Cardiac valve delivery devices and systems

Information

  • Patent Grant
  • 11331187
  • Patent Number
    11,331,187
  • Date Filed
    Friday, June 16, 2017
    6 years ago
  • Date Issued
    Tuesday, May 17, 2022
    2 years ago
Abstract
A delivery device includes a central elongate structure, a sheath, a plurality of tethers extending through the central elongate structure configured to hold a cardiac valve, a cutting mechanism, a handle, and a control. The sheath is configured to slide over the central elongate structure. The cutting mechanism is configured to cut the tethers upon activation to release the cardiac valve. The handle is connected to the central elongate structure. The control on the handle is configured to activate the cutting mechanism.
Description
FIELD

The present invention relates generally to the treatment of cardiac valve disorders, such as mitral valve replacement, using minimally invasive techniques. In particular, this application is directed towards devices for delivering and placing replacement mitral valves.


BACKGROUND

The mitral valve lies between the left atrium and the left ventricle of the heart. Various diseases can affect the function of the mitral valve, including degenerative mitral valve disease and mitral valve prolapse. These diseases can cause mitral stenosis, in which the valve fails to open fully and thereby obstructs blood flow, and/or mitral insufficiency, in which the mitral valve is incompetent and blood flows passively in the wrong direction.


Many patients with heart disease, such as problems with the mitral valve, are intolerant of the trauma associated with open-heart surgery. Age or advanced illness may have impaired the patient's ability to recover from the injury of an open-heart procedure. Additionally, the high costs associated with open-heart surgery and extra-corporeal perfusion can make such procedures prohibitive.


Patients in need of cardiac valve repair or cardiac valve replacement can be served by minimally invasive surgical techniques. In many minimally invasive procedures, small devices are manipulated within the patient's body under visualization from a live imaging source like ultrasound, fluoroscopy, or endoscopy. Minimally invasive cardiac procedures are inherently less traumatic than open procedures and may be performed without extra-corporeal perfusion, which carries a significant risk of procedural complications.


Prosthetic valve replacement procedures can be difficult, and various factors are generally taken into account when placing the valve. First, the prosthetic valve should be placed at the same or very nearly the same angle as the native valve. A valve that is off axis could cause turbulent blood flow and/or potential para-valvular leaks. Second, the prosthetic valve should ideally have concentricity. This means that the valve is placed in the same center as the native valve. An off center deployment or valve placement could affect the mechanism of neighboring valves or the heart's conductive system. Finally, the prosthetic valve should be at the proper depth within the patient's heart with respect to the location of the native valve, as otherwise, the prosthetic valve may interfere with the conductive nature of the heart as well.


A safe and efficient delivery system and method for replacement of a cardiac valve that addresses some or all of these concerns is described herein.


SUMMARY

In general, in one embodiment, a delivery device includes a central elongate structure, a sheath, a plurality of tethers extending through the central elongate structure, a cutting mechanism, a handle, and a control. The sheath is configured to slide over the central elongate structure. The cutting mechanism is configured to cut the tethers upon activation. The handle is connected to the central elongate structure. The control on the handle is configured to activate the cutting mechanism.


This and other embodiments can include one or more of the following features. The delivery device can further include an annular member including a plurality of pockets extending radially around the central elongate structure. Each of the tethers can include a feature on a distal end thereof configured to fit within a pocket of the plurality of pockets to hold the tether in place. A distal portion of the annular member can be configured to telescope relative to a proximal portion of the annular member. The delivery device can further include a second control on the handle configured to move the sheath proximally and distally over the central elongate structure. The cutting mechanism can include a resistive wire that is configured to be heated to cut the plurality of tethers. The delivery device can further include an o-ring configured to hold the plurality of tethers against the resistive wire. The resistive wire can be positioned within an annular member configured to hold distal ends of the plurality of tethers. The cutting mechanism can include a resistive plate that is configured to be heated to cut the plurality of tethers. The resistive plate can include a plurality of holes therethrough. Each tether can be configured to pass through a hole of the plurality of holes. The delivery device can further include an o-ring configured to hold the plurality of tethers against the resistive wire. The plurality of tethers can be made of polyether ether ketone or ultra-high molecular weight polyethylene. The cutting element can be a metallic ring or coil. The cutting element can be a resistive heating element. The resistive heating element can be configured to heat the plurality of tethers to a temperature of greater than 190° F. The cutting element can be a rotatable grinder. The cutting element can be a rotatable blade. The delivery device can further include a coiled spring configured to place tension on the plurality of tethers.


In general, in one embodiment, a method of delivering a prosthetic mitral valve includes: (1) extending a prosthetic delivery device into a heart with the prosthetic mitral valve collapsed within a sheath of the delivery device; (2) sliding the sheath to expose a first anchor of the prosthetic valve, thereby allowing the anchor to self-expand to an expanded annular configuration on a first side of the mitral valve annulus; (3) loosening a plurality of tethers of the delivery device so as to allow a second anchor to self-expand to an expanded annular configuration on a second side of the mitral valve annulus, the expansion of the proximal anchor causing the first anchor to move towards the second anchor and capture tissue of the mitral valve annulus between the proximal anchor and the distal anchor; (4) cutting the tethers with a cutting mechanism of the delivery device to release the tethers from the second anchor; and (5) removing the delivery device from the heart.


This and other embodiments can include one or more of the following features. The cutting mechanism can include a resistive heating element, and cutting the tethers can include heating the resistive heating element. Cutting the tethers can include heating the tethers to a temperature of greater than 190° F. to melt and sever the tethers. The tethers can be melted and severed in less than 1 minute.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1A is a perspective view of an exemplary delivery device.



FIG. 1B is a close-up side view of the distal end of the delivery device of FIG. 1A.



FIG. 1C is a cross-section of the delivery device of FIG. 1A.



FIG. 2 shows a mitral valve prosthesis in the delivery device of FIG. 1A.



FIG. 3A is a perspective view of another exemplary delivery device.



FIG. 3B is a close-up cross-section of the distal end of the delivery device of FIG. 3A.



FIGS. 4A and 4B are perspective view of a tether ends retainer.



FIG. 4C shows a resistive wire around the tether ends retainer of FIGS. 4A-4B.



FIG. 4D shows a tether extending along the tether ends retainer and over the resistive wire.



FIGS. 5A-5E show an exemplary method of loading tethers into a tether retainer that includes a resistive wire.



FIG. 6 is a perspective view of a tether ends retainer including a double loop of resistive wire therearound.



FIG. 7A shows a tether ends retainer including a resistive plate at the distal end.



FIG. 7B shows the tether ends retainer of FIG. 7A with an o-ring thereover.



FIG. 8 shows a telescoping tether ends retainer.



FIG. 9 shows a delivery device with various exemplary locations for placement of a resistive heating element.



FIG. 10A shows a delivery device with a resistive heating element positioned along the mid-shaft.



FIG. 10B is a close up of the distal end of the device of FIG. 10A.



FIG. 10C is a close-up of the mid-shaft of the device of FIG. 10A with the outer portion removed so as to better view the resistive heating element.



FIGS. 11A and 11B show a resistive cutting drum that can be used as part of a delivery device.



FIGS. 12A-12G show various ways of attaching a resistive heating wire to a delivery device.



FIGS. 13A-13B show a grinding mechanism that can be used as part of a delivery device.



FIGS. 14A-14B show a razor mechanism that can be used as part of a delivery device.



FIGS. 15A-15D show a delivery device including a coiled spring to hold tethers in tension.





DETAILED DESCRIPTION

The delivery devices described herein can be used to deliver and deploy a wide variety of replacement heart valves, such as prosthetic valves adapted to be minimally invasively delivered. Exemplary prosthetic valves that can be delivered and deployed include the expandable prosthetic valves described in U.S. patent application Ser. No. 14/677,320, filed Apr. 2, 2015, in U.S. Pat. No. 8,870,948, in International Patent Application No. PCT/US2016/032550, filed May 13, 2016, titled “REPLACEMENT MITRAL VALVES,” and in U.S. patent application Ser. No. 14/677,320, filed Apr. 2, 2015, titled “REPLACEMENT CARDIAC VALVES AND METHODS OF USE AND MANUFACTURE,” all of which are incorporated by reference herein. For example, the delivery devices herein are configured to be able to delivery and deploy a replacement heart valve, such as a mitral valve, that includes distal and proximal anchors.



FIGS. 1A-1C shows an embodiment of an exemplary prosthetic valve replacement delivery device 700. The delivery device 700 includes a device proximal end 702 and a device distal end 704. As can be seen from FIGS. 1A through 1C, the delivery device 700 has an elongated portion that terminates at a nosecone 706 at the device distal end 704. The nosecone 706 is coupled to a central stem 718, which is in turn coupled to a tether ends retainer 720. The elongated portion includes an outer sheath 712 and an inner sheath 716. The central stem 718 also couples to a series of tether/suture maintaining hypodermic tubes that are able to slide along the central stem 718. The inner sheath 716 is configured to slide relative to the central stem 718 (extend and retract) to cover or expose certain retaining features of the delivery device, e.g., the tether ends retainer 720 (see FIG. 1B), as well as aid with maintaining the prosthetic valve within the delivery device 700 prior to deployment. The device proximal end 702 includes a handle 709 for holding onto the delivery device. FIG. 1B shows a close-up of the distal end of the delivery device 700, where it is more apparent that the nosecone 706 is attached to the central stem 718 and the central stem 718 is coupled to a tether ends retainer 720. FIG. 1C shows a cross-sectional view of the delivery device 700.


Referring to FIG. 2, tethers 726 aid with maintaining the prosthetic valve within the device 700. Tethers 726 can be made, for example, of suture materials. The tethers 726 extend along and around the center stem 718, and each tether 726 threads through a separate tubular structure 782. The tether ends that couple to the tether retainer 720 can further include a feature, e.g., a sphere, for coupling the tether ends to the tether retainer 720. The distal ends of the tethers can be configured to loop through the proximal end of the prosthetic valve. The distal ends of the tethers, once looped through the proximal end of the valve, can be maintained by the tether retainer 720.


Another exemplary delivery device 300 is shown in FIGS. 3A-3B. The device 300 is similar to device 700 and includes central stem 318 coupled to a tether ends retainer 120 and a distal nosecone 306. The central stem 318 also couples to a series of tether/suture maintaining hypodermic tubes 382 that are configured to slide along the central stem 318. An inner sheath 316 is configured to slide inside an outer sheath 312 and relative to the central stem 318 (extend and retract) to cover or expose certain retaining features of the delivery device, e.g., the tether ends retainer 120, as well as aid with maintaining the prosthetic valve within the delivery device 300 prior to deployment.


A close-up of the tether retainer 120 is shown in FIGS. 4A-4B. The tether retainer 120 includes a central channel 111 extending axially therethrough and series of tether pockets 124 extending around the outer circumference of the retainer 120. The tether pockets 124 are configured to hold the features at the distal end of the tethers 726. Thus, the tether pockets 124 can have shape that corresponds to the shape of the tether ends. For example, the pockets 124 can be spherical in shape so as to hold a spherical ball (from the distal end of a tether) therein. Further, an annular indent 122 can extend circumferentially around the tether retainer 120. Two holes 134a,b can extend from the central channel 111 to the annular ring 122. Moreover, the tether retainer 120 can include a groove 166 extending from each of the pockets 124 to the annular indent 122 and on to the distal end of the retainer 120.


Referring to FIG. 4C-4D, a pair of conductive wires 144a,b, e.g., copper wires, can extend through the inner diameter of the elongated portion or sheath of the delivery device, through the channel 111, and through the holes 134a,b. The conductive wires 144a,b can terminate in a resistive wire 155, such as Nichrome, that sits within the annular ring 122. Referring to FIG. 4D, a plurality of tethers 726 (only one is shown for clarity) can also extend through the inner diameter of the elongated portion of the delivery device and through the channel 111. The tethers 726 can extend out the distal end of the retainer 120 and then extend back through the channel 166 in the outer diameter of the retainer 120 and over the resistive wire 155. The distal ends of the tethers can be lodged within pockets to hold the ends in place, as described above. During use of the delivery device, an o-ring can be configured to sit over the resistive wire 155 within the annular ring 122 to hold the tethers thereon. When electricity is conducted through the wires 144a,b, it will flow to the resistive wire 155, which will heat up. The heat of the resistive wire 155 (against which the tethers sit) can cause the tethers to melt at the point of contact, thereby severing or cutting the distal ends of the tethers from the proximal ends of the tethers and allowing the delivery device to be removed from the valve while keeping the valve in place within the body (e.g., within the mitral valve annulus).


An exemplary method of loading tethers into the retainer 120 is shown in FIGS. 5A-5E. In FIG. 5A, the o-ring 156 can be moved to be positioned over the pockets 124. In FIG. 5B, a tether 726 (e.g., a UHMWPE suture) with a distal end feature 796 (e.g., a 1.5 mm tantalum ball) can be threaded through the inner diameter of the delivery device, out the distal end of the retainer 120, and positioned such that the distal end feature 796 is proximate to a pocket 124. In FIG. 5C, the feature 796 has been positioned partially inside of the pocket 124 and underneath the o-ring 156. In FIG. 5D, the feature 796 has been placed fully inside the pocket 124. In this position, the tether 726 runs within the groove 166 and sits against the resistive wire 155. In FIG. 5E, the o-ring 156 is moved into place within the annular indent 122, which presses the tether 726 firmly against the resistive wire 155. The o-ring 156 can also function to thermally and electrically insulate the resistive wire 155 from the blood stream.


In some embodiments, referring to FIG. 6, the retainer 120 can include a double loop of resistive wire 155 extending therearound within the annular indent 122.


Referring to FIGS. 7A and 7B, in some embodiments, a tether retainer 220 can include a distal resistive plate 277 rather than a resistive wire. The plate 277 can include a plurality of holes 278 therein, such as around the circumference. Tethers 726 can be extended through the holes 278, and the distal end of each tether can be placed in a pocket, as described above. To release the tethers, the resistive plate 277 can be heated, causing the portion of the tethers touching the walls of the plate 277 to melt and sever. As shown in FIG. 7B, an o-ring 256 can be used to insulate the plate from the blood stream and/or to maintain the sutures in contact with the plate 277.


Referring to FIG. 8, in some embodiments, a distal portion 891 tether retainer 820 can be configured to telescope relative to the proximal portion 881 of the retainer 820. Tethers 826 can extend along the length of the tether tubes 882, over the distal end of the retainer 820, and back into the pockets 824. Further, the distal portion 891 can move distally relative to the proximal portion 881 to allow the ends 896 of the tethers 826 to be positioned in the pockets 824 and then can be moved proximally again to hold the ends of the tethers 826 in place. The distal portion 891 can advantageously help place pressure on the tethers 826 to push them against the resistive wire 855. The distal portion 891 can further help isolate the resistive wire 855 from the blood during use to avoid shorting. An o-ring 856 can additionally shield the resistive wire 855 from the blood stream.


In some embodiments, the tether pockets can be designed or shaped so as to allow the distal ends of the tethers to be placed therein during loading of the valve on the delivery device, but can be designed so as to prevent the end of the tether from being removed during use.


In some embodiments, the retainers described herein can be made of polyether ether ketone (PEEK). In other embodiments, the retainers can be made of a ceramic, such as Macor.


The resistive heating element can be placed at various locations along the length of the device (i.e., it does not have to be part of the tether ends retainer and/or be located near the distal end of the shaft). For example, FIG. 9 shows a device 900 with various locations for the heating element. The heating element, for example, can be in a distal position at the tether ends retainer (location 991), mid-way along the shaft (location 993), at the distal end of the handle (location 995), or at the proximal end of the handle by the controls (location 997). In any or all of the locations, a shield jacket (e.g., made of ceramic) can be used to separate the heating element from the rest of the device and/or the blood.


An exemplary device 1000 having a resistive heating element 1111 positioned along the mid-shaft is shown in FIGS. 10A-10C. The resistive heating element 1111 is thus positioned between the handle 1009 and the tether ends retainer 1020. The resistive heating element 1111 can be, for example, a metallic cylindrical element with a plurality of notches, a notch coil, or a coil wire. Further, the heating element 1111 can be positioned circumferentially around the tether tubes 1082. Cylindrical ceramic elements 1099 can be positioned around the heating element 1111 and can be used to electrically shield the heating element 1111 from the rest of the shaft. A seal can further be used to isolate the heating element from fluid (i.e., to avoid shorting the heating element 1111). In some embodiments, the tether tubes 1082 can be actuated linearly (e.g., to move the tethers linearly) while the resistive heating element 1111 stays stationary. In other embodiments, the resistive heating element 1111 can move with the tubes 1082 (e.g., within a water tight housing). Because the resistive heating element 1111 is located along the mid-shaft rather than towards the distal end of the shaft, the heating element 1111 can advantageously be kept away from the heart during use of the device.


Another exemplary device 1100 is shown in FIGS. 11A-11B. The device 1100 includes a resistive cutting drum 1101 that is configured to be placed mid-way along the shaft that includes a resistive plate 1177 sandwiched by spacers 1112a,b (to electrically isolate the plate 1177). In some embodiments, the plate 1177 can further include a seal 1144a,b (e.g., silicone) on one or both ends to prevent fluid from contacting the plate 1177. The drum 1101 can further include a plurality of holes 1078 therein configured to allow the tethers to extend therethrough. In some embodiments, the resistive cutting drum 1101 can be configured to slide with the tether tubes 1182 to prevent having to move the tethers through the seals 1144a,b.


Referring to FIGS. 12A-12G, the resistive heating element(s) described herein can be attached to the delivery devices described herein in a variety of ways. For example, the resistive element 1201a can be wrapped or place directly against the tether tubes 1292, as shown in FIG. 12A. Alternatively, as shown in FIGS. 12B-12C, the resistive element 1201b can be wrapped around a large tube 1288 that then houses the smaller tether tubes therein. In some embodiments, referring to FIG. 12D, a slot 1289 can be formed in the outer diameter of the large tube 1288 to constrain the resistive element 1201c and get it closer to direct contact with the tether tubes 1292 (i.e., to make it easier to heat the tethers therein). Further, as shown in FIGS. 12E-G, in some embodiments, a jacket assembly 1212 can be used to shield the heating element 1201d from the rest of the catheter, and house wire junctions (e.g., in bores 1221a,b).


In some embodiments, the voltage applied to the conductive wires of the resistive heating elements described herein can be between 2-3V and the current can be between 2-4A.


One or more shield elements (such as ceramic elements 1099) can be used with any heating element described herein. The shield elements can help protect other elements of the delivery device while allowing a greater amount of power to be used to melt the tethers, thereby reducing the time that it takes to cut the tethers.


The tethers described herein for use with a resistive heating element can be a variety of materials that are subject to melting. For example, the tethers can be made of ultra-high molecular weight polyethylene.


In some embodiments, the heating elements used with the devices described herein can heat the tethers to a temperature of greater than 190° F., such as greater than 200° F., greater than 210° F., or greater than 220° F.



FIGS. 13A-15D show alternative mechanisms for cutting tethers that can be used in addition to or in place of the resistive heating elements described herein. For example, FIGS. 13A-13B show a grinding mechanism 1313 have a rotatable grinder 1315. The rotatable grinder 1315 can be positioned so as to push the tethers 1326 slightly radially outwards when not in use. As a result, when the grinder 1315 rotates, it can rotate against the tethers 1326 so as to slice therethrough. As shown, the tethers 1326 can still be positioned within tether tubes 1392, but the tether tubes 1392 can include a break therein at the rotatable grinder 1315.



FIGS. 14A-14B show a razor mechanism 1414 that can include a plurality of radially extending arms 1418 (see FIG. 14A; FIG. 14B does not show the arms 1418 for clarity) extending in the space 1490 between hypotubes 1492. The arms 1418 are designed to extend between each set of tethers 1426 until rotated. Once rotated, the arms 1418 can slice through the tethers 1426 (that extend out of the hypotubes 1492).



FIGS. 15A-15D show a delivery device 1500 including a sheath 1515, tether 1526, and a tether ends retainer 1520 (as described above). Further, the delivery device 1500 can include a razor cutting mechanism 1515 that can include a coiled spring 1520 configured to clamp the tethers 1526 either between the coils or against an inner or outer shaft. The spring 1520 can have a variable diameter so as to hold the tethers 1526 taught at a set location. A blade 1514 extending from the exterior thereof (FIG. 15A) or in the interior thereof (FIGS. 15B-D) can then be configured to rotate to cut through the tether 1526. In some embodiments, a spring actuator 1551 can be pulled back to unclamp the spring 1520 and release the tethers 1526. The spring mechanism can advantageously hold a set tension on the tethers 1526, which can aid in cutting of the tethers 1526.


In some embodiments, the methods for melting or cutting tethers described herein can cause severing within less than 2 minutes, such as less than 1 minute, less than 45 seconds, less than 30 seconds, less than 20 seconds, or less than 10 seconds.


The tether cutting mechanisms described herein can be used with other embodiments of delivery devices in addition to the specific delivery devices described herein. For example, the tether cutting mechanisms can be used as a component in addition to or in place of any component of any of the delivery devices described in U.S. PCT Application No. PCT/US16/32546, titled “CARDIAC VALVE DELIVERY DEVICES AND SYSTEMS,” filed May 13, 2016, incorporated by reference herein.


The delivery devices described herein can advantageously be used to control the placement of the prosthetic valve at the mitral valve site, as described in U.S. PCT Application No. PCT/US16/32546, titled “CARDIAC VALVE DELIVERY DEVICES AND SYSTEMS,” filed May 13, 2016, incorporated by reference herein.


Although described herein for use with a mitral valve prosthetic, the delivery systems described herein can be used with a variety of different implantable devices, including stents or other valve prosthetics.


When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.


Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.


Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.


Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.


As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.


Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.


The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims
  • 1. A delivery device comprising: a central elongate structure;an annular member extending radially around the central elongate structure, a distal portion of the annular member being configured to telescope relative to a proximal portion of the annular member;a sheath configured to slide over the central elongate structure;a plurality of tethers extending through the central elongate structure;a tether cutter positioned within the sheath and configured to cut the plurality of tethers upon activation;a handle connected to the central elongate structure; anda control on the handle configured to activate the tether cutter.
  • 2. The delivery device of claim 1, wherein the annular member includes a plurality of pockets extending radially around the central elongate structure, each of the tethers including a feature on a distal end thereof configured to fit within a pocket of the plurality of pockets to hold the tether in place.
  • 3. The delivery device of claim 1, further comprising a second control on the handle configured to move the sheath proximally and distally over the central elongate structure.
  • 4. The delivery device of claim 1, wherein the tether cutter includes a resistive wire that is configured to be heated to cut the plurality of tethers.
  • 5. The delivery device of claim 4, further comprising an o-ring configured to hold the plurality of tethers against the resistive wire.
  • 6. The delivery device of claim 4, wherein the resistive wire is positioned within an annular member configured to hold distal ends of the plurality of tethers.
  • 7. The delivery device of claim 1, wherein the plurality of tethers are made of polyether ether ketone or ultra-high molecular weight polyethylene.
  • 8. The delivery device of claim 1, wherein the tether cutter is a metallic ring or coil.
  • 9. The delivery device of claim 1, wherein the tether cutter is a resistive heating element.
  • 10. The delivery device of claim 9, wherein the resistive heating element is configured to heat the plurality of tethers to a temperature of greater than 190° F.
  • 11. The delivery device of claim 1, further comprising a coiled spring configured to place tension on the plurality of tethers.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/351,860, filed Jun. 17, 2016, titled “CARDIAC VALVE DELIVERY DEVICES AND SYSTEMS, and U.S. Provisional Patent Application No. 62/424,021 filed Nov. 18, 2016, titled “CARDIAC VALVE DELIVERY DEVICES AND SYSTEMS” the entireties of which are incorporated by reference herein. This application may also be related to International Patent Application No. PCT/US2016/032546, titled “CARDIAC VALVE DELIVERY DEVICES AND SYSTEMS,” filed May 13, 2016, the entirety of which is incorporated by reference herein. All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2017/037850 6/16/2017 WO 00
Publishing Document Publishing Date Country Kind
WO2017/218877 12/21/2017 WO A
US Referenced Citations (682)
Number Name Date Kind
3334629 Cohn Aug 1967 A
3409013 Henry Nov 1968 A
3540431 Mobin-Uddin Nov 1970 A
3628535 Ostrowsky et al. Dec 1971 A
3642004 Osthagen et al. Feb 1972 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3795246 Sturgeon Mar 1974 A
3839741 Haller Oct 1974 A
3868956 Alfidi et al. Mar 1975 A
3874388 King et al. Apr 1975 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4233690 Akins Nov 1980 A
4291420 Reul Sep 1981 A
4326306 Poler Apr 1982 A
4423809 Mazzocco Jan 1984 A
4425908 Simon Jan 1984 A
4501030 Lane Feb 1985 A
4531943 Van Tassel et al. Jul 1985 A
4580568 Gianturco Apr 1986 A
4602911 Ahmadi et al. Jul 1986 A
4610688 Silvestrini et al. Sep 1986 A
4617932 Kornberg Oct 1986 A
4648881 Carpentier et al. Mar 1987 A
4655218 Kulik et al. Apr 1987 A
4655771 Wallsten Apr 1987 A
4662885 DiPisa, Jr. May 1987 A
4665906 Jervis May 1987 A
4710192 Liotta et al. Dec 1987 A
4733665 Palmaz Mar 1988 A
4755181 Igoe Jul 1988 A
4796629 Grayzel Jan 1989 A
4819751 Shimada et al. Apr 1989 A
4834755 Silvestrini et al. May 1989 A
4856516 Hillstead Aug 1989 A
4865600 Carpentier et al. Sep 1989 A
4872874 Taheri Oct 1989 A
4873978 Ginsburg Oct 1989 A
4909252 Goldberger Mar 1990 A
4917102 Miller et al. Apr 1990 A
4927426 Dretler May 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5002559 Tower Mar 1991 A
5064435 Porter Nov 1991 A
5161547 Tower Nov 1992 A
5163953 Vince Nov 1992 A
5209741 Spaeth May 1993 A
5258023 Reger Nov 1993 A
5258042 Mehta Nov 1993 A
5332402 Teitelbaum Jul 1994 A
5336258 Quintero et al. Aug 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370685 Stevens Dec 1994 A
5389106 Tower Feb 1995 A
5397351 Pavcnik et al. Mar 1995 A
5405377 Cragg Apr 1995 A
5411552 Andersen et al. May 1995 A
5425762 Muller Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5443495 Buscemi et al. Aug 1995 A
5443499 Schmitt Aug 1995 A
5476506 Lunn Dec 1995 A
5476510 Eberhardt et al. Dec 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5507767 Maeda et al. Apr 1996 A
5534007 St. Germain et al. Jul 1996 A
5545133 Burns et al. Aug 1996 A
5545211 An et al. Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554183 Nazari Sep 1996 A
5554185 Block et al. Sep 1996 A
5571215 Sterman et al. Nov 1996 A
5573520 Schwartz et al. Nov 1996 A
5575818 Pinchuk Nov 1996 A
5645559 Hachtman et al. Jul 1997 A
5662671 Barbut et al. Sep 1997 A
5667523 Bynon et al. Sep 1997 A
5674277 Freitag Oct 1997 A
5693083 Baker et al. Dec 1997 A
5695498 Tower Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson et al. Feb 1998 A
5720391 Dohm et al. Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5733325 Robinson et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5769812 Stevens et al. Jun 1998 A
5807405 Vanney et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824043 Cottone, Jr. Oct 1998 A
5824053 Khosravi et al. Oct 1998 A
5824055 Spiridigliozzi et al. Oct 1998 A
5824056 Rosenberg Oct 1998 A
5824064 Taheri Oct 1998 A
5843158 Lenker et al. Dec 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5860966 Tower Jan 1999 A
5861024 Rashidi Jan 1999 A
5861028 Angell Jan 1999 A
5868783 Tower Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5885228 Rosenman et al. Mar 1999 A
5888201 Stinson et al. Mar 1999 A
5891191 Stinson Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5957973 Quiachon et al. Sep 1999 A
5968070 Bley et al. Oct 1999 A
5984957 Laptewicz et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6022370 Tower Feb 2000 A
6027525 Suh et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6042607 Williamson et al. Mar 2000 A
6093203 Uflacker Jul 2000 A
6113612 Swanson et al. Sep 2000 A
6123723 Konya et al. Sep 2000 A
6142987 Tsugita Nov 2000 A
6162245 Jayaraman Dec 2000 A
6165209 Patterson et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6174322 Schneidt Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6187016 Hedges et al. Feb 2001 B1
6197053 Cosgrove et al. Mar 2001 B1
6200336 Pavcnik et al. Mar 2001 B1
6206909 Hanada et al. Mar 2001 B1
6214036 Letendre et al. Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6221096 Aiba et al. Apr 2001 B1
6231544 Tsugita et al. May 2001 B1
6231551 Barbut May 2001 B1
6241757 An et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6258114 Konya et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6277555 Duran et al. Aug 2001 B1
6309417 Spence et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6319281 Patel Nov 2001 B1
6336934 Gilson et al. Jan 2002 B1
6336937 Vonesh et al. Jan 2002 B1
6338735 Stevens Jan 2002 B1
6348063 Yassour et al. Feb 2002 B1
6352708 Duran et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371983 Lane Apr 2002 B1
6379368 Corcoran et al. Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6398807 Chouinard et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6411552 Chiba Jun 2002 B1
6416510 Altman et al. Jul 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440152 Gainor et al. Aug 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468303 Amplatz et al. Oct 2002 B1
6475239 Campbell et al. Nov 2002 B1
6482228 Norred Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6494909 Greenhalgh Dec 2002 B2
6503272 Duerig et al. Jan 2003 B2
6527800 McGuckin et al. Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6562058 Seguin et al. May 2003 B2
6592546 Barbut et al. Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6610077 Hancock et al. Aug 2003 B1
6616675 Evard et al. Sep 2003 B1
6616682 Joergensen et al. Sep 2003 B2
6622604 Chouinard et al. Sep 2003 B1
6623518 Thompson et al. Sep 2003 B2
6635068 Dubrul et al. Oct 2003 B1
6635079 Unsworth et al. Oct 2003 B2
6652571 White et al. Nov 2003 B1
6656206 Corcoran et al. Dec 2003 B2
6663588 DuBois et al. Dec 2003 B2
6663663 Kim et al. Dec 2003 B2
6669724 Park et al. Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6673109 Cox Jan 2004 B2
6676668 Mercereau et al. Jan 2004 B2
6676692 Rabkin et al. Jan 2004 B2
6676698 McGuckin et al. Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6689144 Gerberding Feb 2004 B2
6689164 Seguin Feb 2004 B1
6692512 Jang Feb 2004 B2
6695864 Macoviak et al. Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6702851 Chinn et al. Mar 2004 B1
6712836 Berg et al. Mar 2004 B1
6712842 Gifford et al. Mar 2004 B1
6712843 Elliott Mar 2004 B2
6714842 Ito Mar 2004 B1
6723122 Yang et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730377 Wang May 2004 B2
6733525 Yang et al. May 2004 B2
6752828 Thornton Jun 2004 B2
6758855 Fulton et al. Jul 2004 B2
6764503 Ishimaru Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6767345 St. Germain et al. Jul 2004 B2
6773454 Wholey et al. Aug 2004 B2
6776791 Stallings et al. Aug 2004 B1
6790218 Jayaraman Sep 2004 B2
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790237 Stinson Sep 2004 B2
6792979 Konya et al. Sep 2004 B2
6814746 Thompson et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6837901 Rabkin et al. Jan 2005 B2
6843802 Villalobos et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6872223 Roberts et al. Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875231 Anduiza et al. Apr 2005 B2
6881220 Edwin et al. Apr 2005 B2
6887266 Williams et al. May 2005 B2
6890340 Duane May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6905743 Chen et al. Jun 2005 B1
6908481 Cribier Jun 2005 B2
6911036 Douk et al. Jun 2005 B2
6911037 Gainor et al. Jun 2005 B2
6913614 Marino et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6936058 Forde et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6945997 Huynh et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6953332 Kurk et al. Oct 2005 B1
6960220 Marino et al. Nov 2005 B2
6960224 Marino et al. Nov 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974476 McGuckin et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6984242 Campbell et al. Jan 2006 B2
7011681 Vesely Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7025791 Levine et al. Apr 2006 B2
7037331 Mitelberg et al. May 2006 B2
7077861 Spence Jul 2006 B2
7087072 Marino et al. Aug 2006 B2
7115135 Corcoran et al. Oct 2006 B2
7122020 Mogul Oct 2006 B2
7144410 Marino et al. Dec 2006 B2
7166097 Barbut Jan 2007 B2
7175653 Gaber Feb 2007 B2
7175654 Bonsignore et al. Feb 2007 B2
7189258 Johnson et al. Mar 2007 B2
7191018 Gielen et al. Mar 2007 B2
7192435 Corcoran et al. Mar 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7235093 Gregorich Jun 2007 B2
7261732 Justino Aug 2007 B2
7320704 Lashinski et al. Jan 2008 B2
7329279 Haug et al. Feb 2008 B2
7374560 Ressemann et al. May 2008 B2
7381219 Salahieh et al. Jun 2008 B2
7402171 Osborne et al. Jul 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7455689 Johnson Nov 2008 B2
7566336 Corcoran et al. Jul 2009 B2
7582104 Corcoran et al. Sep 2009 B2
7591848 Allen Sep 2009 B2
7625364 Corcoran et al. Dec 2009 B2
7632298 Hijlkema et al. Dec 2009 B2
7658748 Marino et al. Feb 2010 B2
7691115 Corcoran et al. Apr 2010 B2
7712606 Salahieh et al. May 2010 B2
7722666 LaFontaine May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7749238 Corcoran et al. Jul 2010 B2
7780725 Haug et al. Aug 2010 B2
7803184 McGuckin et al. Sep 2010 B2
7803186 Li et al. Sep 2010 B1
7824442 Salahieh et al. Nov 2010 B2
7824443 Salahieh et al. Nov 2010 B2
7896915 Guyenot et al. Mar 2011 B2
7905901 Corcoran et al. Mar 2011 B2
7927351 Corcoran et al. Apr 2011 B2
7972361 Corcoran et al. Jul 2011 B2
8043368 Crabtree Oct 2011 B2
8057540 Letac et al. Nov 2011 B2
8092520 Quadri Jan 2012 B2
8167935 McGuckin et al. May 2012 B2
8236049 Rowe et al. Aug 2012 B2
8317858 Straubinger et al. Nov 2012 B2
8366741 Chin et al. Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8425593 Braido et al. Apr 2013 B2
8444689 Zhang May 2013 B2
8449599 Chau et al. May 2013 B2
8551132 Eskridge et al. Oct 2013 B2
8551161 Dolan Oct 2013 B2
8562672 Bonhoeffer et al. Oct 2013 B2
8568475 Nguyen et al. Oct 2013 B2
8579964 Lane et al. Nov 2013 B2
8579966 Seguin et al. Nov 2013 B2
8623074 Ryan Jan 2014 B2
8628566 Eberhardt et al. Jan 2014 B2
8673000 Tabor et al. Mar 2014 B2
8685080 White Apr 2014 B2
8721708 Sèguin et al. May 2014 B2
8728155 Montorfano et al. May 2014 B2
8740962 Finch et al. Jun 2014 B2
8795356 Quadri et al. Aug 2014 B2
8801779 Seguin et al. Aug 2014 B2
8845722 Gabbay Sep 2014 B2
8852272 Gross et al. Oct 2014 B2
8870948 Erzberger et al. Oct 2014 B1
8894702 Quadri et al. Nov 2014 B2
8911455 Quadri et al. Dec 2014 B2
8956404 Börtlein et al. Feb 2015 B2
8986375 Garde et al. Mar 2015 B2
8998976 Gregg et al. Apr 2015 B2
9011527 Li et al. Apr 2015 B2
9017399 Gross et al. Apr 2015 B2
9023074 Theobald et al. May 2015 B2
9023100 Quadri et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9060857 Nguyen et al. Jun 2015 B2
9101467 Eberhardt et al. Aug 2015 B2
9125740 Morriss et al. Sep 2015 B2
9132009 Hacohen et al. Sep 2015 B2
9155617 Carpentier et al. Oct 2015 B2
9168130 Straubinger et al. Oct 2015 B2
9168131 Yohanan et al. Oct 2015 B2
9232994 Miller Jan 2016 B2
9387071 Tuval et al. Jul 2016 B2
9393110 Levi et al. Jul 2016 B2
9393112 Tuval et al. Jul 2016 B2
9414852 Gifford et al. Aug 2016 B2
9414913 Beith et al. Aug 2016 B2
9421083 Eidenschink et al. Aug 2016 B2
9421098 Gifford et al. Aug 2016 B2
9439757 Granada et al. Sep 2016 B2
9474605 Rowe et al. Oct 2016 B2
9474609 Haverkost et al. Oct 2016 B2
9480556 Revuelta et al. Nov 2016 B2
9480558 Destefano Nov 2016 B2
9480563 Li Nov 2016 B2
9486306 Tegels et al. Nov 2016 B2
9492273 Granada et al. Nov 2016 B2
9498330 Solem Nov 2016 B2
9504564 Nguyen et al. Nov 2016 B2
9504568 Ryan et al. Nov 2016 B2
9510943 Mesana et al. Dec 2016 B2
9554899 Granada et al. Jan 2017 B2
9561103 Granada et al. Feb 2017 B2
9579198 Deem et al. Feb 2017 B2
9655722 Morriss et al. May 2017 B2
9883941 Hastings et al. Feb 2018 B2
9949824 Bonhoeffer et al. Apr 2018 B2
10004601 Tuval et al. Jun 2018 B2
10143552 Wallace et al. Dec 2018 B2
10149761 Granada et al. Dec 2018 B2
10154906 Granada et al. Dec 2018 B2
10500038 Orlov Dec 2019 B1
20010007956 Letac et al. Jul 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010041928 Pavcnik et al. Nov 2001 A1
20010041930 Globerman et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20010044656 Williamson et al. Nov 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020010489 Grayzel et al. Jan 2002 A1
20020026233 Shaknovich Feb 2002 A1
20020029981 Nigam Mar 2002 A1
20020032481 Gabbay Mar 2002 A1
20020055769 Wang May 2002 A1
20020062135 Mazzocchi et al. May 2002 A1
20020082609 Green Jun 2002 A1
20020095173 Mazzocchi et al. Jul 2002 A1
20020120328 Pathak et al. Aug 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020177766 Mogul Nov 2002 A1
20020183781 Casey et al. Dec 2002 A1
20020188341 Elliott Dec 2002 A1
20020188344 Bolea et al. Dec 2002 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036791 Philipp et al. Feb 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030040791 Oktay Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030070944 Nigam Apr 2003 A1
20030074011 Gilboa et al. Apr 2003 A1
20030109924 Cribier Jun 2003 A1
20030109930 Bluni et al. Jun 2003 A1
20030114912 Sequin et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030135257 Taheri Jul 2003 A1
20030144732 Cosgrove et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030149477 Gabbay Aug 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030181850 Diamond et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030199971 Tower et al. Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212454 Scott et al. Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030225421 Peavey et al. Dec 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030229390 Ashton et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20040034411 Quijano et al. Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040049262 Obermiller et al. Mar 2004 A1
20040060563 Rapacki et al. Apr 2004 A1
20040082904 Houde et al. Apr 2004 A1
20040082967 Broome et al. Apr 2004 A1
20040087982 Eskuri May 2004 A1
20040093016 Root et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098099 McCullagh et al. May 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040116951 Rosengart Jun 2004 A1
20040117004 Osborne et al. Jun 2004 A1
20040122468 Yodfat et al. Jun 2004 A1
20040127936 Salahieh et al. Jul 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040133274 Webler et al. Jul 2004 A1
20040138694 Tran et al. Jul 2004 A1
20040143294 Corcoran et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040153094 Dunfee et al. Aug 2004 A1
20040158277 Lowe et al. Aug 2004 A1
20040167565 Beulke et al. Aug 2004 A1
20040181140 Falwell et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040204755 Robin Oct 2004 A1
20040215331 Chew et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220655 Swanson et al. Nov 2004 A1
20040225321 Krolik et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20050033402 Cully et al. Feb 2005 A1
20050070934 Tanaka et al. Mar 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050085841 Eversull et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050085843 Opolski et al. Apr 2005 A1
20050085890 Rasmussen et al. Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050096692 Linder et al. May 2005 A1
20050096734 Majercak et al. May 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050100580 Osborne et al. May 2005 A1
20050107822 WasDyke May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050165352 Henry et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050209580 Freyman Sep 2005 A1
20050228472 Case et al. Oct 2005 A1
20050251250 Verhoeven et al. Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267560 Bates Dec 2005 A1
20050283962 Boudjemline Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060015168 Gunderson Jan 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060116717 Marino et al. Jun 2006 A1
20060122633 To Jun 2006 A1
20060155312 Levine et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060190030 To et al. Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060235510 Johnson et al. Oct 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20060253191 Salahieh et al. Nov 2006 A1
20060259134 Schwammenthal et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060265045 Shiu et al. Nov 2006 A1
20060271166 Thill et al. Nov 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20070016286 Herrmann et al. Jan 2007 A1
20070055340 Pryor Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070118214 Salahieh et al. May 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070244552 Salahieh et al. Oct 2007 A1
20070244556 Rafiee Oct 2007 A1
20070255389 Oberti et al. Nov 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20070276324 Laduca et al. Nov 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080015619 Figulla et al. Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080082165 Wilson et al. Apr 2008 A1
20080140189 Nguyen et al. Jun 2008 A1
20080140191 Mathis et al. Jun 2008 A1
20080167682 Corcoran et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080234797 Styrc Sep 2008 A1
20080288054 Pulnev et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090082803 Adams et al. Mar 2009 A1
20090093877 Keidar Apr 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090182405 Arnault De La Menardiere et al. Jul 2009 A1
20090192585 Bloom et al. Jul 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090254165 Tabor et al. Oct 2009 A1
20090264759 Byrd Oct 2009 A1
20090287290 Macaulay et al. Nov 2009 A1
20090306768 Quadri Dec 2009 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100094314 Hernlund et al. Apr 2010 A1
20100114308 Maschke May 2010 A1
20100121434 Paul et al. May 2010 A1
20100161036 Pintor et al. Jun 2010 A1
20100219092 Salahieh et al. Sep 2010 A1
20100268204 Tieu et al. Oct 2010 A1
20100280495 Paul et al. Nov 2010 A1
20100284724 Cardia Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20100312333 Navia et al. Dec 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110034987 Kennedy Feb 2011 A1
20110166636 Rowe Jul 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110257723 McNamara Oct 2011 A1
20110264198 Murray et al. Oct 2011 A1
20110295363 Girard et al. Dec 2011 A1
20110301702 Rust et al. Dec 2011 A1
20120016464 Seguin Jan 2012 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120078360 Rafiee Mar 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120158129 Duffy et al. Jun 2012 A1
20120197283 Marchand et al. Aug 2012 A1
20120197391 Alkhatib et al. Aug 2012 A1
20130041447 Erb et al. Feb 2013 A1
20130041458 Lashinski et al. Feb 2013 A1
20130253643 Rolando et al. Sep 2013 A1
20130261737 Costello Oct 2013 A1
20130282110 Schweich, Jr. et al. Oct 2013 A1
20130282114 Schweich, Jr. et al. Oct 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20130310923 Kheradvar et al. Nov 2013 A1
20130331931 Gregg et al. Dec 2013 A1
20140005771 Braido et al. Jan 2014 A1
20140005775 Alkhatib et al. Jan 2014 A1
20140005778 Buchbinder et al. Jan 2014 A1
20140012368 Sugimoto et al. Jan 2014 A1
20140012374 Rankin Jan 2014 A1
20140052237 Lane et al. Feb 2014 A1
20140052241 Harks et al. Feb 2014 A1
20140052244 Rolando et al. Feb 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140081383 Eberhardt et al. Mar 2014 A1
20140107665 Shellenberger et al. Apr 2014 A1
20140128726 Quill et al. May 2014 A1
20140180391 Dagan et al. Jun 2014 A1
20140200649 Essinger Jul 2014 A1
20140214157 Bortlein et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140236278 Argentine et al. Aug 2014 A1
20140243954 Shannon Aug 2014 A1
20140249622 Carmi et al. Sep 2014 A1
20140257476 Montorfano et al. Sep 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140277563 White Sep 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140330368 Gloss et al. Nov 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150039083 Rafiee Feb 2015 A1
20150045881 Lim Feb 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150112430 Creaven et al. Apr 2015 A1
20150119637 Alvarez et al. Apr 2015 A1
20150135506 White May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150157457 Hacohen Jun 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150223773 John et al. Aug 2015 A1
20150302634 Florent et al. Oct 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351904 Cooper et al. Dec 2015 A1
20160038280 Morriss et al. Feb 2016 A1
20160089234 Gifford Mar 2016 A1
20160151153 Sandstrom et al. Jun 2016 A1
20160158000 Granada et al. Jun 2016 A1
20160158003 Wallace et al. Jun 2016 A1
20160166384 Olson et al. Jun 2016 A1
20160310267 Zeng et al. Oct 2016 A1
20160310269 Braido et al. Oct 2016 A1
20170035569 Deem et al. Feb 2017 A1
20170042675 Freudenthal Feb 2017 A1
20170049571 Gifford Feb 2017 A1
20170209261 Bortlein et al. Jul 2017 A1
20170209269 Conklin Jul 2017 A1
20170231762 Quadri et al. Aug 2017 A1
20170325941 Wallace et al. Nov 2017 A1
20170360561 Bell Dec 2017 A1
20180000580 Wallace et al. Jan 2018 A1
20180056043 Von Oepen et al. Mar 2018 A1
20180092744 von Oepen et al. Apr 2018 A1
20180110622 Gregg et al. Apr 2018 A1
20180206983 Noe et al. Jul 2018 A1
20180206984 Noe et al. Jul 2018 A1
20180206985 Noe et al. Jul 2018 A1
20180206986 Noe et al. Jul 2018 A1
20180296325 McLean Oct 2018 A1
20180296335 Miyashiro Oct 2018 A1
20180296339 McLean Oct 2018 A1
20180296341 Noe et al. Oct 2018 A1
20180344454 Mauch Dec 2018 A1
Foreign Referenced Citations (75)
Number Date Country
2859666 Jun 2013 CA
1338951 Mar 2002 CN
0409929 Apr 1997 EP
1057459 Dec 2000 EP
1057460 Dec 2000 EP
0937439 Sep 2003 EP
1340473 Sep 2003 EP
1356793 Oct 2003 EP
1042045 May 2004 EP
0819013 Jun 2004 EP
1229864 Apr 2005 EP
1430853 Jun 2005 EP
1059894 Jul 2005 EP
1078610 Aug 2005 EP
1469797 Nov 2005 EP
1600121 Nov 2005 EP
1616531 Jan 2006 EP
1819304 Jun 2006 EP
1849440 Oct 2007 EP
2654624 Oct 2013 EP
2124826 Jul 2014 EP
WO9504556 Feb 1995 WO
WO9529640 Nov 1995 WO
WO9614032 May 1996 WO
WO9624306 Aug 1996 WO
WO9836790 Aug 1998 WO
WO9857599 Dec 1998 WO
WO9944542 Sep 1999 WO
WO0009059 Feb 2000 WO
WO0044308 Aug 2000 WO
WO0044313 Aug 2000 WO
WO0067661 Nov 2000 WO
WO0105331 Jan 2001 WO
WO0135870 May 2001 WO
WO0164137 Sep 2001 WO
WO0236048 May 2002 WO
WO0241789 May 2002 WO
WO02100297 Dec 2002 WO
WO03003943 Jan 2003 WO
WO03003949 Jan 2003 WO
WO03011195 Feb 2003 WO
WO03030776 Apr 2003 WO
WO03015851 Nov 2003 WO
WO03094797 Nov 2003 WO
WO2004014256 Feb 2004 WO
WO2004019811 Mar 2004 WO
WO2004026117 Apr 2004 WO
WO2004041126 May 2004 WO
WO2004047681 Jun 2004 WO
WO2004066876 Aug 2004 WO
WO2004082536 Sep 2004 WO
WO2005037361 Apr 2005 WO
WO2005084595 Sep 2005 WO
WO2005087140 Sep 2005 WO
WO2009072122 Jun 2009 WO
WO2009108615 Sep 2009 WO
WO2009132187 Oct 2009 WO
WO2009137755 Nov 2009 WO
WO2010057262 May 2010 WO
WO2010141847 Dec 2010 WO
WO2011057087 May 2011 WO
WO2011081997 Jul 2011 WO
WO2012161786 Nov 2012 WO
WO2013158608 Oct 2013 WO
WO2013158613 Oct 2013 WO
WO2014121280 Aug 2014 WO
WO2014144247 Sep 2014 WO
2015014960 Feb 2015 WO
WO2015127283 Aug 2015 WO
WO2016168609 Oct 2016 WO
WO2017035002 Mar 2017 WO
WO2017035434 Mar 2017 WO
WO2017122109 Jul 2017 WO
WO2017167759 Oct 2017 WO
WO2017218877 Dec 2017 WO
Non-Patent Literature Citations (31)
Entry
Extended European Search Report including Written Opinion for Application No. EP17814158.6, dated Jan. 15, 2020, pp. 1-8.
Andersen et al.; Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs; Euro. Heart J.; 13(5): 704-708; May 1992.
Atwood et al.; Insertion of Heart Valves by Catheterization; Project Supervised by Prof. S. Muftu of Northeastern University, May 2002: pp. 36-40.
Bodnar et al. Replacement Cardiac Valves; (Chapter 13) Extinct cardiac valve prostheses. Pergamon Publishing Corporation. New York, Aug. 1991: pp. 307-322.
Boudjemline et al. Percutaneous implantation of a biological valve in the aorta to treat aortic valve insufficiency—a sheep study.f Med Sci. Monit; Apr. 2002; vol. 8, No. 4: BR113-116.
Boudjemline et al. “Percutaneous implantation of a valve in the descending aorta in lambs.” Euro. Heart J; Jul. 2002; 23: 1045-1049.
Boudjemline et al. “Percutaneous pulmonary valve replacement in a large right ventricular outflow tract: an experimental study.” Journal of the Americal College of Cardiology; Mar. 2004; vol. 43(6): 1082-1087.
Boudjemline et al. “Percutaneous valve insertion: A new approach?” J. of Thoracic and Cardio. Surg; Mar. 2003; 125(3): 741-743.
Boudjemline et al. “Steps Toward Percutaneous Aortic Valve Replacement.” Circulation; Feb. 2002; 105: 775-778.
Cribier et al. “Early Experience with Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients with Calcific Aortic Stenosis.” J. of Am. Coll. of Cardio; Feb. 2004; 43(4): 698-703.
Cribier et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description.” Circulation; Dec. 2002; 106: 3006-3008.
Cribier et al. “Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case.” (slide presentation); TCT 2002 (conference); 16 pgs.; Washington D.C.; Sep. 24-28, 2002.
Ferrari et al. “Percutaneous transvascular aortic valve replacement with self expanding stent-valve device.” Poster from the presentation given at SMIT 2000, 12th International Conference. 1 pg. Sep. 5, 2000.
Hijazi “Transcatheter Valve Replacement: A New Era of Percutaneous Cardiac Intervention Begins.” J. of Am. College of Cardio; Mar. 2004; 43(6): 1088-1089.
Huber et al. “Do valved stents compromise coronary flow?” European Journal of Cardio-thoracic Surgery; May 2004; vol. 25: 754-759.
Knudsen et al. “Catheter-implanted prosthetic heart valves.” Int'l J. of Art. Organs; May 1993; 16(5): 253-262.
Kort et al. “Minimally invasive aortic valve replacement: Echocardiographic and clinical results.” Am. Heart J; Sep. 2001; 142(3): 476-481.
Love et al. fThe Autogenous Tissue Heart Valve: Current Stat.f Journal of Cardiac Surgery; Dec. 1991; 6(4): 499-507.
Lutter et al. “Percutaneous aortic valve replacement: An experimental study. I. Studies on implantation.” J. of Thoracic and Cardio. Surg; Apr. 2002; 123(4): 768-776.
Moulopoulos et al. “Catheter-Mounted Aortic Valves.” Annals of Thoracic Surg; May 1971; 11(5): 423-430.
Paniagua et al. “Percutaneous heart valve in the chronic in vitro testing model.” Circulation; Sep. 2002; 106: e51-e52.
Paniagua et al. Heart Watch (2004). Texas Heart Institute. Spring Mar. 2004 Edition: 8 pages.
Pavcnik et al. “Percutaneous bioprosthetic veno valve: A long-term study in sheep.” J. of Vascular Surg; Mar. 2002; 35(3): 598-603.
Phillips et al. “A Temporary Catheter-Tip Aortic Valve: Hemodynamic Effects on Experimental Acute Aortic Insufficiency.” Annals of Thoracic Surg; Feb. 1976; 21(2): 134-136.
Sochman et al. “Percutaneous Transcatheter Aortic Disc Valve Prosthesis Implantation: A Feasibility Study.” Cardiovasc. Intervent. Radiol; Sep.-Oct. 2000; 23: 384-388.
Solvay; Novel revivent (tm) Myocardial anchoring system from bioVentrix uses solvay's zeniva® PEEK in tether component; 3 pages retrieved from the internet (http://www.solvay.com/en/media/press_release/20131205-novel-revivent-myocardial-anchoring-system-bioventrix-uses-zenivapeek.html); (Press Release); on Aug. 10, 2017.
Stuart, M. “In Heart Valves, a Brave, New Non-Surgical World.” Start-Up; Feb. 2004: 9-17.
Vahanian et al. “Percutaneous Approaches to Valvular Disease.” Circulation; Apr. 2004; 109: 1572-1579.
Van Herwerden et al., “Percutaneous valve implantation: back to the future?” Euro. Heart J; Sep. 2002; 23(18): 1415-1416.
Zhou et al. “Self-expandable valved stent of large size: off-bypass implantation in pulmonary position.” Eur. J. Cardiothorac; Aug. 2003; 24: 212-216.
Granada et al.; U.S. Appl. No. 16/224,221 entitled “System and method for cardiac valve repairand replacement,” filed Dec. 18, 2018.
Related Publications (1)
Number Date Country
20190247188 A1 Aug 2019 US
Provisional Applications (2)
Number Date Country
62424021 Nov 2016 US
62351860 Jun 2016 US