve, and the at least one cut leaflet is the anterior leaflet. In some implementations, the interventional device remains attached to the posterior leaflet. The targeted cardiac valve could also be the tricuspid, aortic, or pulmonic valve, for example.
Additional features and advantages will be set forth in part in the description that follows, and in part will be obvious from the description, or may be learned by practice of the embodiments disclosed herein. The objects and advantages of the embodiments disclosed herein will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing brief summary and the following detailed description are exemplary and explanatory only and are not restrictive of the embodiments disclosed herein or as claimed.
In order to describe the manner in which the above-recited and other advantages and features of the invention can be obtained, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Certain embodiments described herein are directed to interventional devices configured for cutting a cardiac valve, such as to enable removal of an implanted repair device from the cardiac valve and/or to prepare the site of the valve to subsequently receive a replacement cardiac valve or other implant. Certain embodiments are configured to route and/or deliver a cutting mechanism to a targeted cardiac valve through a transcatheter approach, such as a transfemoral, radial, or transjugular approach. Alternatively, other implementations can utilize a transapical approach for reaching the targeted cardiac valve.
Although many of the exemplary embodiments described herein are described in the context of cutting a mitral valve and releasing one or more interventional clip devices, it will be understood that similar principles may be applied to other implementations in which other implanted interventional devices are cut away from a mitral valve and/or in which one or more clips or other interventional devices are removed/cut away from another cardiac valve, such as the tricuspid valve. More generally, the exemplary embodiments described herein may be applied in other implementations involving removal of a previously implanted or deployed device from tissue.
In some embodiments, the control 108 is operatively coupled to one or more control lines 114 (e.g., pull wires) extending from the handle 104 through the catheter 102 to the distal end 106 (e.g., through one or more lumens in the catheter 102). Actuation of the control 108 adjusts the tensioning of a control line 114 so as to pull the guide catheter 102 in the corresponding direction. The illustrated embodiment is shown as having a single control 108 for providing steerability in two opposing directions. Alternative embodiments may include additional controls (and associated control lines) for providing control in one or more additional directions.
The catheter 102 includes a lumen 116 through which the cutting mechanism 112 may be routed. Accordingly, the delivery system 100 may be utilized by positioning the distal end 106 near a targeted cardiac valve, and then routing the cutting mechanism 112 through the catheter 102 and out of the distal end 106 so as to position the cutting mechanism 112 at the targeted valve. Alternatively, a cutting mechanism 112 can be coupled to the distal end 106 so that it is positioned at the targeted valve as the distal end 106 reaches the targeted valve. As described previously, the delivery system 100 may be utilized in a transfemoral, transjugular, radial, or transapical approach, for example. The delivery system 100 may be utilized to guide any of the cutting mechanisms described herein, or equivalents thereof.
As shown, the clip device 220 is coupled to the anterior leaflet 10 and posterior leaflet 12. In many instances, an implant such as the clip device 220 will be embedded with the leaflet tissue and/or other surrounding tissues as a result of tissue ingrowth, making it difficult to extract the implant. As shown in
In contrast, cutting the posterior leaflet 12 so that the clip device 220 remains on the anterior leaflet 10, can result in weighing down of the anterior leaflet 10, which in turn can lead to detrimental interference with the LVOT. However, certain applications may allow for leaving the clip device 220 on the anterior leaflet 10 with little or acceptable risk of LVOT interference and/or may involve subsequent removal/extraction of the clip device 220 from the anterior leaflet 10. Accordingly, methods in which a posterior valve is cut are also included within this disclosure.
As shown by arrow 313, the cutting system shown in
As shown in the expanded views of
In one configuration, shown in
As illustrated, motor 421 can be associated with the handle 404 and connected to linkage(s) 423 extending to the cutting mechanism 412 and thereby mechanically coupling the motor 421 to the cutting mechanism 412. The motor 421 can transfer, through the linkage(s) 423, rotative (as shown by arrow 413) and/or longitudinally oscillating (as shown by arrow 410) motion. This motion powers the cutting mechanism 412 and allows it to cut through targeted cardiac tissue or other targeted tissue.
The illustrated handle 604 includes an RF energy source 622. The RF energy from the RF energy source 622 may be transmitted distally along the length of the catheter 602 to the tip 620 of the cutting mechanism 612. For example, the RF energy may be transmitted through a conductor 624, which may be formed as a metallic cable or other structure suitable for transmitting RF energy. The handle 604 also includes a control 608 configured to enable control of the cutting mechanism 612 and/or adjustment to the RF energy source 622 and the applied RF energy.
In an alternative embodiment, the tip 620 of the cutting mechanism 612 is configured as a heat-transmitting structure capable of transmitting sufficient thermal energy (not induced using RF electrical current) to the targeted valve tissue to ablate and cut the valve tissue. In such embodiments, the cutting mechanism 612 is thermally coupled to a source of thermal energy at the handle 604, and the thermal energy is transmitted through the length of the catheter 602 (e.g., through conductor 624) and sufficiently concentrated at the tip 620 of the cutting mechanism 612 to provide tissue cutting functionality.
The illustrated cutting system may also include a collet 722 through which both the first wire 715 and the second wire 718 pass. The collet 722 may be configured to lock onto the wires 715 and 718 and may be translatable with respect to the catheter 702. In this manner, the diameter of the exposed portion of the noose structure 719 may be adjusted by translating the collet 722 after the collet 722 has been locked to the wires 715 and 718. For example, the diameter of the noose structure 719 may be enlarged by pushing the collet 722 distally to move more of the wires 715 and 718 distally beyond the catheter 702, and may be reduced by retracting the collet 722 proximally to pull more of the wires 715 and 718 within the catheter 702.
Although the illustrated collet 722 is shown as being disposed within the catheter 702, alternative embodiments position the collet 722 further proximally, such as at the handle 704. In some embodiments, the collet 722 and/or wires 715, 718 may be operatively coupled to a control 708 disposed at the handle 704, with the wires 715 and 718 extending proximally to the control 708 at the handle 704. As with other embodiments described herein, the control 708 may be configured as a button.
In the illustrated embodiment, a pair of prongs 824 extend distally from a distal end 806 of the catheter 802 along with the cutting mechanism 812. Other embodiments may include a different number of prongs (e.g., three, four, or more). Similar to other embodiments described above, the cutting mechanism 812 may be controlled using one or more control elements operatively coupled to the cutting mechanism 812 and to a control 808 of the handle 804. As with the cutting mechanism 812, the prongs 824 may be controllable via one or more controls 809 of the handle 804, such as by adjusting the tension in one or more control lines 814 extending through the catheter 802 to the prongs 824, through the translation of an actuator rod or catheter relative to the prongs 824, and/or through another control mechanism that operatively connects the handle 804 to the prongs 824. In some embodiments, the prongs 824 may be replaced by or may be used in conjunction with a stabilizing cup (see
The described stabilization components may be utilized in conjunction with one or more components of any of the other cutting mechanism embodiments described herein in order to stabilize the position of the distal end 806 of the catheter 802 relative to the targeted valve tissue. For example,
Embodiments described herein are described in the context of cutting leaflet tissue around a single deployed clip device, such as by cutting a single leaflet in a mitral valve (preferably the anterior leaflet). In other implementations, both leaflets may be cut so as to completely free the clip device. In such applications, prongs (such as the prongs 824 illustrated in
In the illustrated embodiment, the cup 926 is attached to an inner member 928 which extends proximally from the cup 926 toward the handle. By advancing or retracting the inner member 928 relative to the catheter 902, the cup 926 may be respectively advanced past the distal end of the catheter 902 or retracted into the catheter 902. The inner member 928 may be formed, for example, as a hypotube, push rod, catheter, or other suitable structure capable of transmitting longitudinal movement to the cup 926.
The cup 926 may be formed as an expandable structure capable of moving between a collapsed, lower profile configuration and an expanded, fully open configuration. For example, the cup 926 may be biased toward the expanded, fully open position such that when the cup 926 is advanced past the distal end of the catheter 902 (and/or the catheter 902 is retracted to expose the cup 926) the cup 926 self-expands from the collapsed configuration to the open, expanded position. As shown in
As shown in
In preferred embodiments, the catheter 902 is a multi-lumen catheter including a lumen for the cutting mechanism 912 and a separate lumen for the cup 926 and inner member 928. Alternatively, the catheter 902 may be a single-lumen catheter. In such a single-lumen catheter embodiment, the cutting system may additionally include a tether 936 coupling the cup 926 to the cutting mechanism 912, as shown in
As shown in
The terms “approximately,” “about,” and “substantially” as used herein represent an amount or condition close to the stated amount or condition that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” and “substantially” may refer to an amount or condition that deviates by less than 10%, or by less than 5%, or by less than 1%, or by less than 0.1%, or by less than 0.01% from a stated amount or condition.
Elements described in relation to any embodiment depicted and/or described herein may be combinable with elements described in relation to any other embodiment depicted and/or described herein. For example, any element described in relation to the delivery system 100 of
This application is a divisional of U.S. patent application Ser. No. 15/724,545, filed Oct. 4, 2017, titled “Cardiac Valve Cutting Device,” which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/404,558, filed Oct. 5, 2016, titled “Cardiac Valve Cutting Device,” the disclosure of which is incorporated herein by this reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1996261 | Storz | Apr 1935 | A |
2097018 | Chamberlin | Oct 1937 | A |
2108206 | Mecker | Feb 1938 | A |
3296668 | Aiken | Jan 1967 | A |
3378010 | Codling et al. | Apr 1968 | A |
3470875 | Johnson | Oct 1969 | A |
3557780 | Sato | Jan 1971 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3675639 | Cimber | Jul 1972 | A |
3874338 | Happel | Apr 1975 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4064881 | Meredith | Dec 1977 | A |
4091815 | Larsen | May 1978 | A |
4112951 | Hulka et al. | Sep 1978 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4297749 | Davis et al. | Nov 1981 | A |
4312337 | Donohue | Jan 1982 | A |
4425908 | Simon | Jan 1984 | A |
4458682 | Cerwin | Jul 1984 | A |
4484579 | Meno et al. | Nov 1984 | A |
4487205 | Di et al. | Dec 1984 | A |
4498476 | Cerwin et al. | Feb 1985 | A |
4510934 | Batra | Apr 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4641366 | Yokoyama et al. | Feb 1987 | A |
4686965 | Bonnet et al. | Aug 1987 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4872455 | Pinchuk et al. | Oct 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4917089 | Sideris | Apr 1990 | A |
4944295 | Gwathmey et al. | Jul 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5015249 | Nakao et al. | May 1991 | A |
5019096 | Fox et al. | May 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5049153 | Nakao et al. | Sep 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5071428 | Chin et al. | Dec 1991 | A |
5078722 | Stevens | Jan 1992 | A |
5078723 | Dance et al. | Jan 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5125758 | Dewan | Jun 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5190554 | Coddington et al. | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5275578 | Adams | Jan 1994 | A |
5282845 | Bush et al. | Feb 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5306283 | Conners | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5325845 | Adair | Jul 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336227 | Nakao et al. | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5368564 | Savage | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5383886 | Kensey et al. | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5391182 | Chin | Feb 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5417684 | Jackson | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423830 | Schneebaum et al. | Jun 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5423858 | Bolanos et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5447966 | Hermes et al. | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5462527 | Stevens-Wright et al. | Oct 1995 | A |
5472044 | Hall et al. | Dec 1995 | A |
5472423 | Gronauer | Dec 1995 | A |
5476470 | Fitzgibbons, Jr. | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5487746 | Yu et al. | Jan 1996 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5520701 | Lerch | May 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5562678 | Booker | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5575802 | McQuilkin et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5593424 | Northrup, III | Jan 1997 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5618306 | Roth et al. | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5620461 | Muijs et al. | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5634932 | Schmidt | Jun 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5639277 | Mariant et al. | Jun 1997 | A |
5640955 | Ockuly et al. | Jun 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5695504 | Gifford et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5702825 | Keita et al. | Dec 1997 | A |
5706824 | Whittier | Jan 1998 | A |
5709707 | Lock et al. | Jan 1998 | A |
5713910 | Gordon et al. | Feb 1998 | A |
5713911 | Racenet et al. | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5718725 | Sterman et al. | Feb 1998 | A |
5719725 | Nakao | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741271 | Nakao | Apr 1998 | A |
5741280 | Fleenor | Apr 1998 | A |
5746747 | McKeating | May 1998 | A |
5749828 | Yeung | May 1998 | A |
5759193 | Burbank et al. | Jun 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5782845 | Shewchuk | Jul 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810847 | Laufer et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5814029 | Hassett | Sep 1998 | A |
5820591 | Thompson et al. | Oct 1998 | A |
5820592 | Hammerslag | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5824065 | Gross | Oct 1998 | A |
5827237 | Macoviak et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5833671 | Macoviak et al. | Nov 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843031 | Hermann et al. | Dec 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855271 | Eubanks et al. | Jan 1999 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5868733 | Ockuly et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879307 | Chio et al. | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5891160 | Williamson et al. | Apr 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5906620 | Nakao | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5928224 | Laufer | Jul 1999 | A |
5944733 | Engelson | Aug 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5957973 | Quiachon et al. | Sep 1999 | A |
5972020 | Carpentier et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5980455 | Daniel et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
5997547 | Nakao | Dec 1999 | A |
6007546 | Snow | Dec 1999 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6019722 | Spence et al. | Feb 2000 | A |
6022360 | Reimels et al. | Feb 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6059757 | Macoviak et al. | May 2000 | A |
6060628 | Aoyama et al. | May 2000 | A |
6060629 | Pham et al. | May 2000 | A |
6063106 | Gibson | May 2000 | A |
6066146 | Carroll et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6088889 | Luther et al. | Jul 2000 | A |
6090118 | McGuckin, Jr. | Jul 2000 | A |
6099505 | Ryan et al. | Aug 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6110145 | Macoviak | Aug 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6123665 | Kawano | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6126658 | Baker | Oct 2000 | A |
6132447 | Dorsey | Oct 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6139508 | Simpson et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6162233 | Williamson et al. | Dec 2000 | A |
6165164 | Hill et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171320 | Monassevitch | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6180059 | Divino et al. | Jan 2001 | B1 |
6182664 | Cosgrove | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190408 | Melvin | Feb 2001 | B1 |
6197043 | Davidson | Mar 2001 | B1 |
6203531 | Ockuly et al. | Mar 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6210419 | Mayenberger et al. | Apr 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6267746 | Bumbalough | Jul 2001 | B1 |
6267781 | Tu | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6283962 | Tu et al. | Sep 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6306133 | Tu et al. | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6319250 | Falwell et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6368326 | Dakin et al. | Apr 2002 | B1 |
6387104 | Pugsley et al. | May 2002 | B1 |
6402780 | Williamson et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6419640 | Taylor | Jul 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6464707 | Bjerken | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6517550 | Konya et al. | Feb 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6540755 | Ockuly et al. | Apr 2003 | B2 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6585761 | Taheri | Jul 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St et al. | Oct 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6669687 | Saadat | Dec 2003 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6701929 | Hussein | Mar 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709382 | Horner | Mar 2004 | B1 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719767 | Kimblad | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6740107 | Loeb et al. | May 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755777 | Schweich et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6860179 | Hopper et al. | Mar 2005 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6926715 | Hauck et al. | Aug 2005 | B1 |
6932810 | Ryan | Aug 2005 | B2 |
6945978 | Hyde | Sep 2005 | B1 |
6949122 | Adams et al. | Sep 2005 | B2 |
6966914 | Abe | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
7004970 | Cauthen et al. | Feb 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7033390 | Johnson et al. | Apr 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7291168 | Macoviak et al. | Nov 2007 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7464712 | Oz et al. | Dec 2008 | B2 |
7497822 | Kugler et al. | Mar 2009 | B1 |
7533790 | Knodel et al. | May 2009 | B1 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7651502 | Jackson | Jan 2010 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7955340 | Michlitsch et al. | Jun 2011 | B2 |
8216234 | Long | Jul 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8435237 | Bahney | May 2013 | B2 |
8500768 | Cohen | Aug 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8623077 | Cohn | Jan 2014 | B2 |
8690858 | Machold et al. | Apr 2014 | B2 |
8821518 | Saliman et al. | Sep 2014 | B2 |
8926588 | Berthiaume et al. | Jan 2015 | B2 |
9126032 | Khairkhahan et al. | Sep 2015 | B2 |
9211119 | Hendricksen et al. | Dec 2015 | B2 |
9370341 | Ceniccola | Jun 2016 | B2 |
9498331 | Chang et al. | Nov 2016 | B2 |
9572666 | Basude et al. | Feb 2017 | B2 |
9770256 | Cohen et al. | Sep 2017 | B2 |
9949833 | McCleary et al. | Apr 2018 | B2 |
10667804 | Basude et al. | Jun 2020 | B2 |
11013554 | Coates | May 2021 | B2 |
11406250 | Saadat et al. | Aug 2022 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010004715 | Duran et al. | Jun 2001 | A1 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010010005 | Kammerer et al. | Jul 2001 | A1 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010022872 | Marui | Sep 2001 | A1 |
20010037084 | Nardeo | Nov 2001 | A1 |
20010039411 | Johansson et al. | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20010044635 | Niizeki et al. | Nov 2001 | A1 |
20020013547 | Paskar | Jan 2002 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020022848 | Garrison et al. | Feb 2002 | A1 |
20020026233 | Shaknovich | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020055767 | Forde et al. | May 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020055775 | Carpentier et al. | May 2002 | A1 |
20020058910 | Hermann et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020077687 | Ahn | Jun 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020107534 | Schaefer et al. | Aug 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020158528 | Tsuzaki et al. | Oct 2002 | A1 |
20020161378 | Downing | Oct 2002 | A1 |
20020169360 | Taylor et al. | Nov 2002 | A1 |
20020173811 | Tu et al. | Nov 2002 | A1 |
20020173841 | Ortiz et al. | Nov 2002 | A1 |
20020183766 | Seguin | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20030005797 | Hopper et al. | Jan 2003 | A1 |
20030045778 | Online et al. | Mar 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078654 | Taylor et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20030130669 | Damarati | Jul 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030171776 | Adams et al. | Sep 2003 | A1 |
20030187467 | Schreck | Oct 2003 | A1 |
20030195562 | Collier et al. | Oct 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20030233038 | Hassett | Dec 2003 | A1 |
20040002719 | Oz et al. | Jan 2004 | A1 |
20040003819 | St et al. | Jan 2004 | A1 |
20040015232 | Shu et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040019378 | Hlavka et al. | Jan 2004 | A1 |
20040024414 | Downing | Feb 2004 | A1 |
20040030382 | St et al. | Feb 2004 | A1 |
20040039442 | St et al. | Feb 2004 | A1 |
20040039443 | Solem et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040059345 | Nakao | Mar 2004 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040078053 | Berg et al. | Apr 2004 | A1 |
20040087975 | Lucatero et al. | May 2004 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040097878 | Anderson et al. | May 2004 | A1 |
20040097979 | Svanidze et al. | May 2004 | A1 |
20040106989 | Wilson et al. | Jun 2004 | A1 |
20040111099 | Nguyen et al. | Jun 2004 | A1 |
20040116848 | Gardeski et al. | Jun 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040127849 | Kantor | Jul 2004 | A1 |
20040127981 | Rahdert et al. | Jul 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133062 | Pai et al. | Jul 2004 | A1 |
20040133063 | McCarthy et al. | Jul 2004 | A1 |
20040133082 | Abraham-Fuchs et al. | Jul 2004 | A1 |
20040133192 | Houser et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040147826 | Peterson | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040152847 | Emri et al. | Aug 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040153144 | Seguin | Aug 2004 | A1 |
20040158123 | Jayaraman | Aug 2004 | A1 |
20040162610 | Liska et al. | Aug 2004 | A1 |
20040167539 | Kuehn et al. | Aug 2004 | A1 |
20040186486 | Roue et al. | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040220593 | Greenhalgh | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040225233 | Frankowski et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040225305 | Ewers et al. | Nov 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040242960 | Orban, III | Dec 2004 | A1 |
20040243229 | Vidlund et al. | Dec 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20050004583 | Oz et al. | Jan 2005 | A1 |
20050004665 | Aklog | Jan 2005 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050021056 | St et al. | Jan 2005 | A1 |
20050021057 | St et al. | Jan 2005 | A1 |
20050021058 | Negro | Jan 2005 | A1 |
20050033446 | Deem et al. | Feb 2005 | A1 |
20050038383 | Kelley et al. | Feb 2005 | A1 |
20050038508 | Gabbay | Feb 2005 | A1 |
20050049698 | Bolling et al. | Mar 2005 | A1 |
20050055089 | Macoviak et al. | Mar 2005 | A1 |
20050059351 | Cauwels et al. | Mar 2005 | A1 |
20050065453 | Shabaz et al. | Mar 2005 | A1 |
20050085903 | Lau | Apr 2005 | A1 |
20050119735 | Spence et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050149014 | Hauck et al. | Jul 2005 | A1 |
20050159763 | Mollenauer et al. | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050228422 | Machold et al. | Oct 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050251001 | Hassett | Nov 2005 | A1 |
20050256452 | Demarchi et al. | Nov 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20050273160 | Lashinski et al. | Dec 2005 | A1 |
20050277876 | Hayden | Dec 2005 | A1 |
20050287493 | Novak et al. | Dec 2005 | A1 |
20060004247 | Kute et al. | Jan 2006 | A1 |
20060009759 | Chrisitian et al. | Jan 2006 | A1 |
20060015003 | Moaddes et al. | Jan 2006 | A1 |
20060015179 | Bulman-Fleming et al. | Jan 2006 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060030866 | Schreck | Feb 2006 | A1 |
20060030867 | Zadno | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060064116 | Allen et al. | Mar 2006 | A1 |
20060064118 | Kimblad | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060089671 | Goldfarb et al. | Apr 2006 | A1 |
20060089711 | Dolan | Apr 2006 | A1 |
20060135961 | Rosenman et al. | Jun 2006 | A1 |
20060135993 | Seguin | Jun 2006 | A1 |
20060184198 | Bales et al. | Aug 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060195012 | Mortier et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060252984 | Rahdert et al. | Nov 2006 | A1 |
20060276890 | Solem et al. | Dec 2006 | A1 |
20070016225 | Nakao | Jan 2007 | A1 |
20070038293 | St et al. | Feb 2007 | A1 |
20070060997 | De Boer | Mar 2007 | A1 |
20070100356 | Lucatero et al. | May 2007 | A1 |
20070118155 | Goldfarb et al. | May 2007 | A1 |
20070129737 | Goldfarb et al. | Jun 2007 | A1 |
20070173757 | Levine et al. | Jul 2007 | A1 |
20070197858 | Goldfarb et al. | Aug 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070260225 | Sakakine et al. | Nov 2007 | A1 |
20070287884 | Schena | Dec 2007 | A1 |
20080009858 | Rizvi | Jan 2008 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080045936 | Vaska et al. | Feb 2008 | A1 |
20080051703 | Thornton et al. | Feb 2008 | A1 |
20080051807 | St et al. | Feb 2008 | A1 |
20080097467 | Gruber et al. | Apr 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080167714 | St et al. | Jul 2008 | A1 |
20080183194 | Goldfarb et al. | Jul 2008 | A1 |
20080188850 | Mody et al. | Aug 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080243249 | Kohm et al. | Oct 2008 | A1 |
20080294175 | Bardsley et al. | Nov 2008 | A1 |
20080312496 | Zwolinski | Dec 2008 | A1 |
20090012538 | Saliman et al. | Jan 2009 | A1 |
20090036768 | Seehusen et al. | Feb 2009 | A1 |
20090156995 | Martin et al. | Jun 2009 | A1 |
20090163934 | Raschdorf et al. | Jun 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090192510 | Bahney | Jul 2009 | A1 |
20090198322 | Deem et al. | Aug 2009 | A1 |
20090204005 | Keast et al. | Aug 2009 | A1 |
20090209955 | Forster et al. | Aug 2009 | A1 |
20090209991 | Hinchliffe et al. | Aug 2009 | A1 |
20090270858 | Hauck et al. | Oct 2009 | A1 |
20090276039 | Meretei | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090326567 | Goldfarb et al. | Dec 2009 | A1 |
20100016958 | St et al. | Jan 2010 | A1 |
20100022823 | Goldfarb et al. | Jan 2010 | A1 |
20100044410 | Argentine et al. | Feb 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100152612 | Headley, Jr | Jun 2010 | A1 |
20100217261 | Watson | Aug 2010 | A1 |
20100262231 | Tuval et al. | Oct 2010 | A1 |
20100268226 | Epp et al. | Oct 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20110009864 | Bucciaglia et al. | Jan 2011 | A1 |
20110184405 | Mueller | Jul 2011 | A1 |
20110224710 | Bleich | Sep 2011 | A1 |
20110238052 | Robinson | Sep 2011 | A1 |
20120022527 | Woodruff et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120150194 | Odermatt et al. | Jun 2012 | A1 |
20120172915 | Fifer et al. | Jul 2012 | A1 |
20120179184 | Orlov | Jul 2012 | A1 |
20120265222 | Gordin et al. | Oct 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120316639 | Kleinschrodt | Dec 2012 | A1 |
20120330348 | Strauss et al. | Dec 2012 | A1 |
20130041314 | Dillon | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130066342 | Dell et al. | Mar 2013 | A1 |
20130109910 | Alexander et al. | May 2013 | A1 |
20130172828 | Kappel | Jul 2013 | A1 |
20130317515 | Kuroda et al. | Nov 2013 | A1 |
20140039511 | Morris et al. | Feb 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140228871 | Cohen et al. | Aug 2014 | A1 |
20140276913 | Tah et al. | Sep 2014 | A1 |
20140309670 | Bakos et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140350662 | Mordehay | Nov 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140364866 | Dryden | Dec 2014 | A1 |
20140379074 | Spence et al. | Dec 2014 | A1 |
20150005704 | Heisel et al. | Jan 2015 | A1 |
20150005801 | Marquis et al. | Jan 2015 | A1 |
20150051698 | Ruyra et al. | Feb 2015 | A1 |
20150094800 | Chawla | Apr 2015 | A1 |
20150112430 | Creaven et al. | Apr 2015 | A1 |
20150211946 | Pons et al. | Jul 2015 | A1 |
20150230947 | Krieger et al. | Aug 2015 | A1 |
20150257877 | Hernandez | Sep 2015 | A1 |
20150257883 | Basude et al. | Sep 2015 | A1 |
20150306806 | Dando et al. | Oct 2015 | A1 |
20160015410 | Asirvatham et al. | Jan 2016 | A1 |
20160074165 | Spence et al. | Mar 2016 | A1 |
20160174979 | Wei | Jun 2016 | A1 |
20170042678 | Ganesan et al. | Feb 2017 | A1 |
20170100183 | Iaizzo | Apr 2017 | A1 |
20170143330 | Basude et al. | May 2017 | A1 |
20170202559 | Taha | Jul 2017 | A1 |
20170232238 | Biller et al. | Aug 2017 | A1 |
20180008268 | Khairkhahan | Jan 2018 | A1 |
20180028215 | Cohen | Feb 2018 | A1 |
20180092661 | Prabhu | Apr 2018 | A1 |
20180133010 | Kizuka | May 2018 | A1 |
20180161159 | Lee et al. | Jun 2018 | A1 |
20180360457 | Ellis et al. | Dec 2018 | A1 |
20190029790 | Bak-Boychuk et al. | Jan 2019 | A1 |
20190183571 | De Marchena | Jun 2019 | A1 |
20190298517 | Sanchez et al. | Oct 2019 | A1 |
20200121460 | Dale et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
1469724 | Jan 2004 | CN |
102770080 | Nov 2012 | CN |
103841899 | Jun 2014 | CN |
104244841 | Dec 2014 | CN |
3504292 | Jul 1986 | DE |
9100873 | Apr 1991 | DE |
10116168 | Nov 2001 | DE |
0179562 | Apr 1986 | EP |
0558031 | Sep 1993 | EP |
0684012 | Nov 1995 | EP |
0727239 | Aug 1996 | EP |
0782836 | Jul 1997 | EP |
1230899 | Aug 2002 | EP |
1674040 | Jun 2006 | EP |
1980288 | Oct 2008 | EP |
2005912 | Dec 2008 | EP |
2537487 | Dec 2012 | EP |
2641570 | Sep 2013 | EP |
2702965 | Mar 2014 | EP |
3009103 | Apr 2016 | EP |
2705556 | Dec 1994 | FR |
2768324 | Mar 1999 | FR |
2903292 | Jan 2008 | FR |
1598111 | Sep 1981 | GB |
2151142 | Jul 1985 | GB |
09-253030 | Sep 1997 | JP |
11-089937 | Apr 1999 | JP |
2000-283130 | Oct 2000 | JP |
2006-528911 | Dec 2006 | JP |
2013-516244 | May 2013 | JP |
2014-523274 | Sep 2014 | JP |
2015-502548 | Jan 2015 | JP |
8100668 | Mar 1981 | WO |
9101689 | Feb 1991 | WO |
9118881 | Dec 1991 | WO |
9212690 | Aug 1992 | WO |
9418881 | Sep 1994 | WO |
9418893 | Sep 1994 | WO |
9508292 | Mar 1995 | WO |
9511620 | May 1995 | WO |
9515715 | Jun 1995 | WO |
9614032 | May 1996 | WO |
9620655 | Jul 1996 | WO |
9622735 | Aug 1996 | WO |
9630072 | Oct 1996 | WO |
9718746 | May 1997 | WO |
9725927 | Jul 1997 | WO |
9726034 | Jul 1997 | WO |
9738748 | Oct 1997 | WO |
9739688 | Oct 1997 | WO |
9748436 | Dec 1997 | WO |
9807375 | Feb 1998 | WO |
9824372 | Jun 1998 | WO |
9830153 | Jul 1998 | WO |
9832382 | Jul 1998 | WO |
9835638 | Aug 1998 | WO |
9900059 | Jan 1999 | WO |
9901377 | Jan 1999 | WO |
9907295 | Feb 1999 | WO |
9907354 | Feb 1999 | WO |
9913777 | Mar 1999 | WO |
9944524 | Sep 1999 | WO |
9966967 | Dec 1999 | WO |
0002489 | Jan 2000 | WO |
0003651 | Jan 2000 | WO |
0003759 | Jan 2000 | WO |
0012168 | Mar 2000 | WO |
0044313 | Aug 2000 | WO |
0059382 | Oct 2000 | WO |
0060995 | Oct 2000 | WO |
0100111 | Jan 2001 | WO |
0100114 | Jan 2001 | WO |
0103651 | Jan 2001 | WO |
0126557 | Apr 2001 | WO |
0126586 | Apr 2001 | WO |
0126587 | Apr 2001 | WO |
0126588 | Apr 2001 | WO |
0126703 | Apr 2001 | WO |
0128432 | Apr 2001 | WO |
0128455 | Apr 2001 | WO |
0147438 | Jul 2001 | WO |
0149213 | Jul 2001 | WO |
0150985 | Jul 2001 | WO |
0154618 | Aug 2001 | WO |
0156512 | Aug 2001 | WO |
0166001 | Sep 2001 | WO |
0170320 | Sep 2001 | WO |
0189440 | Nov 2001 | WO |
0195831 | Dec 2001 | WO |
0195832 | Dec 2001 | WO |
0197741 | Dec 2001 | WO |
0200099 | Jan 2002 | WO |
0201999 | Jan 2002 | WO |
0203892 | Jan 2002 | WO |
0234167 | May 2002 | WO |
0260352 | Aug 2002 | WO |
0262263 | Aug 2002 | WO |
0262270 | Aug 2002 | WO |
0262408 | Aug 2002 | WO |
0301893 | Jan 2003 | WO |
0303930 | Jan 2003 | WO |
0320179 | Mar 2003 | WO |
0328558 | Apr 2003 | WO |
0337171 | May 2003 | WO |
0347467 | Jun 2003 | WO |
0349619 | Jun 2003 | WO |
0373910 | Sep 2003 | WO |
0373913 | Sep 2003 | WO |
0382129 | Oct 2003 | WO |
2003105667 | Dec 2003 | WO |
2004004607 | Jan 2004 | WO |
2004006810 | Jan 2004 | WO |
2004012583 | Feb 2004 | WO |
2004012789 | Feb 2004 | WO |
2004014282 | Feb 2004 | WO |
2004019811 | Mar 2004 | WO |
2004030570 | Apr 2004 | WO |
2004037317 | May 2004 | WO |
2004045370 | Jun 2004 | WO |
2004045378 | Jun 2004 | WO |
2004045463 | Jun 2004 | WO |
2004047679 | Jun 2004 | WO |
2004062725 | Jul 2004 | WO |
2004082523 | Sep 2004 | WO |
2004082538 | Sep 2004 | WO |
2004093730 | Nov 2004 | WO |
2004103162 | Dec 2004 | WO |
2004112585 | Dec 2004 | WO |
2004112651 | Dec 2004 | WO |
2005002424 | Jan 2005 | WO |
2005018507 | Mar 2005 | WO |
2005027797 | Mar 2005 | WO |
2005032421 | Apr 2005 | WO |
2005062931 | Jul 2005 | WO |
2005112792 | Dec 2005 | WO |
2006037073 | Apr 2006 | WO |
2006105008 | Oct 2006 | WO |
2006105009 | Oct 2006 | WO |
2006113906 | Oct 2006 | WO |
2006115875 | Nov 2006 | WO |
2006115876 | Nov 2006 | WO |
2007136829 | Nov 2007 | WO |
2008103722 | Aug 2008 | WO |
2010024801 | Mar 2010 | WO |
2010121076 | Oct 2010 | WO |
2012020521 | Feb 2012 | WO |
2013049734 | Apr 2013 | WO |
2013103934 | Jul 2013 | WO |
2014064694 | May 2014 | WO |
2014121280 | Aug 2014 | WO |
2016022797 | Feb 2016 | WO |
2016144708 | Sep 2016 | WO |
2016150806 | Sep 2016 | WO |
2017223073 | Dec 2017 | WO |
2018009718 | Jan 2018 | WO |
2018106482 | Jun 2018 | WO |
2018236766 | Dec 2018 | WO |
2019040943 | Feb 2019 | WO |
2019195336 | Oct 2019 | WO |
Entry |
---|
Office Action received for U.S. Appl. No. 15/423,060, dated Oct. 28, 2019. |
Office Action received for U.S. Appl. No. 15/642,245, dated Aug. 9, 2019. |
Office Action received for U.S. Appl. No. 15/724,545, filed Dec. 27, 2019. |
Office Action received for U.S. Appl. No. 15/724,545, dated Dec. 27, 2019. |
Office Action received for U.S. Appl. No. 15/724,545, dated May 1, 2020. |
Osawa et al., “Partial Left Ventriculectomy in a 3-Year Old Boy with Dilated Cardiomyopathy,” Japanese Journal of Thoracic and Cardiovascular Surg, 48:590-593 (2000). |
Park et al., Clinical Use of Blade Atrial Septostomy, Circulation, 1978, pp. 600-608, vol. 58. |
Park et al., Clinical Use of Blade Atrial Septostomy, Circulation, pp. 600-608, vol. 58, No. 4 (1978). |
Patel et al., #57 Epicardial Atrial Defibrillation: Novel Treatment of Postoperative Atrial Fibrillation, 2003 STS Presentation, [Abstract Only]. |
Privitera et al., “Alfieri Mitral Valve Repair: Clinical Outcome and Pathology,” Circulation, 106:e173-e174 (2002). |
Redaelli et al., “A Computational Study of the Hemodynamics After ‘Edge-To-Edge’ Mitral Valve Repair,” Journal of Biomechanical Engineering, 123:565-570 (2001). |
Reul et al., “Mitral Valve Reconstruction for Mitral Insufficiency,” Progress in Cardiovascular Diseases, XXXIX(6):567-599 (1997). |
Ricchi et al, Linear Segmental Annuloplasty for Mitral Valve Repair, Ann. Thorac. Surg., Jan. 7, 1997, pp. 1805-1806, vol. 63. |
Ricchi et al., Linear Segmental Annuloplasty for Milral Valve Repair, Ann. Thorac. Surg., Jan. 7, 1997, pp. 1805-1806, vol. 63. |
Robicsek et al., #60 The Bicuspid Aortic Valve: How Does It Function? Why Does It Fail? 2003 STS Presentation, [Abstract Only]. |
Rose et al., “Late MitraClip Failure: Removal Technique for Leaflet-Sparing Mitral Valve Repair”, Journal of Cardiac Surgery, (Jul. 4, 2012), XP055047339, DOI: 10.1111/j. 1540- 8191.2012.01483.x [retrieved on Dec. 11, 2012]. |
Supplemental European Search Report of EP Application No. 02746781, dated May 13, 2008, 3 pages total. |
Supplementary European Search Report issued in European Application No. 05753261.6 dated Jun. 9, 2011, 3 pages total. |
Tager et al, Long-Term Follow-Up of Rheumatic Patients Undergoing Left-Sided Valve Replacement With Tricuspid Annuloplasty—Validity of Preoperative Echocardiographic Criteria in the Decision to Perform Tricuspid Annuloplasty, Am. J. Cardiol., Apr. 15, 1998, pp. 1013-1016, vol. 81. |
Tager et al., Long-Term Follow-Up of Rheumatic Patients Undergoing Left-Sided Valve Replacement With Tricuspid Annuloplasty—Validity of Preoperative Echocardiographic Criteria in the Decision to Perform Tricuspid Annuloplasty, Am. J. Cardiel., Apr. 15, 1998, pp. 1013-1016, vol. 81. |
Takizawa H et al: Development of a microfine active bending catheter equipped with MIF tactile sensors“, Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE Interna Tional Conference on Orlando, FL, USA Jan. 17-21, 1999, Piscataway, NJ, USA,IEEE, US, Jan. 17, 1999 (Jan. 17, 1999), pp. 412-417, XP010321677, ISBN: 978-0-7803-5194-3 figures 1-3.” |
Tamura et al., “Edge to Edge Repair for Mitral Regurgitation in a Patient with Chronic Hemodialysis: Report of a Case,” Kyobu Geka. The Japanese Journal of Thoracic Surgery, 54(9):788-790 (2001). |
Tibayan et al., #59 Annular Geometric Remodeling in Chronic Ischemic Mitral Regurgitation, 2003 STS Presentation, [Abstract Only]. |
Timek et al., “Edge-to-edge mitral repair: gradients and three-dimensional annular dynamics in vivo during inotropic stimulation,” Eur J. of Cardiothoracic Surg., 19:431-437 (2001). |
Timek, “Edge-to-Edge Mitral Valve Repair without Annuloplasty Ring in Acute Ischemic Mitral Regurgitation,” [Abstract] Clinical Science, Abstracts from Scientific Sessions, 106(19):2281 (2002). |
Totaro, “Mitral valve repair for isolated prolapse of the anterior leaflet: an 11-year follow-up,” European Journal of Cardio-thoracic Surgery, 15:119-126 (1999). |
U.S. Provisional Application filed Jul. 6, 2016, by Khairkhahan., U.S. Appl. No. 62/359,121. |
U.S. Provisional Application filed Nov. 7, 2016, by Khairkhahan., U.S. Appl. No. 62/418,571. |
U.S. Provisional Application filed Oct. 22, 2018, by Dale et al., U.S. Appl. No. 62/748,947. |
Uchida et al, Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance, Am. Heart J., Apr. 1991, pp. 1221-1224, vol. 121. |
Uchida et al., Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance, Am. Heart J., pp. 1221-1224, vol. 121 (Apr. 1991). |
Umana et al, ‘Bow-Tie’ Mitral Valve Repair: An Adjuvant Technique for Ischemic Mitral Regurgitation, Ann. Thorac. Surg., May 12, 1998, pp. 1640-1646, vol. 66. |
Umana et al., “‘Bow-tie’ Mitral Valve Repair Successfully Addresses Subvalvular Dysfunction in Ischemic Mitral Regurgitation,” Surgical Forum, XLVI11:279-280 (1997). |
U.S. Appl. No. 14/216,813, filed Mar. 17, 2014, Hernandez. |
Votta et al., “3-D Computational Analysis of the Stress Distribution on the Leaflets after Edge-to-Edge Repair of Mitral Regurgitation,” Journal of Heart Valve Disease, 11:810-822 (2002). |
Abe et al, “De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 670-676, vol. 48 (Jan. 1989). |
Abe et al., “Updated in 1996—De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 1876-1877, vol. 62 (1996). |
Agricola et al., “Mitral Valve Reserve in Double Orifice Technique: an Exercise Echocardiographic Study,” Journal of Heart Valve Disease, 11(5):637-643 (2002). |
Alfieri et al., “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse,” J. Card Surg., 14:468-470 (1999). |
Alfieri et al., “Novel Suture Device for Beating Heart Mitral Leaflet Approximation,” Annals of Thoracic Surgery, 74:1488-1493 (2002). |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic and Cardiovascular Surgery, 122:674-681 (2001). |
Alfieri et al., “The Edge to Edge Technique,” The European Association For Cardio—Thoracic Surgery, 14th Annual Meeting, Frankfurt/ Germany, Oct. 7-11, 2000, Post Graduate Courses, Book of Proceedings. |
Alfieri, “The Edge-to-Edge Repair of the Mitral Valve,” [Abstract] 6th Annual New Era Cardiac Care: Innovation & Technology, Heart Surgery Forum, (Jan. 2003) pp. 103. |
Ali Khan et al, Blade Atrial Septostomy: Experience with the First 50 Procedures, Cathet. Cardiovasc. Diagn., Aug. 1991, pp. 257-262, vol. 23. |
Alvarez et al, Repairing the Degenerative Mitral Valve: Ten to Fifteen-year Follow-up, Journal of Thoracic Cardiovascular Surgery, Aug. 1996, pp. 238-247, vol. 112, No. 2. |
Alvarez et al, Repairing the Degenerative Mitral Valve: Ten to Fifteen-year Follow-up, Journal Thoracic of Cardiovascular Surgery, Aug. 1996, pp. 238-247, vol. 112, No. 2. |
Arisi et al., “Mitral Valve Repair with Alfieri Technique in Mitral Regurgitation of Diverse Etiology: Early Echocardiographic Results,” Circulation Supplement II, 104(17):3240 (2001). |
Bach et al, Early Improvement in Congestive Heart Failure After Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy, American Heart Journal, Jun. 1995, pp. 1165-1170, vol. 129, No. 6. |
Bach et al, Improvement Following Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy With Mitral Annuloplasty, Am. J. Cardiol., Oct. 15, 1996, pp. 966-969, vol. 78. |
Bach et al, Improvement Following Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy With Mitral Annuloplasty, Am J_ Cardiel., Oct. 15, 1996, pp. 966-969, vol. 78. |
Bailey, “Mitral Regurgitation” in Surgery of the Heart, Chapter 20, pp. 686-737 (1955). |
Bernal et al., “The Valve Racket: a new and different concept of atrioventricular valve repair,” Eur. J. Cardio-thoracic Surgery 29:1026-1029 (2006). |
Bhudia et al., “Edge-to-Edge (Alfieri) Mitral Repair: Results in Diverse Clinical Settings,” Ann Thorac Surg, 77:1598-1606 (2004). |
Bhudia, #58 Edge-to-edge mitral repair: a versatile mitral repair technique, 2003 STS Presentation, [Abstract Only], 2004. |
Bolling et al, Surgery for Acquired Heart Disease: Early Outcome of Mitral Valve Reconstruction in Patients with End-stage Cardiomyopathy, Journal of Thoracic and Cariovascular Surgery, Apr. 1995, pp. 676-683, vol. 109, No. 4. |
Borghetti et al., “Preliminary observations on haemodynamics during physiological stress conditions following ‘double-orifice’ mitral valve repair,” European Journal of Cardio-thoracic Surgery, 20:262-269 (2001). |
Castedo, “Edge-to-Edge Tricuspid Repair for Redeveloped Valve Incompetence after DeVega's Annuloplasty,” Ann Thora Surg., 75:605-606 (2003). |
Chinese Office Action issued in Chinese Application No. 200980158707.2 dated Sep. 9, 2013. |
Communication dated Apr. 16, 2018 from the European Patent Office in counterpart European application No. 04752603.3. |
Communication dated Apr. 28, 2017 issued by the European Patent Office in counterpart application No. 16196023.2. |
Communication dated Jan. 26, 2017, from the European Patent Office in counterpart European application No. 16196023.2. |
Communication dated May 8, 2017, from the European Patent Office in counterpart European Application No. 04752714.8. |
Dang N C et al., “Surgical Revision After Percutaneous Mitral Valve Repair with a Clip: Initial Multicenter Experience”,THE Annals of Thracic SURGERY,Elsevier, United States, vol. 80, No. 6, pp. 2338-2342, (Dec. 1, 2005), XP027732951, ISSN:0003-4975 [retrieved on Dec. 1, 2005]. |
Dec et al, Idiopathic Dilated Cardiomyopathy, The New England Journal of Medicine, Dec. 8, 1994, pp. 1564-1575, vol. 331, No. 23. |
Dottori et al., “Echocardiographic imaging of the Alfieri type mitral valve repair,” Itai. Heart J., 2(4):319-320 (2001). |
Downing et al., “Beating heart mitral valve surgery: Preliminary model and methodology,” Journal of Thoracic and Cardiovascular Surgery, 123(6):1141-1146 (2002). |
Extended European Search Report, dated Oct. 17, 2014, issued in European Patent Application No. 06751584.1. |
Falk et al., “Computer-Enhanced Mitral Valve Surgery: Toward a Total Endoscopic Procedure,” Seminars in Thoracic and Cardiovascular Surgery, 11(3):244-249 (1999). |
Feldman, et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of Everest II. J Am Coll Cardiol. Dec. 29, 2015;66(25):2844-2854. |
Filsoufi et al., “Restoring Optimal Surface of Coaptation With a Mini Leaflet Prosthesis: A New Surgical Concept for the Correction of Mitral Valve Prolapse,” Intl. Soc. for Minimally Invasive Cardiothoracic Surgery 1(4):186-87 (2006). |
Frazier et al., #62 Early Clinical Experience with an Implantable, Intracardiac Circulatory Support Device: Operative Considerations and Physiologic Implications, 2003 STS Presentation, 1 page total. [Abstract Only]. |
Fucci et al, Improved Results with Mitral Valve Repair Using New Surgical Techniques, Eur. J. Cardiothorac. Surg., Nov. 1995, pp. 621-627, vol. 9. |
Fundaro et al., “Chordal Plication and Free Edge Remodeling for Mitral Anterior Leaflet Prolapse Repair: 8-Year Follow-up,” Annals of Thoracic Surgery, 72:1515-1519 (2001). |
Garcia-Rinaldi et al., “Left Ventricular Volume Reduction and Reconstruction is Ischemic Cardiomyopathy,” Journal of Cardiac Surgery, 14:199-210 (1999). |
Gateliene, “Early and postoperative results results of metal and tricuspid valve insufficiency surgical treatment using edge-to-edge central coaptation procedure,” (Oct. 2002) 38 (Suppl 2):172 175. |
Gatti et al., “The edge to edge technique as a trick to rescue an imperfect mitral valve repair,” Eur. J. Cardiothorac Surg, 22:817-820 (2002). |
Gundry, “Facile mitral valve repair utilizing leaflet edge approximation: midterm results of the Alfieri figure of eight repair,” Presented at the Meeting of the Western Thoracic Surgical Association, (1999). |
Gupta et al., #61 Influence of Older Donor Grafts on Heart Transplant Survival: Lack of Recipient Effects, 2003 STS Presentation, [Abstract Only]. |
Ikeda et al., “Batista's Operation with Coronary Artery Bypass Grafting and Mitral Valve Plasty for Ischemic Dilated Cardiomyopathy,” The Japanese Journal of Thoracic and Cardiovascular Surgery, 48:746-749 (2000). |
Izzat et al., “Early Experience with Partial Left Ventriculectomy in the Asia-Pacific Region,” Annuals of Thoracic Surgery, 67:1703-1707 (1999). |
Kallner et al., “Transaortic Approach for the Alfieri Stitch,” Ann Thorac Surg, 71:378-380 (2001). |
Kameda et al, Annuloplasty for Severe Milral Regurgitation Due to Dilated Cardiomyopathy, Ann. Thorac. Surg., 1996, pp. 1829-1832, vol. 61. |
Kameda et al, Annuloplasty for Severe Mitral Regurgitation Due to Dilated Cardiomyopathy, Ann. Thorac. Surg., 1996, pp. 1829-1832, vol. 61. |
Kavarana et al., “Transaortic Repair of Mitral Regurgitation,” The Heart Surgery Forum, #2000-2389, 3(1):24-28 (2000). |
Kaza et al., “Ventricular Reconstruction Results in Improved Left Ventricular Function and Amelioration of Mitral Insufficiency,” Annals of Surgery, 235(6):828-832 (2002). |
Khan et al., “Blade Atrial Septostomy; Experience with the First 50 Procedures”, Catheterization and Cardiovascular Diagnosis, 23:257-262 (1991). |
Kherani et al., “The Edge-To-Edge Mitral Valve Repair: The Columbia Presbyterian Experience,” Ann. Thorac. Surg., 78:73-76 (2004). |
Kron et al., “Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,” Annals. of Thoracic Surgery, 74:600-601 (2002). |
Kruger et al., “P73-Edge to Edge Technique in Complex Mitral Valve Repair,” Thorac Cardiovasc Surg., 48(Suppl. 1):106 (2000). |
Langer et al., “Posterier mitral leaflet extensions: An adjunctive repair option for ischemic mitral regurgitation?” J Thorac Cardiovasc Surg, 131:868-877 (2006). |
Lorusso et al., “The double-orifice technique for mitral valve reconstruction: predictors of postoperative outcome,” Eur J. Cardiothorac Surg, 20:583-589 (2001). |
Maisano et al., The Edge-to-edge Technique: A Simplified Method to Correct Mitral Insufficiency, Eur. J. Cardiothorac. Surg , Jan. 14, 1998, pp. 240-246, vol. 13. |
Maisano et al., The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement? Eur Heart J. Jul. 7, 2015; 36(26):1651-1659. |
Maisano et al., “The double orifice repair for Barlow Disease: a simple solution for a complex repair,” Supplement in Circulation, (Nov. 1999); 100(18):1-94. |
Maisano et al.,“The double orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique,” European Journal of Cardio-thoracic Surgery, 17:201-205 (2000). |
Maisano et al., “The Future of Transcatheter Mitral Valve Interventions: Competitive or Complementary Role of Repair vs. Replacement?”, Eur Heart J.36(26):1651-1659 (Jul. 7, 2015). |
Maisano et al.,“The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model,” European Journal of Cardio-thoracic Surgery, 15:419-425 (1999). |
Maisano et al., “Valve repair for traumatic tricuspid regurgitation,” Eur. J. Cardio-thorac Surg, (1996) 10:867-873. |
Maisano et al., 'The Edge-to-edge Technique: A Simplified Method to Correct Mitral Insufficiency, Eur. J. Cardiothorac. Surg., pp. 240-246, vol. 13 (Jan. 14, 1998). |
Mantovani et al., “Edge-to-edge Repair of Congenital Familiar Tricuspid Regurgitation: Case Report,” J. Heart Valve Dis., 9:641-643 (2000). |
McCarthy et al, “Tricuspid Valve Repair With the Cosgrove-Edwards Annuloplasty System”, Ann. Thorac. Surg., 64:267-8 ( Jan. 16, 1997). |
McCarthy et al., “Partial left ventriculectomy and mitral valve repair for end-stage congestive heart failure,” European Journal of Cardio-thoracic Surgery, 13:337-343 (1998). |
McCarthy et al., “Tricuspid Valve Repair With the Cosgrove-Edwards Annuloplasty System”, Ann. Throac Surg. 64:267-8 (Jan. 16, 1997). |
Moainie et al., “Correction of Traumatic Tricuspid Regurgitation Using the Double Orifice Technique,” Annals of Thoracic Surgery, 73:963-965 (2002). |
Morales et al., “Development of an Off Bypass Mitral Valve Repair,” The Heart Surgery Forum #1999-4693, 2(2):115-120 (1999). |
Nakanishi et al., “Early Outcome with the Alfieri Mitral Valve Repair,” J. Cardiol., 37: 263-266 (2001) [Abstract in English; Article in Japanese]. |
Nielsen et al., “Edge-to-Edge Mitral Repair: Tension of the Approximating Suture and Leaflet Deformation During Acute Ischemic Mitral Regurgitation in the Ovine Heart,” Circulation, 104(Suppl. 1):1-29-1-35 (2001). |
Nishimura, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. Jun. 10, 2014;63(22):2438-88. |
Noera et al., “Tricuspid Valve Incompetence Caused by Nonpenetrating Thoracic Trauma”, Annals of Thoracic Surgery, 51:320-322 (1991). |
Notice of Allowance received for U.S. Appl. No. 14/216,787, filed Nov. 7, 2016. |
Notice of Allowance received for U.S. Appl. No. 14/216,787, dated Nov. 7, 2016. |
Notice of Allowance received for U.S. Appl. No. 14/577,852, filed Apr. 25, 2018. |
Notice of Allowance received for U.S. Appl. No. 14/577,852, dated Apr. 25, 2018. |
Notice of Allowance received for U.S. Appl. No. 15/642,245, dated Jan. 29, 2020. |
Notice of Allowance received for U.S. Appl. No. 15/642,245, dated Mar. 27, 2020. |
Notice of Allowance received for U.S. Appl. No. 15/642,245, dated Nov. 6, 2019. |
Notice of Allowance received for U.S. Appl. No. 15/423,060, dated Jan. 27, 2020. |
Office Action received for U.S. Appl. No. 14/216,787, filed Apr. 8, 2016. |
Office Action received for U.S. Appl. No. 14/216,787, dated Apr. 8, 2016. |
Office Action received for U.S. Appl. No. 14/216,813, filed Apr. 6, 2018. |
Office Action received for U.S. Appl. No. 14/216,813, filed Dec. 15, 2017. |
Office Action received for U.S. Appl. No. 14/216,813, filed Mar. 9, 2017. |
Office Action received for U.S. Appl. No. 14/216,813, dated Apr. 6, 2018. |
Office Action received for U.S. Appl. No. 14/216,813, dated Dec. 15, 2017. |
Office Action received for U.S. Appl. No. 14/216,813, dated Mar. 9, 2017. |
Office Action received for U.S. Appl. No. 14/577,852, filed May 16, 2017. |
Office Action received for U.S. Appl. No. 14/577,852, filed Oct. 20, 2016. |
Office Action received for U.S. Appl. No. 14/577,852, filed Sep. 7, 2017. |
Office Action received for U.S. Appl. No. 14/577,852, dated May 16, 2017. |
Office Action received for U.S. Appl. No. 14/577,852, dated Oct. 20, 2016. |
Office Action received for U.S. Appl. No. 14/577,852, dated Sep. 7, 2017. |
Office Action received for U.S. Appl. No. 15/423,060, dated Apr. 25, 2019. |
Office Action received for U.S. Appl. No. 15/423,060, dated Aug. 19, 2019. |
Number | Date | Country | |
---|---|---|---|
20220008096 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
62404558 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15724545 | Oct 2017 | US |
Child | 17382606 | US |