Cardiac valve repair system and methods of use

Abstract
Systems and methods for mitral valve repair having a docking station and a valve implant. The docking station is an anchoring device having a helix structure. The valve implant is made of an expandable frame and a valve, and is radially expandable to a diameter that is at least the same as an expanded diameter of the anchoring device. The method of delivering the docking station and valve implant is performed by inserting the components through device delivery catheters.
Description
FIELD OF THE INVENTION

This application generally relates to apparatus and methods for performing transcatheter or minimally invasive repair or replacement of a cardiac valve, such as the mitral valve, by anchoring an expandable replacement valve body to the leaflets of an incompetent cardiac valve.


BACKGROUND OF THE INVENTION

In recent years a wide array of replacement cardiac valves have been proposed for treating cardiac valve diseases, such as valve regurgitation or stenosis. The human heart contains four valves that separate the atria from the lungs and ventricles: The tricuspid valve disposed between the right atrium and right ventricle, the pulmonary valve disposed between the right ventricle and the pulmonary artery, the bicuspid (or mitral) valve disposed between the left atrium and the left ventricle, and the aortic valve disposed between the left ventricle and the aorta. Each of these valves has a slightly different anatomy than the others, requiring differently-designed replacement valve solutions.


For example, whereas U.S. patent application Ser. No. US 2006/0265056 to Nguyen et al. describes a catheter-delivered aortic valve having a self-expanding stent that causes the valve to become anchored to the valve annulus, such a solution may not be feasible for repair of a mitral valve due to the possibility that the self-expanding stent may occlude the left ventricle outflow tract for the adjacent aortic valve. Accordingly, it would be desirable to provide a transcatheter or minimally-invasive cardiac valve repair system that can employ a replacement valve disposed in an expandable stent body, but that avoids potential disadvantages of the prior art.


In view of the drawbacks attendant upon using expandable stents for some cardiac valve repair procedures, the state-of-the-art for previously-known cardiac repair procedures has been surgical repair or replacement of defective valves. For example, mitral valve repair currently is handled as an open surgical procedure, in which the defective valve leaflets are cut away and a new valve body, employing either natural tissue or synthetic fabric, is sewn to the valve annulus. U.S. Pat. No. 4,490,859 to Black et al. describes such a replacement valve, which comprises a polymer frame mounted on a sewing ring, wherein the frame is covered by an animal tissue or synthetic fabric frame.


Other previously-known attempts to repair mitral valves using a minimally invasive or catheter-based approach have sought to reduce the time, skill and effort required to attach the replacement valve to the existing valve annulus using barbs or spring-like clips as described, for example, in U.S. Pat. No. 7,101,395 to Tremulis et al. U.S. Pat. No. 6,419,696 to Ortiz et al. describes a mitral valve repair system comprising a double helix structure that may delivered via catheter or a minimally-invasive route so that upper and lower rings of the double helix sandwich the valve leaflets and increase the rigidity of the leaflets, thus reducing regurgitation. That patent further describes that its double helix structure may be used to anchor a valve body having a fixed outer circumference that is delivered via a surgical or minimally-invasive route. Neither of the valve repair systems described in the foregoing patents permits installation of a replacement cardiac valve body using a purely transcatheter delivery route.


In view of the above-noted drawbacks of previously-known systems, it would be desirable to provide methods and apparatus for delivering a replacement cardiac valve via a transcatheter approach, either transvascularly or via a minimally-invasive approach.


It also would be desirable to provide a replacement cardiac valve, and methods of using same, that may be deployed with reduced risk of obstructing an outflow tract of an adjacent cardiac valve.


It further would be desirable to provide a replacement cardiac valve, and methods of using same, wherein the anchor used to fasten an expandable cardiac valve body limits expansion of the cardiac valve body to a predetermined size and shape.


It still further would be desirable to provide a replacement cardiac valve, and methods of using same, wherein the replacement cardiac valve is configured to firmly anchor the valve body to the pre-existing cardiac valve leaflets, while reducing the risk of perivalvular leakage.


It also would be desirable to provide a replacement cardiac valve, and methods of using same in which, in some embodiments, an anchor of the replacement cardiac valve reshapes the pre-existing valve annulus to accommodate alternative replacement valve body configurations.


SUMMARY OF THE INVENTION

The present invention provides a replacement cardiac valve, and methods of using same, that overcomes the drawbacks of previously-known systems. Exemplary embodiments of the present invention include an anchor comprising a double helix configured to engage the cardiac valve leaflets of a diseased or defective cardiac valve, and replacement valve body disposed in an expandable stent that is disposed within the anchor, such that the anchor limits expansion of the expandable stent portion of the replacement cardiac valve. The expandable stent of the replacement valve body may be self-expanding or mechanically expanded, e.g., using a balloon catheter or catheter-based mandrel.


In some embodiments the replacement valve body may comprise a metal alloy or polymer frame covered by animal tissue or synthetic fabric that mimics the valve configuration of the valve being replaced. Alternatively, the valve body may comprise any suitable valve structure suitable for transcatheter delivery.


In accordance with one aspect of the invention, the anchor and replacement valve body may be implanted using a transvascular approach. Implantation of a mitral valve embodiment of the present invention, for example, may be accomplished by passing a catheter through the femoral vein into the right atrium, followed by a transeptal puncture to gain access to the mitral valve from above. Alternatively, a minimally-invasive approach may be used wherein a catheter is inserted through a keyhole opening in the chest and catheter is inserted transapically from below the mitral valve. In either case, the anchor component of the present invention may then be deployed first, after which the replacement valve body may be deployed within anchor. As a further alternative, the replacement valve body may be pre-attached to the anchor such that the device may be implanted in a single step.


In accordance with another aspect of the present invention, the expandable stent of the replacement valve body may include a feature, e.g., a reduced diameter section, that is configured to engage the anchor component to reduce the potential for movement of the replacement valve body relative to the anchor. In still other embodiments, expansion of the expandable stent against the anchor may secure the anchor into engagement with the cardiac valve leaflets. In vet further embodiments, the double helix of the anchor may expand during deployment from a delivery configuration that facilitates insertion of a lower ring of the double helix into engagement with the ventricular surfaces of the leaflets and a deployed configuration wherein the double helix assumes an ovoid configuration that approximates the natural shape of the cardiac valve annulus. Alternatively, the double helix of the anchor transitions from a small diameter ring to a larger diameter ring, such that the anchor remodels the shape of cardiac valve annulus, e.g., from a substantially ovoid shape to a substantially circular shape.


Methods of using the replacement cardiac valve system of the present invention also are provided.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B show an exemplary embodiment of a replacement cardiac valve system constructed in accordance with the principles of the present invention, wherein FIG. 1A shows a sectional view in the deployed state and FIG. 1B shows a side view in the delivery state.



FIG. 2 depicts illustrative embodiments of catheters for transvascular delivery of the anchor and valve body components of the present invention.



FIG. 3 is a sectional view of the left ventricular portion of a human heart showing a mitral valve being repaired using the replacement cardiac valve system of the present invention, wherein the delivery catheter for the anchor has been disposed proximate the atrial surface of the mitral valve.



FIGS. 4A, 4B and 4C are illustrative views showing deployment of the anchor component of the present invention in contact with the ventricular surface of a mitral valve undergoing repair,



FIGS. 5A and 5B are, respectively, a perspective view and side sectional view showing the anchor component of the present invention fully deployed on the leaflets of a mitral valve.



FIGS. 6A and 6B depicts the distal end of the replacement valve body delivery catheter shown in FIG. 2 approaching, and penetrating, respectively, the mitral valve of FIG. 5 on which the anchor has been deployed.



FIG. 7 is a side view showing deployment of the replacement valve body from the delivery catheter.



FIG. 8 is a view from the atrial side of the mitral valve that undergone repair using the cardiac valve replacement system of the present invention.



FIGS. 9A and 9B are schematic illustrations of an alternative embodiment of the cardiac replacement valve system of the present invention in which the anchor is pre-attached to expandable stent and replacement valve body.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIGS. 1A and 1B, an illustrative embodiment of a cardiac repair system constructed in accordance with the principles of the present invention is described. Illustratively, the cardiac valve is designed for replacement of a defective mitral valve, although it could be readily adapted for other cardiac valves. Replacement cardiac valve 10 includes animal tissue or synthetic valve body 20 mounted in expandable stent 30. Anchor 40 comprising a double helix of a metal alloy is shown engaged on the exterior of stent 30. Replacement cardiac valve 10 has an expanded, deployed state, shown in FIG. 1A, and a contracted delivery state, shown in FIG. 1B, such that the device may be disposed within a delivery catheter for transvascular or minimally-invasive surgical delivery. In FIG. 1B, anchor 40, which is separately delivered for this embodiment, is omitted.


For purposes of illustration only, expandable stent 30 comprises a self-expanding stent constructed using woven metal alloy wires or any of a number of cell patterns cut into a metal alloy tube, using any of a number of previously-known stent making techniques. Stent 30 may include waist portion 31 disposed between upper and lower flared cods 32, which are configured to engage anchor 40, described below, to reduce or prevent stent 30 from moving relative to anchor 40 once deployed. Stent 30 may comprise a superelastic material, such as a nickel-titanium alloy, that is treated to expand from the contracted delivery state to the expanded deployed state by isothermal or thermal conversion of a martensitic state to an austenitic state of the alloy. Alternatively, expandable stent 30 may comprise non-superelastic metal alloy, such as stainless steel or cobalt-chrome alloy, that may be compressed onto a balloon catheter and then plastically expanded during deployment. Expandable stent 30 may comprise any expandable cell pattern known in the stent art suitable for providing the range of increases in stent diameter and sufficient rigidity to prevent the stent from moving once deployed.


Valve body 20 illustratively is constructed as described in U.S. Pat. No. 4,490,859 to Black et al., which is incorporated herein by reference, and comprises treated animal tissue, such as porcine, bovine or equine pericardial tissue, or any of a number of synthetic fabrics, such as a polyethylene terephthalate fabric, e.g., DACRON® (a registered trademark of Invista North America S.A.R.L. Corporation), mounted on a collapsible metal alloy or polymer frame. The collapsible frame 21 (shown in dotted line) preferably includes a pair of upstanding posts 22 disposed on opposite sides of the frame to form commissural points 23 for the tissue or synthetic fabric leaflets 24. As described in the foregoing patent, the tissue or fabric components of the valve body are cut from flat pieces of material, and then sewn or bonded together, and to the pair of upstanding posts and expandable stent, to form a semilunar valve that mimics the functionality of an intact non-diseased mitral valve. Alternatively, valve body 20 may be of any construction suitable to be collapsed to a reduced diameter so as to permit the expandable stent and attached valve body to be delivered via catheter in a contracted delivery state.


In accordance with one aspect of the present invention, anchor 40 comprises a helix structure having at least two turns and configured such that one turn of the helix is configured to engage the atrial surface of the cardiac valve leaflets while the other contacts the ventricular surface of the leaflets. Preferably, the anchor comprises a superelastic material that is trained to transform from a substantially straight wire, when disposed within a delivery catheter, to a double helix structure when extruded from the delivery catheter and/or heated. An example of thermally-induced transformation is described in U.S. Pat. No. 4,512,338 to Balko et al., while a similar isothermal transition from stress-induced martensite to austenite is described in U.S. Pat. No. 6,306,141 to Jervis. As described below, the helical anchor performs three functions in the context of the present invention. First, the anchor serves to secure the replacement valve to the mitral valve leaflets without contacting the entire circumference, and potentially, without contacting any portion of the existing valve annulus—thereby reducing the risk that the replacement cardiac valve will obstruct the outflow tract of an adjacent cardiac valve. Second, the anchor, when fully deployed, limits expansion of the expandable stent, and thus ensures that the replacement valve body cannot overexpand during deployment. In this manner, the predetermined diameter of the anchor ensures, e.g., that no gaps can form between the leaflets of the replacement valve body caused by overexpansion of the expandable stent. Third, the anchor serves to retain the edges of the cardiac valve beyond the periphery of the anchor in approximation, thus reducing the risk of perivalvular leaks arising around the replacement cardiac valve.


Referring now to FIG. 2, an exemplary embodiment of a two-piece delivery system for the replacement cardiac valve of the present invention is described. Anchor delivery catheter 50 comprises a suitable length of tubing having distal end 51, proximal end 52, an internal lumen extending therebetween, handle portion 53, and push rod 54 disposed in the internal lumen. As described below in detail with respect to the method of implanting the replacement cardiac valve of the present invention, helical anchor 40 may be straightened and inserted into the lumen of catheter 50 so that its proximal end abut against a distal end of push rod 54. The proximal end of the straightened anchor 40 may be engaged with the distal end of push rod 54, e.g., by gripping jaws such as depicted in FIG. 6B of U.S. Pat. No. 6,419,696 to Ortiz et al., or may include male and female threaded ends that interengage.


In the context of a mitral valve repair system, distal end 51 of catheter 50 may be configured, for example, to be routed transvascularly through an opening in the patient's femoral vein, through the right atrium and an atrial transeptal puncture into the left atrium. Once so positioned, pushrod 54 may be advanced to extrude the anchor from within the lumen of catheter 50 to engage the cardiac valve leaflets, as explained below. Alternatively, distal end 51 of catheter may be brought into engagement with mitral valve via a minimally-invasive surgical approach, in which the catheter is advanced towards the ventricular side of the mitral valve through a transapical opening in the left ventricle.


Still referring to FIG. 2, valve delivery catheter 60 illustratively comprises inner shaft 61 slidably disposed in sheath 62. Inner shaft 61 includes distal end 63 having recessed portion 64, bullet-nosed atraumatic end 65, proximal end 66, and an optional guide wire lumen extending throughout the length of inner shaft 61 to accept guide wire 67. Sheath 62 includes distal end 68 and proximal end 69, and is disposed on inner shaft 61 so that distal end 68 of sheath 62 may be selectively retracted to uncover recess 64 on inner shaft 61. Catheters 50 and 60 preferably comprises materials conventionally used in catheter designs, and have lengths and profiles suitable for the selected access path, i.e., either transvascular or transapical. Recess 64 is sized to permit expandable stent 30 and valve body 20 to be compressed within, and retained within, the recessed portion for delivery when covered by sheath 62. Alternatively, for plastically deformable embodiments of expandable stent 30, recess 64 on inner shaft 61 may be replaced by an expandable balloon configured, as is conventional in the art of balloon-expandable stents, to be inflated to deploy the expandable stent and valve body within the helical anchor.


Referring to FIG. 3, a method of deploying the cardiac replacement valve of present invention is now described in the context of repairing a defective mitral valve. In FIG. 3, the left ventricular quadrant of a human heart H is shown having mitral valve MV located within mitral valve annulus MVA. The leaflets of the mitral valve are tethered to the endocardium of the left ventricle LV via the chordae tendineae CT and papillary muscles PM. The outflow tract of the aortic valve AV is disposed immediately adjacent to mitral valve. As discussed above, this anatomical feature of the mitral valve makes anchoring an expandable stent directly to the mitral valve annulus problematic, since it creates a risk that expandable stent will obstruct the outflow tract for the aortic valve. Alternatively, having an expandable stent expanded into direct engagement with the mitral valve annulus may disrupt or remodel the aortic valve annulus, causing mismatch of the leaflets of that valve and possibly aortic valve regurgitation.


In FIG. 3, anchor delivery catheter 50 is shown approaching the mitral valve with a portion of helical anchor 40 extending from the distal end of the catheter. In accordance with one aspect of the present invention, helical anchor 40 is inserted through the opening between the mitral valve leaflets so that, when the helical anchor expands, the portion of the anchor passing between the leaflets preferably settles into one of two opposite commissural regions between the leaflets.


Referring now to FIGS. 4A through 4C, as shown in FIG. 4A, anchor 40 continues to be extruded from anchor delivery catheter 50 in contact with the ventricular side of mitral valve MV, the anchor forms a substantially circular helical turn 41. Helical turn 41 expands until it contacts the anterior and posterior edges of the mitral valve annulus, as depicted in FIG. 4B. As shown in FIGS. 5A and 5B, once lower helical turn 41 is delivered, catheter 50 may be rotated, e.g., by rotating the handle 53 of anchor delivery catheter 50 while observing deployment of helical anchor 40 under fluoroscopic guidance, so that upper helical turn 42 is disposed on the atrial surface of the leaflets in registration with lower helical turn 41. Catheter 50 then is withdrawn, leaving the helical anchor disposed with lower helical turn 41 and upper helical turn 42 sandwiching the leaflets of the mitral valve therebetween.


Next, wire guide 67 is routed through the mitral valve leaflets and, as depicted in FIG. 6A, valve delivery catheter 60 is advanced along the guide wire until bullet-nosed end cap 65 passes through the leaflets. As distal end 63 of catheter 60 passes through the leaflets, free ends FE of the leaflets deflect downward as depicted in FIG. 6B. As will be understood, only the nearer leaflet along view line 5B-5B is visible in FIG. 6B; the free ends FE of both leaflets would be visible along a view line at a 90-degree angle from view line 5B-5B along the circumference of the mitral valve annulus. Free ends FE of the leaflets will be trapped between the expandable stent and the inner circumference of lower helical turn 41 when the expandable stent and valve body are deployed within the helical anchor. Alternatively, the portions of the mitral valve leaflets that extend within the circumference of the helical anchor may be removed using conventional transcatheter cutting means, e.g., using atherectomy catheter as described in U.S. Pat. No. 6,235,042 to Katzman. Distal end 63 of catheter 60 then is advanced, e.g., by monitoring radiopaque markers (not shown) on inner shaft 61 or sheath 62 under fluoroscopic guidance to confirm that waist 31 of expandable stent 30 is aligned with anchor 40.


As depicted in FIG. 7, after proper positioning of expandable stent 30 has been confirmed, inner shaft 61 of catheter 60 is held stationary while sheath 62 is retracted proximally to uncover replacement cardiac valve 10. As sheath 62 is retracted, expandable stent 30 self-expands until it contacts the inner circumference, of helical anchor 40. In particular, waist 31 of expandable stent 30 contacts the inner circumference of helical turn 42 of anchor 40, while the lower portion of waist 31 expands until it traps the free ends of the mitral valve leaflets against the inner circumference of lower helical turn 41 of anchor 40. As described, for example, in U.S. Patent Publication No. US 2006/0265056, valve body 20 is coupled to expandable stent 30 so that it deploys as stent 30 expands. Thus, self-expansion of expandable stem 30 also causes valve body 20 to open to its fully deployed and functional position. Distal end 63 of catheter 60 and guide wire 67 are then withdrawn, completing implantation of the replacement cardiac valve.


In an alternative embodiment, waist 31 of the expandable stent may be substantially omitted, such that expandable stent comprises upper and lower flared ends that meet at the mid-height of the stent, for example, as depicted in U.S. Pat. No. 6,120,534 to Ruiz. In this case, when the stent expands, it will generate forces on lower helical turn 41 and upper helical turn 42 of anchor 40 that urge the turns towards one another, thereby enhancing the grip of the helical anchor on the mitral valve leaflets.


In a yet further alternative embodiment, expandable stent 30 may comprise a plastically deformable stent that is expanded to its expanded, deployed state using a balloon catheter or expanding mandrel. Preferably, the balloon should be configured, e.g., using multiple spaced-apart lobes so as to not crush valve body 20 during deployment of the stent. In this case, the expandable stent may have a uniform diameter in the contracted delivery position. During deployment of the expandable stent, the stent will expand to the limits permitted by the inner circumference of the helical anchor, while the unrestrained upper and lower portions of the stent beyond the helical anchor will tend to expand slightly more, thus locking the stent into engagement with the helical anchor, and urging the upper and lower helical turns of the anchor into secure engagement with the mitral valve leaflets.


In accordance with the principles of the present invention, helical anchor 40 serves several functions: (1) it secures the replacement valve to the mitral valve leaflets without contacting the entire circumference; (2) it limits expansion of the expandable stent, and ensures that the replacement valve body cannot over-expand during deployment; and (3) it retains the free edges of the cardiac valve beyond the periphery of the anchor in approximation, thus reducing the risk of perivalvular leaks. As will be observed from the anatomy of the mitral valve depicted in FIG. 3, for example, it may not be possible to expand a self-expanding or balloon-expandable stent into direct contact with the mitral valve annulus since the lower end of the stent body may partially obstruct the outflow tract of the adjacent aortic valve. Instead, by placing the helical anchor of the present invention so that it is supported by the mitral valve leaflets, the present invention ensures that the lower end of the expandable stent and valve body do not interfere with the outflow tract of the left ventricle. In addition, because the helical anchor of the present invention preferably contacts at most only the anterior and posterior portions of the mitral valve annulus, there is reduced risk that the expandable stent of the replacement cardiac valve of the present invention will undesirably remodel the adjacent aortic valve, and thus little risk that repairing the mitral valve will lead to a defect in the adjacent aortic valve. Moreover, because the helical anchor limits expansion of the expandable stent to the predetermined inner diameter of the anchor, it ensures that valve body 20 reproducibly deploys to a predetermined diameter regardless of the patient's particular, and thus no gaps should form between the leaflets of the replacement valve body caused by overexpansion of the expandable stent. Finally, because the upper and lower helical turns of helical anchor 40 securely engage the free ends of the mitral valve leaflets, the inventive system is expected not to suffer from perivalvular leaks.


With respect to FIG. 8, replacement cardiac valve system 10 is described, as viewed from within the left atrium, after deployment in the mitral valve annulus. Upper helical turn 41 of anchor 40 is visible surrounding expandable stent 30, with the cells of the upper flared portion 32 overhanging anchor 40. Valve body 20 is visible within expandable stent 30, including collapsible frame 21, posts 22 and synthetic fabric leaflets 24, the free ends of which coapt to create valve opening 25. Also shown in FIG. 8 are free ends FE of the pre-existing valve leaflets, which are secured against one another by anchor 40, and in some embodiments a compressive force applied by expandable stent 30 as discussed above. As can be further seen in FIG. 8, each of the free outer edges of the commissural regions between the pre-existing valve leaflets can extend radially beyond the periphery of the anchor 40.


In accordance with one aspect of the present invention, anchor 40 contacts the anterior and posterior edges of the mitral valve annulus, and may remodel the valve annulus to a limited extent to provide the desired cross-sectional area for flow passing through valve body 20, for example, by increasing the length of the minor axis of the valve white decreasing the length of the major axis of the valve (shown by change from the dotted line 70 to the solid line 71). Advantageously, this remodeling effect, if present, is not expected to interfere with the annulus shape of, or approximation of the leaflets of, the adjacent aortic valve.


As will be appreciated by one of ordinary skill, valve body 20 may comprise flow control mechanisms, such as leaflets, balls, flap valves, duck-billed valves, etc., such as art known in the art, without departing from the spirit of the present invention, so long as such valve configurations can be contracted to a reduced delivery state for transcatheter minimally invasive implantation within anchor 40. In addition, anchor 40 may comprise, for example, a suitably trained shape memory alloy, that expands to non-circular expanded, deployed shape, such as an ovoid or D-shaped configuration. In this latter case, valve body 20 should be configured so that, when expandable stent 30 is fully deployed within anchor 40, the valve body expands to a predetermined shape with the required level of coaptation.


Although the embodiments described above contemplate separately delivering anchor 40 from the assembled replacement valve body 20 and expandable stent using the separate catheters discussed above in FIG. 2, all components could be delivered using a single catheter having multiple lumens from which the anchor and remainder of the replacement cardiac valve are delivered. Alternatively, anchor 40 may be attached to the expandable stent and valve body, such that the anchor is first deployed and rotated into position on the valve leaflets, and then the expandable stent and valve body are deployed.


Referring now to FIGS. 9A and 9B, replacement cardiac valve 80 of the present invention is described, in which like components of the embodiment of FIG. 1 and denoted by like-primed numbers. In FIG. 9A, replacement cardiac valve 80 is schematically shown disposed on delivery catheter 90, such that expandable stent 30′ including the replacement valve body (not visible in FIG. 9A) is contracted within recess 91 of inner shaft 92, Sheath 93 is slidably disposed on inner shaft 92 so that it can be retracted proximally to expose replacement cardiac valve 80.


In FIG. 9A, anchor 40′ is wrapped in multiple helical turns around the body of expandable stent 30′, and is fastened to expandable stent 30′ at fixed end 45. Sheath 92 retains anchor 40′ wound down on the exterior of expandable stent until bullet-nose 93 of delivery catheter is inserted through the leaflets of the cardiac valve to be repaired, in a manner similar to that depicted in FIG. 6B above. In addition, one or more lock wires 94 extend from the proximal end to the distal end of catheter 90 to secure expandable stent 30 to inner shaft 91 in a manner similar to that disclosed, for example, in U.S. Pat. No. 5,443,500 to Sigwart. As will be understood by one of ordinary skill, lock wires 94 may be retracted proximally to deploy a self-expanding embodiment of expandable stent 30′ as described for the preceding embodiments. Alternatively, if expandable stent 30′ is balloon expandable, lock wires 94 may be omitted.


Once replacement cardiac valve 80 is disposed across the valve to be repaired, as may be determined, e.g., using fluoroscopy, sheath 92 is retracted proximally as shown in FIG. 9B to allow anchor 40′ to unwind to its deployed shape having at least two helical turns, 41′ and 42′. Catheter 90 then may be rotated to pass the free end of helical turn 41′ between the leaflets until anchor 40′ fully engages the atrial and ventricular surfaces of the leaflets to sandwich the leaflets between helical turns 41′ and 42′ in the manner depicted in FIG. 58. Lock wires 94 then are retracted proximally to disengage expandable stent 30′, causing the expandable stent and valve body disposed therein to self-expand into engagement with anchor 40′. Alternatively, if expandable stent 30′ is mechanically expanded, the balloon or mandrel may be actuated to expand stent 30′ and the replacement valve body into engagement with helical anchor 40′ in a manner similar to that shown in FIGS. 7 and 8.


While various illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made therein without departing from the invention. The appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims
  • 1. A method, comprising: advancing an anchor delivery catheter transvascularly to a left atrium of a heart;advancing a pushrod relative to the anchor delivery catheter inside a lumen of the anchor delivery catheter to extrude a ventricular portion of an anchor between leaflets of a mitral valve of the heart to a ventricular side of the mitral valve, wherein the anchor comprises a shape memory material and at least two turns in a deployed configuration;deploying the anchor at the mitral valve such that the ventricular portion of the anchor is on the ventricular side of the mitral valve and an atrial portion of the anchor is on an atrial side of the mitral valve; andreshaping an annulus of the mitral valve using the anchor causing a minor axis of the mitral valve to increase in length and causing a major axis of the mitral valve to decrease in length.
  • 2. The method of claim 1, further comprising advancing a valve delivery catheter transvascularly to a location inside the anchor, expanding a replacement valve carried by the valve delivery catheter from a compressed state to an expanded state inside of the anchor, and trapping tissue of the leaflets of the mitral valve between the replacement valve and the anchor as the replacement valve expands to the expanded state inside of the anchor.
  • 3. The method of claim 2, wherein the reshaping of the annulus of the mitral valve occurs as the replacement valve expands to the expanded state inside of the anchor.
  • 4. The method of claim 2, wherein expanding the replacement valve to the expanded state inside of the anchor comprises using an expandable balloon to expand the replacement valve.
  • 5. The method of claim 1, wherein the at least two turns are at least two circular turns forming a helical shape.
  • 6. The method of claim 1, wherein when the ventricular portion of the anchor is extruded through the leaflets of the mitral valve to the ventricular side of the mitral valve, the anchor begins to transition from an elongated, straightened configuration inside the lumen of the anchor delivery catheter to the deployed configuration comprising the at least two turns.
  • 7. The method of claim 1, wherein a portion of the anchor passing between the leaflets of the mitral valve settles into one of the two opposite commissural regions between the leaflets of the mitral valve when deploying the anchor at the mitral valve.
  • 8. The method of claim 1, wherein when the anchor is deployed at the mitral valve, the anchor does not contact an entire circumference of the annulus of the mitral valve.
  • 9. The method of claim 1, wherein advancing the anchor delivery catheter transvascularly to the left atrium comprises advancing the anchor delivery catheter through a femoral vein into a right atrium of the heart and across a septum into the left atrium of the heart.
  • 10. A method, comprising: inserting an anchor delivery catheter into a patient's left atrium;advancing a pushrod relative to the anchor delivery catheter, wherein the pushrod and an anchor at a distal end of the pushrod are disposed in the anchor delivery catheter, to extrude a ventricular portion of the anchor through leaflets of a mitral valve to a ventricular side of the mitral valve, wherein the anchor comprises a shape memory material and is transitionable between an elongated configuration when the anchor is positioned inside the anchor delivery catheter and a deployed configuration outside the anchor delivery catheter that comprises a helical structure;withdrawing the anchor delivery catheter relative to the pushrod to leave an atrial portion of the anchor on an atrial side of the mitral valve;disengaging the anchor from the pushrod; andexpanding a valve implant inside an inner circumference of the anchor such that leaflet tissue is trapped between the valve implant and the anchor.
  • 11. The method of claim 10, further comprising inserting a valve delivery catheter having an inner shaft along a guidewire at least partially through mitral valve leaflets, until a distal end of the inner shaft passes through the mitral valve leaflets, causing the mitral valve leaflets to deflect in a downward direction.
  • 12. The method of claim 11, further comprising retracting the valve delivery catheter from the mitral valve while the inner shaft remains stationary and expanding the valve implant inside the inner circumference of the anchor.
  • 13. A method, comprising: advancing an anchor delivery catheter transvascularly to an interior of a heart;extruding a first portion of an anchor from the anchor delivery catheter between leaflets of a native cardiac valve of the heart and to a first side of the native cardiac valve, wherein the anchor comprises a shape memory material and is transitionable between an elongated configuration when the anchor is positioned inside the anchor delivery catheter and a deployed configuration outside the anchor delivery catheter that comprises a helical structure;deploying the anchor at the native cardiac valve such that the first portion of the anchor is on the first side of the native cardiac valve and a second portion of the anchor is on a second side of the native cardiac valve;advancing a valve delivery catheter transvascularly to a location inside the anchor;expanding a replacement valve carried by the valve delivery catheter from a compressed state to an expanded state inside of the anchor; andinserting the valve delivery catheter having an inner shaft along a guidewire to the leaflets of the native cardiac valve and causing the leaflets to deflect in a downward direction, and retracting a portion of the valve delivery catheter while the inner shaft remains stationary to expand the replacement valve radially inside of the anchor until the replacement valve interacts with the anchor.
  • 14. The method of claim 13, wherein an annulus of the native cardiac valve is remodeled as the replacement valve expands to the expanded state inside of the anchor.
  • 15. The method of claim 13, wherein expanding the replacement valve to the expanded state inside of the anchor traps tissue of the leaflets of the native cardiac valve between the replacement valve and the anchor.
  • 16. The method of claim 13, wherein expanding the replacement valve to the expanded state inside of the anchor comprises using an expandable balloon to expand the replacement valve.
  • 17. The method of claim 13, wherein extruding the first portion of the anchor is done by advancing a pushrod relative to the anchor delivery catheter inside a lumen of the anchor delivery catheter.
  • 18. The method of claim 13, wherein when the first portion of the anchor is extruded between the leaflets of the native cardiac valve to the first side of the native cardiac valve, the anchor begins to transition from the elongated configuration inside a lumen of the anchor delivery catheter to the deployed configuration comprising the helical structure.
  • 19. A method, comprising: advancing an anchor delivery catheter transvascularly to an interior of a heart, wherein an anchor is held in a straightened configuration inside a lumen of the anchor delivery catheter;extruding at least a portion of the anchor from the anchor delivery catheter, between leaflets of a native cardiac valve of the heart, and to a first side of the native cardiac valve, wherein as the at least a portion of the anchor is extruded from the anchor delivery catheter, the anchor begins to transition from the straightened configuration to a deployed configuration outside the anchor delivery catheter that comprises circular turns;deploying the anchor at the native cardiac valve such that a first portion of the anchor is on the first side of the native cardiac valve and a second portion of the anchor is on a second side of the native cardiac valve with a third portion of the anchor positioned in a commissural region between the leaflets;remodeling an annulus of the native cardiac valve; andinserting a valve delivery catheter having an inner shaft along a guidewire to the leaflets of the native cardiac valve and causing the leaflets of the native cardiac valve to deflect in a direction toward the first portion of the anchor, and retracting a portion of the valve delivery catheter while the inner shaft remains stationary and expanding a replacement valve disposed over the inner shaft radially until the replacement valve interacts with the anchor.
  • 20. The method of claim 19, wherein advancing the valve delivery catheter to the leaflets of the native cardiac valve is done transvascularly.
  • 21. The method of claim 20, wherein the remodeling of the annulus of the native cardiac valve occurs as the replacement valve expands to interact with the anchor.
  • 22. The method of claim 20, further comprising trapping the leaflets of the native cardiac valve between the replacement valve and the anchor as the replacement valve expands to interact with the anchor.
  • 23. The method of claim 22, wherein expanding the replacement valve comprises using an expandable balloon to expand the replacement valve.
  • 24. The method of claim 19, wherein extruding the at least a portion of the anchor the anchor is done by advancing a pushrod relative to the anchor delivery catheter inside the lumen of the anchor delivery catheter.
  • 25. The method of claim 19, wherein when the anchor is deployed at the native cardiac valve, the anchor does not contact an entire circumference of the annulus of the native cardiac valve.
  • 26. The method of claim 19, wherein advancing the anchor delivery catheter transvascularly to the interior of the heart comprises advancing the anchor delivery catheter through a femoral vein and then into the interior of the heart.
RELATED APPLICATIONS

This application is a division of U.S. application Ser. No. 15/494,107, filed Apr. 21, 2017, entitled “Cardiac Valve Repair System and Methods of Use,” which names Jacques Seguin as an inventor, and which is a continuation of U.S. application Ser. No. 14/188,442, filed Feb. 24, 2014, now U.S. Pat. No. 9,629,716, entitled “Cardiac Valve Repair System and Methods of Use,” which names Jacques Seguin as an inventor, and which is a division of U.S. application Ser. No. 12/839,363, filed on Jul. 19, 2010, now U.S. Pat. No. 8,657,872, entitled “Cardiac Valve Repair System and Methods of Use,” which names Jacques Seguin as inventor, each of which is incorporated by reference herein in their entirety.

US Referenced Citations (149)
Number Name Date Kind
4035849 Angell et al. Jul 1977 A
4490859 Black et al. Jan 1985 A
4512338 Balko et al. Apr 1985 A
4790843 Carpentier et al. Dec 1988 A
5059177 Towne et al. Oct 1991 A
5156621 Navia et al. Oct 1992 A
5403305 Sauter et al. Apr 1995 A
5411552 Andersen et al. May 1995 A
5443500 Sigwart Aug 1995 A
5554185 Block et al. Sep 1996 A
5840081 Andersen et al. Nov 1998 A
6120534 Ruiz Sep 2000 A
6168614 Andersen et al. Jan 2001 B1
6235042 Katzman May 2001 B1
6306141 Jervis Oct 2001 B1
6406492 Lytle Jun 2002 B1
6409758 Stobie et al. Jun 2002 B2
6419696 Ortiz et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6432134 Anson et al. Aug 2002 B1
6458153 Bailey et al. Oct 2002 B1
6527979 Constantz et al. Mar 2003 B2
6582462 Andersen et al. Jun 2003 B1
6652578 Bailey et al. Nov 2003 B2
6730121 Ortiz et al. May 2004 B2
6797002 Spence et al. Sep 2004 B2
6908481 Cribier Jun 2005 B2
7018408 Bailey et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7077861 Spence Jul 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7125421 Tremulis et al. Oct 2006 B2
7166126 Spence et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7404824 Webler et al. Jul 2008 B1
7431726 Spence et al. Oct 2008 B2
7445632 McGuckin, Jr. et al. Nov 2008 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7637946 Solem et al. Dec 2009 B2
7708775 Rowe et al. May 2010 B2
7737060 Strickler et al. Jun 2010 B2
7785366 Maurer et al. Aug 2010 B2
7951195 Antonsson et al. May 2011 B2
8142492 Forster et al. Mar 2012 B2
8236049 Rowe et al. Aug 2012 B2
8323335 Rowe et al. Dec 2012 B2
8377115 Thompson Feb 2013 B2
8398708 Meiri et al. Mar 2013 B2
8449605 Lichtenstein et al. May 2013 B2
8449606 Eliasen et al. May 2013 B2
8657872 Seguin Feb 2014 B2
8663322 Keranen Mar 2014 B2
8672998 Lichtenstein et al. Mar 2014 B2
8685086 Navia et al. Apr 2014 B2
8734507 Keranen May 2014 B2
8801776 House et al. Aug 2014 B2
9078747 Conklin Jul 2015 B2
9095434 Rowe Aug 2015 B2
9119718 Keranen Sep 2015 B2
9192471 Bolling Nov 2015 B2
9237886 Seguin et al. Jan 2016 B2
9314335 Konno Apr 2016 B2
9364326 Yaron Jun 2016 B2
9463268 Spence Oct 2016 B2
9474599 Keranen Oct 2016 B2
9597205 Tuval Mar 2017 B2
9622863 Karapetian et al. Apr 2017 B2
20020032481 Gabbay Mar 2002 A1
20020045936 Moe Apr 2002 A1
20020107535 Wei et al. Aug 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20030167089 Lane Sep 2003 A1
20030225420 Wardle Dec 2003 A1
20040049207 Goldfarb Mar 2004 A1
20040111006 Alferness et al. Jun 2004 A1
20040260389 Case et al. Dec 2004 A1
20050096736 Osse et al. May 2005 A1
20050119682 Nguyen et al. Jun 2005 A1
20050119735 Spence et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050182486 Gabbay Aug 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060195134 Crittenden Aug 2006 A1
20060265056 Nguyen et al. Nov 2006 A1
20070162103 Case et al. Jul 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070293808 Williams et al. Dec 2007 A1
20080033542 Antonsson et al. Feb 2008 A1
20080077235 Kirson Mar 2008 A1
20080109075 Keranen May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080208330 Keranen Aug 2008 A1
20080228265 Spence et al. Sep 2008 A1
20080275503 Spence et al. Nov 2008 A1
20090177278 Spence Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090259307 Gross et al. Oct 2009 A1
20090299471 Keranen Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100036484 Hariton et al. Feb 2010 A1
20100076549 Keidar Mar 2010 A1
20100145440 Keranen Jun 2010 A1
20100161047 Cabiri Jun 2010 A1
20100312333 Navia et al. Dec 2010 A1
20100318184 Spence Dec 2010 A1
20100331971 Keranen et al. Dec 2010 A1
20110098802 Braido et al. Apr 2011 A1
20120059458 Buchbinder et al. Mar 2012 A1
20120123529 Levi et al. May 2012 A1
20120283820 Tseng et al. Nov 2012 A1
20130190865 Anderson Jul 2013 A1
20140074299 Endou et al. Mar 2014 A1
20140081394 Keranen et al. Mar 2014 A1
20140172070 Seguin Jun 2014 A1
20140358222 Gorman, III et al. Dec 2014 A1
20140379074 Spence et al. Dec 2014 A1
20150025623 Granada et al. Jan 2015 A1
20150230921 Chau et al. Aug 2015 A1
20150245910 Righini et al. Sep 2015 A1
20150282931 Brunnett et al. Oct 2015 A1
20150335428 Keranen Nov 2015 A1
20150335430 Loulmet et al. Nov 2015 A1
20150374493 Yaron et al. Dec 2015 A1
20160015514 Lashinski et al. Jan 2016 A1
20160074165 Spence et al. Mar 2016 A1
20160095705 Keranen et al. Apr 2016 A1
20160143732 Glimsdale May 2016 A1
20160199177 Spence et al. Jun 2016 A1
20160256276 Yaron Sep 2016 A1
20160346080 Righini et al. Dec 2016 A1
20170007399 Keranen Jan 2017 A1
20170007402 Zerkowski et al. Jan 2017 A1
20170217385 Rinkleff et al. Aug 2017 A1
20170266005 McGuckin, Jr. Sep 2017 A1
20170273788 O'Carroll et al. Sep 2017 A1
20170273789 Yaron et al. Sep 2017 A1
20170281337 Campbell Oct 2017 A1
20180000580 Wallace et al. Jan 2018 A1
20180085217 Lashinski et al. Mar 2018 A1
20180206074 Tanasa et al. Jul 2018 A1
20180289481 Dolan Oct 2018 A1
20180303606 Rothstein et al. Oct 2018 A1
20180318073 Tseng et al. Nov 2018 A1
20180318080 Quill et al. Nov 2018 A1
Foreign Referenced Citations (33)
Number Date Country
19532846 Mar 1997 DE
19907646 Aug 2000 DE
0592410 Oct 1995 EP
0850607 Jul 1998 EP
1432369 Jun 2004 EP
1521550 Apr 2005 EP
1296618 Jan 2008 EP
1827314 Dec 2010 EP
2620125 Jul 2013 EP
2726018 May 2014 EP
2806829 Dec 2014 EP
9117720 Nov 1991 WO
0149213 Jul 2001 WO
0154625 Aug 2001 WO
0247575 Jun 2002 WO
03028558 Apr 2003 WO
2005084595 Sep 2005 WO
2006011127 Feb 2006 WO
2005102015 Apr 2007 WO
2007067942 Jun 2007 WO
2009155561 Dec 2009 WO
2010121076 Oct 2010 WO
2012063228 May 2012 WO
2013110722 Aug 2013 WO
2013114214 Aug 2013 WO
2015023579 Feb 2015 WO
2015023862 Feb 2015 WO
2015127264 Aug 2015 WO
2015198125 Dec 2015 WO
2016038017 Mar 2016 WO
2016040881 Mar 2016 WO
2016130820 Aug 2016 WO
2017103833 Jun 2017 WO
Non-Patent Literature Citations (1)
Entry
Kempfert et al., “Minimally Invasive Off-Pump Valve-in-a-Ring Implantation: The Atrial Transcatheter Approach for Re-Operative Mitral Valve Replacement After Failed Repair”, European Journal of Cardio-Thoracic Surgery, 2009, 35, pp. 965-969.
Related Publications (1)
Number Date Country
20190029817 A1 Jan 2019 US
Divisions (2)
Number Date Country
Parent 15494107 Apr 2017 US
Child 16146073 US
Parent 12839363 Jul 2010 US
Child 14188442 US
Continuations (1)
Number Date Country
Parent 14188442 Feb 2014 US
Child 15494107 US