Cardiac valve, system and method

Information

  • Patent Grant
  • 9918834
  • Patent Number
    9,918,834
  • Date Filed
    Monday, December 1, 2014
    9 years ago
  • Date Issued
    Tuesday, March 20, 2018
    6 years ago
Abstract
A cardiac valve with a support frame having a first end member and a second end member opposing the first end member in a substantially fixed distance relationship, and a cover extending over the support frame to allow for unidirectional flow of a liquid through the valve.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

Not Applicable


FIELD OF THE INVENTION

The present invention relates generally to apparatus, systems, and methods for use in a lumen; and more particularly to cardiac valves, systems, and methods for use in the vasculature system.


BACKGROUND OF THE INVENTION

Diseases of the heart valves are grouped according to which valve(s) are involved and the way that blood flow is disrupted. The most common valve problems occur in the mitral and aortic valves. Diseases of the tricuspid and pulmonary valves are fairly rare.


The aortic valve regulates the blood flow from the heart's left ventricle into the aorta. The aorta is the main vessel that supplies oxygenated blood to the rest of the body. Diseases of the aorta can have a significant impact on an individual. Examples of such diseases include aortic regurgitation and aortic stenosis.


Aortic regurgitation is also called aortic insufficiency or aortic incompetence. It is a condition in which blood flows backward from a widened or weakened aortic valve into the left ventricle of the heart. In its most serious form, aortic regurgitation is caused by an infection that leaves holes in the valve leaflets. Symptoms of aortic regurgitation may not appear for years. When symptoms do appear, it is because the left ventricle must work harder as compared to an uncompromised ventricle to make up for the backflow of blood. The ventricle eventually gets larger and fluid backs up.


Aortic stenosis is a narrowing or blockage of the aortic valve. Aortic stenosis occurs when the valve leaflets of the aorta become coated with deposits. The deposits change the shape of the leaflets and reduce blood flow through the valve. The left ventricle has to work harder as compared to an uncompromised ventricle to make up for the reduced blood flow. Over time, the extra work can weaken the heart muscle.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D illustrate an embodiment of a valve in perspective view.



FIGS. 2A-2B illustrate another embodiment of a valve in perspective view.



FIGS. 3A and 3B illustrate another embodiment of a valve in perspective view.



FIGS. 4A and 4B illustrate another embodiment of a valve in perspective view.



FIG. 5 illustrates an embodiment of a system that includes a valve.



FIG. 6 illustrates an embodiment of a system that includes a valve.



FIG. 7 illustrates an embodiment of a system that includes a valve.





DETAILED DESCRIPTION

Embodiments of the present invention are directed to an apparatus, system, and method for cardiac valve replacement and/or augmentation. For example, the apparatus can include a cardiac valve that can be used to replace an incompetent valve in a body lumen. Embodiments of the cardiac valve can include a support frame and cover that can be implanted through minimally-invasive techniques into a body lumen, such as an artery or a vein. In one example, embodiments of the present invention may help to augment or replace the function of a cardiac valve of individuals having heart valve disease.


The Figures herein follow a numbering convention in which the first digit or digits correspond to the drawing Figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different Figures may be identified by the use of similar digits. For example, 110 may reference element “10” in FIG. 1, and a similar element may be referenced as 210 in FIG. 2. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide any number of additional embodiments of valve.


Various embodiments of the invention are illustrated in the figures. Generally, the cardiac valve can be implanted within the fluid passageway of a body lumen, such as for replacement of a cardiac valve structure within the body lumen (e.g., an aortic valve at the aortic root), to regulate the flow of a bodily fluid through the body lumen in a single direction.



FIGS. 1A and 1B illustrate one embodiment of a cardiac valve 100. FIGS. 1A and 1B provide a perspective illustration of valve 100 in an open configuration (FIG. 1A) and a closed configuration (FIG. 1B). FIGS. 1C and 1D provide a sectional view of FIGS. 1A and 1B, respectively, to more clearly illustrate the embodiment of the cardiac valve 100.


Cardiac valve 100 includes a support frame 102 and a cover 104. The support frame 102 includes an outer surface 106 and an inner surface 108. The support frame 102 further includes a first end member 110 and a second end member 112 opposing the first end member 110. In one embodiment, the first end member 110 and the second end member 112 are in a substantially fixed distance relationship 114. As used herein, a substantially fixed distance relationship 114 indicates a fixed distance between the members 110 and 112 that may include variations of the fixed distance relationship inherently resulting from the manufacture of the articles of the present invention. In addition, the substantially fixed distance relationship 114 need not be consistent around the circumference of the cardiac valve 100. For example, the substantially fixed distance relationship 114 can be varied up to a predetermined percentage of an average valve diameter of the substantially fixed distance relationship 114. In one embodiment, the predetermined percentage can be up to seventy (70) percent (%).


The support frame 102 further includes an open frame configuration in which the first end member 110 and the second end member 112 are closed rings that define a sequence of convex curves 116 and concave curves 118. In one embodiment, the sequence of convex curves 116 and concave curves 118 are arranged such that the first end member 110 and the second end member 112 provide mirror images of each other set apart by the substantially fixed distance relationship 114. In another embodiment, the sequence of convex curves 116 and concave curves 118 are arranged such that the first end member 110 and the second end member 112 are substantially parallel. In an alternative embodiment, the sequence of convex curves 116 and concave curves 118 are arranged such that the relative position of the first end member 110 and the second end member 112 can have a variation from about zero (0) percent to about two hundred (200) percent variation as compared to an average distance or a preselected distance between the members 110 and 112. In one embodiment, the valve can be about twenty (20) to eighty (80) percent. As will be appreciated, the selection of these percentage values can be based on the anatomical location into which the valve is to be placed.


As illustrated in FIGS. 1A and 1B, the sequence of convex curves 116 and concave curves 118 of the first and second end members 110 and 112 can transition between each other with a uniform radius of curvature for each of the convex curves 116 and concave curves 118. Alternatively, the sequence of convex curves 116 and concave curves 118 transition between each other in a non-uniform manner. For example, the convex curves 116 can have a radius of curvature that is different (e.g., smaller) than the radius of curvature for the concave curves 118 (FIGS. 2A and 2B). Further, the shape and relationship of the convex curves 116 and concave curves 118 for each of the first end member 110 and the second end member 112 need not be symmetrical relative to each other, rather they may provide for a non-symmetrical relationship, which may vary around the circumference.


The support frame 102 can further include cross-members 120 coupled to the first end member 110 and the second end member 112. In one embodiment, cross-members 120 help to maintain the first end member 110 and the second end member 112 in the substantially fixed distance relationship 114. In one embodiment, the cross-members 120 can include a cross-sectional shape and can be formed from the same or similar materials as the end members 110 and 112, as discussed herein. In addition, the cross-members 120 can include any number of configurations, including linear configurations in which cross member 120 are arranged in parallel relative to other cross-members 120. Other configurations include, but are not limited to, curved configurations, configurations including one or more bends in the cross member 120, and configurations that include coil configurations. Other configurations are also possible. In addition, the cross-members 120 can further include additional members spanning between the cross-members 120 and/or the end members 110 and 112, as will be discussed herein.


The support frame 102 can be formed from a wide variety of materials and in a wide variety of configurations. Generally, support frame 102 can have a unitary structure with an open frame configuration. For example, the open frame configuration can include frame members (e.g., first end member 110 and a second end member 112, cross-members 120) that define openings 124 through the support frame 102. The support frame 102 can also be self-expanding. Examples of self-expanding frames include those formed from temperature-sensitive memory alloy which changes shape at a designated temperature or temperature range. Alternatively, the self-expanding frames can include those having a spring-bias. In addition, the support frame 102 can have a configuration that allows the frame 102 to be radially expandable through the use of a balloon catheter.


While the support frame 102 illustrated herein is shown having a circular configuration, other configurations are also possible. For example, the support frame 102 can also include an elliptical configuration, or other configurations that can accommodate the physiological structure in which the support frame 102 is to be placed. In addition, the support frame 102 is illustrated as having linear or long curved members, it will be appreciated that the support frame 102 and/or the cross-members 120 can have a configuration that allows the support frame 102 and/or the cross-members 120 to be flexible. Examples of such configurations include those that are zigzag and/or serpentine so as to allow the frame to be radially compressible. As such, the present invention should not be limited to the illustration of the support frame 102.


The support frame 102 can also provide sufficient contact and expansion force with the surface of a body lumen wall to encourage fixation of the valve 100 and to prevent retrograde flow within the body lumen. Anchoring elements (e.g., barbs) can also be included with valve 100, as will be discussed herein.


The members (e.g., first end member 110 and a second end member 112, cross-members 120) forming support frame 102 can include a variety of cross-sectional shapes and dimensions. For example, cross-sectional shapes for the members 122 can include, but are not limited to, circular, tubular, I-shaped, T-shaped, oval, and triangular. The members can also have a single cross-sectional shape (e.g., all members of support frame 102 can have a circular cross-sectional shape). In an additional embodiment, the members of the support frame 102 can include two or more cross-sectional shapes (e.g., a first cross-sectional shape for both the first end member 110 and a second end member 112, and a second cross-sectional shape for the cross-members 120).


The support frame 102 can be formed from any number of materials. For example, the support frame 102 can be formed from a biocompatible metal, metal alloy, polymeric material, or combination thereof. As discussed herein, the support frame 102 can be self-expanding or balloon expandable. Examples of suitable materials for the support frame 102 include, but are not limited to, medical grade stainless steel (e.g., 316L), titanium, tantalum, platinum alloys, niobium alloys, cobalt alloys, alginate, or combinations thereof. In an additional embodiment, the support frame 102 may be formed from a shape-memory material, such as shape memory plastics, polymers, and thermoplastic materials which are inert in the body. Shaped memory alloys having superelastic properties generally made from specific ratios of nickel and titanium, commonly known as nitinol, are also possible materials. Other materials are also possible.


Members (e.g., first end member 110 and a second end member 112, cross members 120) of the support frame 102 can be shaped and joined in any number of ways. For example, a single contiguous member can be bent around an elongate tubular mandrel to form the end members 110 and 112 of the support frame 102. The free ends of the single contiguous member can then be welded, fused, crimped, or otherwise joined together to form the support frame 102. In an additional embodiment, the cross-members 120 can be joined to the end members 110 and 112 in a similar manner. Alternatively, the support frame 102 can be derived (e.g., laser cut, water cut) from a single tubular segment. The support frame 102 can be heat set by a method as is typically known for the material which forms the support frame 102.


Support frame 102 and cover 104 can be expanded to provide lumen 126 having any number of sizes. For example, the size of lumen 126 can be determined based upon the type of body lumen and the body lumen size in which the valve 100 is to be placed. In an additional example, there can also be a minimum value for the width 128 for the support frame 102 that ensures that the support frame 102 will have an appropriate expansion force against the inner wall of the body lumen in which the valve 100 is being placed. The support frame 102 can also include a longitudinal length 130.


In one embodiment, the support frame 102 can further include one or more anchoring elements. For example, the one or more anchoring elements can include, but are not limited to, one or more barbs 132 projecting from the outer surface 106 of the support frame 102. The valve 100 can further include one or more radiopaque markers (e.g., tabs, sleeves, welds). For example, one or more portions of the valve frame 102 can be formed from a radiopaque material. Radiopaque markers can be attached to and/or coated onto one or more locations along the support frame 102. Examples of radiopaque material include, but are not limited to, gold, tantalum, and platinum. The position of the one or more radiopaque markers can be selected so as to provide information on the position, location and orientation of the valve 100 during its implantation.


As discussed herein, the cover 104 of the cardiac valve 100 forms valve leaflets 133 having surfaces defining a reversibly sealable opening 134 for unidirectional flow of a liquid through the valve 100. For example, the cover 104 can extend across an area between the convex curves 116 and the concave curves 118 of the second end member 112 to form valve leaflets 133 of the cardiac valve 100. The position and number of the convex and concave curves 116 and 118 in the second end member 112 determine the number of valve leaflets 133 of the cardiac valve 100.


For example, FIGS. 1A and 1B provide a bi-leaflet cardiac valve according to an embodiment of the present invention. As illustrated in FIGS. 1A and 1B, cover 104 extends across the area between a first convex curve 136 and a second convex curve 138 and down to the concave curves 118 of the second end member 112 to form a first valve leaflet 140 and a second valve leaflet 142.


In one embodiment, the first convex curve 136 and the second convex curve 138 of the second end member 112 are positioned opposite each other along a common axis 144. In this example, the common axis 144 bisects support frame 102 into symmetrical portions. As a result, the first valve leaflet 140 and the second valve leaflet 142 each display substantially the same shape, size and configuration as each other. In an alternative embodiment, the first convex curve 136 and the second convex curve 138 can be positioned so that the common axis 144 divides the support frame 102 into non-symmetrical portions. In this embodiment, the first valve leaflet 140 and the second valve leaflet 142 can have different shapes, sizes and configurations relative to each other.


In an additional embodiment, the cover 104 also extends over the first end member 110. In contrast to the second end member 112, however, the cover 104 terminates along the convex and concave curves 116 and 118 of the first end member 110 so as to define an open area 146 between the sequence of convex curves 116 and concave curves 118. As will be more fully discussed below, providing the open area 146 allows the valve 100 to accommodate the anatomical structures of the autologous valve being replaced so as to reduce any potential interference with anatomical structures adjacent the autologous valve (e.g., the coronary ostia located adjacent aortic valve).


Although the embodiments in FIGS. 1A-1D illustrate and describe a bi-leaflet configuration for the valve 100 of the present invention, designs employing a different number of valve leaflets are possible. For example, the second end member 112 can include additional convex curves 116 and the concave curves 118 so as to provide support structures for additional valve leaflets 133 (e.g., a tri-leaflet valve).


The cover 104 in conjunction with the support frame 102 defines the lumen 126 of the cardiac valve 100 for passing fluid (e.g., blood) there-through. The cover 104 further includes surfaces defining a reversibly sealable opening 134 for unidirectional flow of a liquid through the lumen 126. For example, a portion of the first valve leaflet 140 and the second valve leaflet 142 can join to form the reversibly sealable opening 134 for unidirectional flow of a liquid through the cardiac valve 100. FIGS. 1A and 1B illustrate embodiments in which the surfaces of the cover 104 can be deflectable between a closed configuration (FIG. 1B) in which fluid flow through the lumen 126 can be restricted and an open configuration (FIG. 1A) in which fluid flow through the lumen 126 can be permitted.


The first valve leaflet 140 and the second valve leaflet 142 can move relative the support frame 102 (i.e., the first valve leaflet 140 and the second valve leaflet 142 are attached to and pivot along the support frame 102). In one embodiment, the cover 104 provides sufficient excess material spanning support frame 102 to allow the first valve leaflet 140 and the second valve leaflet 142 to join sealing surfaces 148 at the reversibly sealable opening 134. The reversibly sealable opening 134 formed by the first and second valve leaflets 140 and 142 opens and closes in response to the fluid pressure differential across the valve leaflets 140 and 142. That is, antegrade blood flow causes the valve leaflets to open, thereby providing for unidirectional blood flow through the reversibly sealable opening. In contrast, retrograde blood flow causes the valve leaflets close, thereby preventing blood flow from passing through the reversibly sealable opening.


The first valve leaflet 140 and the second valve leaflet 142 further include arcuate free edges 150 and 152 that are positioned adjacent each other along a substantially catenary curve between the first convex curve 136 and the second convex curve 138 of the second end member 112 in the closed configuration (FIG. 1B) of valve 100. Similarly, arcuate free edges 150 and 152 can form the reversibly sealable opening 134 when the valve 100 is in the open configuration (FIG. 1A).


For example, under antegrade fluid flow (i.e., positive fluid pressure) moving from the first end member 110 towards the second end member 112 of the valve 100, the first and second valve leaflets 140 and 142 can expand toward the support frame 102 to create an opening through which fluid is permitted to move. In one embodiment, the first valve leaflet 140 and the second valve leaflet 142 can each expand to form a semi-tubular structure when fluid opens the reversibly sealable opening 134. In an additional embodiment, arcuate edge 150 and 152 of valve 100 can open to approximately the full inner diameter of a body lumen. An example of the open configuration for the valve is shown in FIG. 1A. Also as can be seen, the first and second valve leaflets 133 extend a variable distance beyond the second end member 112.


Under a retrograde fluid flow (i.e., negative fluid pressure) moving from the second end member 112 towards the first end member 110, the first and second valve leaflets 140 and 142 move away from the support frame 102 as the valve leaflets 140 and 142 begin to close. In one embodiment, the valve leaflets 140 and 142 include a predefined shape that allows for the retrograde fluid flow to develop pressure on a major surface 154 of the first and second valve leaflets 140 and 142.


For example, the major surface 154 can have a concave shape 156 to better collect retrograde fluid flow to urge the first valve leaflet 140 and the second valve leaflet 142 towards the closed configuration. As fluid pressure builds, the first and second valve leaflets 140 and 142 move towards each other eventually forming the reversibly sealable opening 134 (i.e., closing the valve 100), thereby restricting retrograde fluid flow through the valve 100. As can be seen in FIGS. 1B and 1D, when the valve leaflets 140, 142 obstruct the lumen 126 of the valve, the valve leaflets 140, 142 do not extend a variable distance beyond the second end member 112. Also, the valve leaflets 140, 142 are substantially perpendicular to the longitudinal axis of the valve.


In an additional embodiment, the first valve leaflet 140 and the second valve leaflet 142 can include one or more support structures, where the support structures can be integrated into and/or onto the valve leaflets 140 and 142. For example, the first valve leaflet 140 and the second valve leaflet 142 can include one or more support ribs having a predetermined shape. In one embodiment, the predetermined shape of the support ribs can include a curved bias so as to provide the first valve leaflet 140 and the second valve leaflet 142 with a curved configuration. Support ribs can be constructed of a flexible material and have dimensions (e.g., thickness, width and length) and cross-sectional shape that allows the support ribs to be flexible when the first valve leaflet 140 and the second valve leaflet 142 are urged into an open position upon experiencing sufficient blood flow pressure from the direction upstream from the valve, e.g., antegrade blood flow, and stiff when the first valve leaflet 140 and the second valve leaflet 142 are urged into a closed position upon experiencing sufficient back flow pressure from the direction downstream from the valve, e.g., retrograde blood flow. In an additional embodiment, support ribs can also be attached to support frame 102 so as to impart a spring bias to the valve leaflets 133 in either the open or the closed configuration.


In one embodiment, cover 104 used to form the valve leaflets 140 and 142 can be constructed of a material sufficiently thin and pliable so as to permit radially-collapsing of the valve leaflets for delivery by catheter to a location within a body lumen. The cover 104 can be constructed of a biocompatible material that can be either synthetic or biologic or a combination of synthetic and biologic biocompatible material. Possible synthetic materials include, but are not limited to, expanded polytetrafluoroethylene (ePTFE), polytetrafluoroethylene (PTFE), polystyrene-polyisobutylene-polystyrene (SIBS), polyurethane, segmented poly(carbonate-urethane), polyester, polyethlylene (PE), polyethylene terephthalate (PET), silk, urethane, Rayon, Silicone, or the like. In an additional embodiment, the synthetic material can also include metals, such as stainless steel (e.g., 316L) and nitinol. These synthetic materials can be in a woven, a knit, a cast or other known physical fluid-impermeable or permeable configurations.


Possible biologic materials include, but are not limited to, autologous, allogeneic or xenograft material. These include explanted veins, pericardium, facia lata, harvested cardiac valves, bladder, vein wall, various collagen types, elastin, intestinal submucosa, and decellularized basement membrane materials, such as small intestine submucosa (515), amniotic tissue, or umbilical vein.


As discussed herein, the cover 104 can be located over at least the outer surface 106 of the support frame 102. FIGS. 1A-1D provide one illustration of this embodiment. As can be seen, the leaflets 133 extend from the portion of the cover extending over the support frame 102. In an additional embodiment, the cover 104 can be located over at least the inner surface 108 of the support frame 102.



FIGS. 2A-2B provide a cross-sectional perspective view of cover 204 extending over both an inner surface 208 and the outer surface 206 of the support frame 202 to form the bi-leaflet cardiac valve. In one example, the cover 204 can further be located over the openings 224 defined by the members of the support frame 202. The cover 204 can also be joined to itself through the openings 224 so as to fully or partially encase the support frame 202.


Numerous techniques may be employed to laminate or bond the cover 204 on the outer surface 206 and/or the inner surface 208 of the support frame 202, including heat setting, adhesive welding, interlocking, application of uniform force and other bonding techniques. Additionally, the cover 204 may be folded over the first end member 210 of the support frame 202 to provide the cover 204 on both the outer surface 206 and the inner surface 208. Cover 204 can also be joined to itself and/or the members according to the methods described in U.S. Patent Application Publication US 2002/0178570 to Sogard et al.


The valve 200 can further include a layer of material 258 positioned between the cover 204 extending over the inner surface 208 and the outer surface 206 of the support frame 202. The layer of material 258 can be formed from the biocompatible material used for the cover 204. The layer of material 258, however, can be structurally different than the material of cover 204. For example, cover 204 can include a fluid permeable open woven, or knit, physical configuration to allow for tissue in-growth and stabilization, whereas the layer of material 258 can have a fluid impermeable physical configuration. Examples of the material 258 include, but are not limited to, the synthetic materials described herein. Other combinations of physical configurations for the cover 204 and the layer of material 258 are also possible.


Referring again to FIGS. 1A-1D, the support frame 102 and/or the cover 104, including the valve leaflets 140 and 142, may also be treated and/or coated with any number of surface or material treatments. For example, suitable bioactive agents which may be incorporated with or utilized together with the present invention may be selected from silver antimicrobial agents, metallic antimicrobial materials, growth factors, cellular migration agents, cellular proliferation agents, anti-coagulant substances, stenosis inhibitors, thrombo-resistant agents, antibiotic agents, anti-tumor agents, anti-proliferative agents, growth hormones, antiviral agents, anti-angiogenic agents, angiogenic agents, cholesterol-lowering agents, vasodilating agents, agents that interfere with endogenous vasoactive mechanisms, hormones, their homologs, derivatives, fragments, pharmaceutical salts and combinations thereof.


In the various embodiments of the present invention, the most useful bioactive agents can include those that modulate thrombosis, those that encourage cellular ingrowth, throughgrowth, and endothelialization, those that resist infection, and those that reduce calcification. For example, coating treatments can include one or more biologically active compounds and/or materials that may promote and/or inhibit endothelial, smooth muscle, fibroblast, and/or other cellular growth onto or into the support frame 102 and/or the cover 104, including the valve leaflets 140 and 142. Examples of such coatings include, but are not limited to, polyglactic acid, poly-L-lactic acid, glycol-compounds, and lipid compounds. Additionally, coatings can include medications, genetic agents, chemical agents, and/or other materials and additives. In addition, in embodiments having tubular members such as the tubular member 482 illustrated in FIGS. 4A-4B, agents that limit or decrease cellular proliferation can be useful. Similarly, the support frame 102 and/or the cover 104 may be seeded and covered with cultured tissue cells (e.g., endothelial cells) derived from a either a donor or the host patient which are attached to the valve leaflets 140 and 142. The cultured tissue cells may be initially positioned to extend either partially or fully over the valve leaflets 140 and 142.


Cover 104, in addition to forming valve leaflets 140 and 142, can also be capable of inhibiting thrombus formation, as discussed herein. Additionally, cover 104 may either prevent or facilitate tissue ingrowth there-through, as the particular application for the valve 100 may dictate. For example, cover 104 on the outer surface 106 may be formed from a porous material to facilitate tissue ingrowth there-through, while cover 104 on the inner surface 108 may be formed from a material or a treated material which inhibits tissue ingrowth.


Cells can be associated with the present invention. For example, cells that have been genetically engineered to deliver bioactive proteins, such as the growth factors or antibodies mentioned herein, to the implant site can be associated with the present invention. Cells can be of human origin (autologous or allogenic) or from an animal source (xenogenic). Cells can be pre-treated with medication or preprocessed such as by sorting or encapsulation. The delivery media can be formulated as needed to maintain cell function and viability.


Thrombo-resistant agents associated with the valve may be selected from, but not limited to, heparin, heparin sulfate, hirudin, hyaluronic acid, chondroitin sulfate, dermatan sulfate, keratin sulfate, PPack (detropyenylalanine praline arginine chloromethylketone), lytic agents, including urokinase and streptokinase, their homologs, analogs, fragments, derivatives and pharmaceutical salts thereof.


Anti-coagulants can include, but are not limited to, D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparain, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors, tick antiplatelet peptides and combinations thereof.


Antibiotic agents can include, but are not limited to, penicillins, cephalosportins, vancomycins, aminoglycosides, quinolonges, polymyxins, erythromycins, tetracyclines, chloraphenicols, clindamycins, lincomycins, sulfonamides, their homologs, analogs, derivatives, pharmaceutical salts and combinations thereof.


Anti-proliferative agents for use in the present invention can include, but are not limited to, the following: paclitaxel, sirolimus, everolimus, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, related compounds, derivatives, and combinations thereof.


Vascular cell growth inhibitors can include, but are not limited to, growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of a an antibody and a cytotoxin.


Vascular cell growth promoters include, but are not limited to, transcriptional activators and transcriptional promoters. Anti-inflammatory agents can include, but are not limited to, dexametbasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazinemesalamne, and combinations thereof.



FIGS. 3A and 3B illustrate an additional embodiment of a cardiac valve 300. FIGS. 3A and 3B provide a perspective illustration of valve 300 having three valve leaflets 333 in an open configuration (FIG. 3A) and a closed configuration (FIG. 3B).


As discussed herein, cardiac valve 300 includes the support frame 302 having the first end member 310 and the second end member 312 opposing the first end member 310 in the substantially fixed distance relationship 314. In the present example, the cover 304 of the cardiac valve 300 forms a tri-leaflet valve having surfaces defining the reversibly sealable opening 334 for unidirectional flow of a liquid through the valve 300. As illustrated, FIGS. 3A and 3B provide a tri-leaflet cardiac valve in which cover 304 extends across the area between the first convex curve 336, the second convex curve 338, and a third convex curve 364, and down to the concave curves 318 of the second end member 312 to form the first valve leaflet 340, the second valve leaflet 342, and a third valve leaflet 366


In one embodiment, the convex curves 336, 338, and 364 can lay on a common plane 368, as illustrated in FIGS. 3A and 3B. However, the convex curves 336, 338, and 364 can lay need not all lay on the common plane 368. It is possible that one or more of the convex curves 336, 338, and 364 can lie above and/or below the common plane 368. In addition, the convex curves 336, 338, and 364 can be positioned at equal distances around the second end member 312. As a result, the valve leaflets 336, 338, and 364 each display substantially the same shape, size and configuration as each other. In an alternative embodiment, the convex curves 336, 338, and 364 can be positioned at one or more unequal distances around the second end member 312. In this embodiment, the valve leaflets 336, 338, and 364 can each have different shapes, sizes and configurations relative to each other.


The cover 304 in conjunction with the support frame 302 defines the lumen 326 of the cardiac valve 300 for passing fluid (e.g., blood) there-through. The cover 304 can further include surfaces defining the reversibly sealable opening 334 for unidirectional flow of a liquid through the lumen 326. For example, a portion of the first valve leaflet 340, the second valve leaflet 342, and the third valve leaflet 366 can join to form the reversibly sealable opening 334 for unidirectional flow of a liquid through the cardiac valve 300. FIGS. 3A and 3B illustrate embodiments in which the valve leaflets 340, 342, and 366 can deflect between a closed configuration (FIG. 3B) in which fluid flow through the lumen 326 can be restricted and an open configuration (FIG. 3A) in which fluid flow through the lumen 326 can be permitted.


The first valve leaflet 340, the second valve leaflet 342, and the third valve leaflet 366 can move relative the support frame 302 between the open configuration and the closed configuration. As discussed, the cover 304 provides sufficient excess material spanning support frame 302 to allow the valve leaflets 340, 342, and 366 to join sealing surfaces 348 at a reversibly sealable opening 334. The reversibly sealable opening 334 formed by the first, second, and third valve leaflets 340, 342, and 366 opens and closes in response to the fluid pressure differential across the valve leaflets.


The valve leaflets 340, 342, and 366 each include concave surfaces 370 projecting from the support frame 302 towards an arcuate edge 372 projecting into the lumen 326. As discussed, the valve leaflets 340, 342, and 366 can have approximately the same size and shape. The arcuate edge 372 of the valve leaflets 340, 342, and 366 can each further include a nodular interruption 374 at approximately the center 376 of the arcuate edge 372 to allow the edges of the leaflets 340, 342, and 366 to properly meet as the valve closes.


During retrograde flow (i.e., negative fluid pressure), the valve leaflets 340, 342, and 366 can fall into the lumen to close the reversibly sealable opening 334 and support the column of fluid (e.g., blood). During antegrade fluid flow (i.e., positive fluid pressure) the valve leaflets 340, 342, and 366 can expand or move toward the support frame 302 to create an opening through which fluid is permitted to move. In one embodiment, the valve leaflets 340, 342, and 366 can each expand or move to form a semi-tubular structure when fluid opens the reversibly sealable opening 334. In an additional embodiment, the valve leaflets 340, 342, and 366 can include one or more support structures (e.g., support ribs), as discussed herein.


Cover 304 can extend over at least the outer surface 306 of the support frame 302 to form the valve leaflets of the tri-leaflet cardiac valve. Alternatively, cover 304 can also be located over at least the inner surface 308 of the support frame 302 to form the valve leaflets of the tri-leaflet cardiac valve. The cover 304 can be joined to the support frame 302 and itself as discussed herein. In addition, the valve 300 can further include a layer of material 358 positioned between the cover 304 extending over the inner surface 308 and the outer surface 306 of the support frame 302. The cover 304, including the valve leaflets 340, 342, and 366, may also be treated and/or coated with any number of surface or material treatments, as discussed herein.



FIGS. 4A and 4B illustrate a further embodiment of a cardiac valve 400. FIGS. 4A and 4B provide a perspective illustration of valve 400 in an open configuration (FIG. 4A) and a closed configuration (FIG. 4B). As discussed herein, the valve 400 the support frame 402 and the cover 404 that forms valve leaflets having surfaces defining a reversibly sealable opening 434 for unidirectional flow of a liquid through the valve 400.


In addition, the present embodiment further includes an elongate tubular member 482 having a first end 484 and a second end 486. As illustrated, the elongate tubular member 482 can be positioned relative the support frame 402 to allow the first end 484 of the member 482 to be on a first side of the valve leaflets and the second end 486 on a second side of the valve leaflets. In one embodiment, the tubular member 482 can pass through an opening in a valve leaflet, where the tubular member 482 and the valve leaflet form a fluid tight seal. Alternatively, the tubular member 482 passes through a region of the reversibly sealable opening 434, where the leaflets seal around the tubular member 482 when they are in their closed position. As illustrated in FIGS. 4A and 4B, the tubular member 482 can be positioned within the opening defined by the support frame 402. In an alternative embodiment, the tubular member 482 can be positioned outside of the support frame 402.


The tubular member 482 can allow fluid communication across the valve 400 when the valve leaflet 433 are in their closed position. In one embodiment, the tubular member 482 can allow for blood at an arterial pressure to be supplied from a region distal to the valve 400 to vessels located proximal the valve 400. In one embodiment, the tubular member 482 can allow the valve 400 to be positioned at a more convenient and/or less-diseased location in the vasculature (e.g., the aorta) while still allowing blood at arterial pressure to be supplied to the appropriate coronary arteries (e.g., via the coronary ostium).


The tubular member 482 can include any number of physical configurations. For example, as shown in FIG. 4A, the tubular member 482 can include a predetermined length and a predetermined bend 483 to allow the second end 486 of the tubular member 482 to be implanted in a desired location. Examples of such locations include, but are not limited to, a coronary ostium. The predetermined length of the tubular member 482 can be in a range from 10 mm to 50 mm, where the length of the tubular member 482 will be determined based on where the valve 400 is being implanted along with the patient's individual physiological parameters and measurements.


As will be appreciated, the valve 400 can include more than one tubular member 482. For example, the valve 400 can include two or more tubular members 482, each tubular member supplying a coronary artery of the patient's vasculature. In addition, each of the tubular members 482 can have similar or distinct physical characteristics (e.g., length, inner/outer diameter, predetermined shape). In one embodiment, each of the tubular members 482 can further include one or more radiopaque marks to allow each tubular member 482 to be uniquely identified.


The tubular member 482 can further include a predetermined shape. In one embodiment, the predetermined shape can be determined by the anatomical location in which the valve 400 is being placed along with the anatomical location in which the second end 486 of the tubular member 482 is to be placed. As illustrated in FIGS. 4A and 4B, the tubular member 482 can include combinations of linear and bend portions imparted into the tubular member 484 (e.g., the predetermined bend 483 illustrated in FIG. 4B).


The tubular member 482 can be constructed of a material having sufficient flexibility so as to permit the second end 486 of the tubular member 482 to remain positioned in its proper anatomical location within the patient, while also being flexible enough to allow the first end 484 to move radially with the valve leaflet. The tubular member 482 can be constructed of a biocompatible material that can be either synthetic or biologic. Examples of these materials include those discussed herein for the cover 404. In addition, the material used in the construction of the tubular member 484 can be the same or a different material used for the construction of the cover 404. The tubular member 482 can also include a stent support structure to help maintain a predetermined shape of the tubular member 482.


The tubular member 482 further includes an inner diameter 488 and outer diameter 490. The inner diameter 488 can be in a range of 2.0 mm to 5.5 mm. Alternatively, the inner diameter 488 can be in a range of 3.0 mm to 4.5 mm. In one embodiment, the dimension of the inner diameter 488 will typically be a function of the volume of fluid flow that is desired to move through the tubular member 484. The dimension for the outer diameter 490 will be dependent upon the wall thickness of the tubular member 482 required to provide proper flexibility and rigidity to maintain its position once placed in the patient.


The embodiments of the valve of the present invention can be formed in any number of ways. For example, a support frame and a cover are both provided for forming the cardiac valve. In the present example, the cover can have a cylindrical shape of essentially uniform inner diameter, where the inner diameter of the cover is approximately the same size as an outer diameter of the support frame.


The cover can be positioned over the outer surface of the support frame. For example, the cover can be stretched slightly to allow the support frame to be placed within the cover. Alternatively, the outer diameter of the tubular frame could be enlarged so as to place the cover around the outer surface of the support frame. Other ways of placing the cover around the outer surface of the support frame are also possible, including placing the cover around both the inside and the outside of the frame.


In one embodiment, the cover can be positioned over and attached to the support frame so that the cover extends between the convex curves of the second end member to form the valve leaflets. For example, the support frame includes the first convex curve and the second convex curve along the second end member. Providing cover over the support frame then forms the first valve leaflet and the second valve leaflet of the cardiac valve.


As discussed herein, the cover can also be trimmed along the first end member so as to define the open area between the sequence of convex curves and concave curves along the first end member. Alternatively, the cover can include a first end having a series of convex and concave curves that correspond to those of the first end member so as to provide the open area.


In an additional embodiment, the cardiac valve can be formed by providing support frame and cover, where the second end member of support frame includes the first convex curve, the second convex curve, and the third convex curve. Cover can include cylindrical shape that has a second end having a predetermined shape that allows for the formation of the valve leaflets of the tri-leaflet cardiac valve. The second end can also include arcuate edges each having the optional nodular interruption. The cover further includes concave surfaces, as described herein, which can be imparted into the cover through any number of manufacturing processes, including, but not limited to, thermo-molding, heat setting, and chemical cross-linking. As discussed herein, this example of the cover permits the valve leaflets to be created once the cover is properly positioned on the support frame.


As discussed herein, the cover can also be positioned over both the outer surface and the inner surface of the support frame. For example, two covers can be positioned on the support frame to provide an embodiment of the cardiac valve, or a longer cover can be used over the support frame. In addition, additional material can be positioned between the two covers at least in the area between the convex and concave curves of the second end member.


In addition, one or more flexible support ribs having a predetermined shape could also be incorporated into the cover in forming the concave surfaces. As discussed herein, the cover configuration having the arcuate edges, nodular interruptions, and the concave surfaces permits the valve leaflets to be created once the cover is properly positioned over the support frame. The cover can then be affixed to the support frame and itself as discussed herein.


The cover can also be trimmed along the first end member so as to define the open area between the sequence of convex curves and concave curves along the first end member. Alternatively, the first end of cover can include a series of convex and concave curves that correspond to those of the first end member so as to provide the open area.


In an additional embodiment, surfaces defining the opening through or around the cover can also be provided on the cardiac valve. The tubular member can then be coupled in fluid tight communication to the opening to provide fluid communication with the opening around or through the cover. In one embodiment, the first end of the tubular member can be coupled to the support frame with the opening and the lumen of the tubular member aligned so that fluid can move through the opening and the tubular member once the valve has been implanted in a patient. Alternatively, the tubular member can be positioned in the patient, independent of the valve and then subsequently coupled to the valve once the valve has been implanted in the patient.


As discussed herein, the tubular member allows for the valve to be positioned in any number of locations within the vasculature while still allowing fluid communication with adjacent physiological structures. For example, valve could be implanted in the aorta of a patient downstream of the coronary ostia. In order to provide sufficient blood supply to the coronary ostia, the tubular member can be positioned with the second end of the tubular member in the coronary ostia so as to supply arterial blood at arterial pressures to the coronary arteries.



FIG. 5 illustrates one embodiment of a system 509. System 509 includes valve 500, as described herein, reversibly joined to a delivery catheter 511. The delivery catheter 511 includes an elongate body 513 having a proximal end 515 and a distal end 517, where valve 500 can be located between the proximal end 515 and distal end 517. The delivery catheter 511 can further include a lumen 519 longitudinally extending to the distal end 517. In one embodiment, lumen 519 extends between proximal end 515 and distal end 517 of catheter 511. The catheter 511 can further include a guidewire lumen 521 that extends within the elongate body 513, were the guidewire lumen 521 can receive a guidewire for positioning the catheter 511 and the valve 500 within a body lumen (e.g., the aorta of a patient).


The system 509 can further include a deployment shaft 523 positioned within lumen 519, and a sheath 525 positioned adjacent the distal end 517. In one embodiment, the valve 500 can be positioned at least partially within the sheath 525 and adjacent the deployment shaft 523. The deployment shaft 523 can be moved within the lumen 519 to deploy valve 500. For example, deployment shaft 523 can be used to push valve 500 from sheath 525 in deploying valve 500.



FIG. 6 illustrates an additional embodiment of the system 609. The catheter 611 includes elongate body 613, lumen 619, a retraction system 627 and a retractable sheath 629. The retractable sheath 629 can be positioned over at least a portion of the elongate body 613, where the retractable sheath 629 can move longitudinally along the elongate body 613. The valve 600 can be positioned at least partially within the retractable sheath 629, where the retractable sheath 629 moves along the elongate body 613 to deploy the valve 600. In one embodiment, retraction system 627 includes one or more wires 699 coupled to the retractable sheath 627, where the wires 699 are positioned at least partially within and extend through lumen 619 in the elongate body 613. Wires 699 of the retraction system 627 can then be used to retract the retractable sheath 629 in deploying valve 600.



FIG. 7 illustrates an additional embodiment of the system 709. The catheter 711 includes elongate body 713, an inflatable balloon 731 positioned adjacent the distal end 717, and a lumen 735 longitudinally extending in the elongate body 713 of the catheter 711 from the inflatable balloon 731 to the distal end 717. In the present example, the inflatable balloon 731 can be at least partially positioned within the lumen 726 of the valve 700. The inflatable balloon 731 can be inflated through the lumen 735 to deploy the valve 700.


The embodiments of the present invention further include methods for forming the valve of the present invention, as discussed herein. For example, the valve can be formed from the support frame and the cover over at least the outer surface of the support frame, where the cover includes surfaces defining the reversibly sealable opening for unidirectional flow of a liquid through the lumen. In an additional example, the valve can be reversibly joined to the catheter, which can include a process of altering the shape of the valve from a first shape, for example an expanded state, to the compressed state, as described herein.


For example, the valve can be reversibly joined with the catheter by positioning valve in the compressed state at least partially within the sheath of the catheter. In one embodiment, positioning the valve at least partially within the sheath of the catheter includes positioning the valve in the compressed state adjacent the deployment shaft of the catheter. In another embodiment, the sheath of the catheter functions as a retractable sheath, where the valve in the compressed state can be reversibly joined with the catheter by positioning the valve at least partially within the reversible sheath of the catheter. In a further embodiment, the catheter can include an inflatable balloon, where the balloon can be positioned at least partially within the lumen of the valve, for example, in its compressed state.


The embodiments of the valve described herein may be used to replace, supplement, or augment valve structures within one or more lumens of the body. For example, embodiments of the present invention may be used to replace an incompetent cardiac valve of the heart, such as the aortic, pulmonary and/or mitral valves of the heart.


In one embodiment, the method of replacing, supplementing, and/or augmenting a valve structure can include positioning at least part of the catheter including the valve at a predetermined location within an artery of a patient, such as in the aorta adjacent the root of the aortic valve. In positioning the valve of the present invention within the aorta, particular physiological structures need to be taken into consideration. For example, the valve of the present invention works in conjunction with the coronary artery ostia much in the same way as the native aortic valve. This is accomplished due to the configuration of both the support frame and the cover of the valve as described herein.


For example, the configuration of the valve of the present invention permits the valve to be implanted such that the support frame can be positioned between the native aortic valve and the coronary artery ostia. As discussed herein, the open area defined by the support frame allows the valve to be seated adjacent the native aortic valve. In addition, the valve leaflets of the present invention can be in the same relative position as the native valve leaflets. This allows the valve leaflets of the present invention to interact with the coronary ostia positioned in the aortic sinuses (sinuses of Valsalva) adjacent the aortic valve in the similar manner as the native valve leaflets. So, the valve of the present invention can properly accommodate both the aortic valve and the coronary ostia.


In one embodiment, positioning the catheter including the valve within the body lumen includes introducing the catheter into the cardiovascular system of the patient using minimally invasive percutaneous, transluminal catheter based delivery system, as is known in the art. For example, a guidewire can be positioned within the cardiovascular system of a patient that includes the predetermined location. The catheter, including valve, as described herein, can be positioned over the guidewire and the catheter advanced so as to position the valve at or adjacent the predetermined location. In one embodiment, radiopaque markers on the catheter and/or the valve, as described herein, can be used to help locate and position the valve.


The valve can be deployed from the catheter at the predetermined location in any number of ways, as described herein. In one embodiment, valve of the present invention can be deployed and placed in any number of cardiovascular locations. For example, valve can be deployed and placed within a major artery of a patient. In one embodiment, major arteries include, but are not limited to, the aorta. In addition, valves of the present invention can be deployed and placed within other major arteries of the heart and/or within the heart itself, such as in the pulmonary artery for replacement and/or augmentation of the pulmonary valve and between the left atrium and the left ventricle for replacement and/or augmentation of the mitral valve. Other locations are also possible.


As discussed herein, the valve can be deployed from the catheter in any number of ways. For example, the catheter can include the retractable sheath in which valve can be at least partially housed, as discussed herein. Valve can be deployed by retracting the retractable sheath of the catheter, where the valve self-expands to be positioned at the predetermined location. In an additional example, the catheter can include a deployment shaft and sheath in which valve can be at least partially housed adjacent the deployment shaft, as discussed herein. Valve can be deployed by moving the deployment shaft through the catheter to deploy valve from the sheath, where the valve self-expands to be positioned at the predetermined location. In an additional embodiment, the valve can be deployed through the use of an inflatable balloon. In a further embodiment, the valve can partially self-expand upon retracting a sheath in which the valve is located, and then deployed through the use of an inflatable balloon.


Once implanted, the valve can provide sufficient contact and expansion force against the body lumen wall to prevent retrograde flow between the valve and the body lumen wall, and to securely located the valve and prevent migration of the valve. For example, the valve can be selected to have a larger expansion diameter than the diameter of the inner wall of the body lumen. This can then allow valve to exert a force on the body lumen wall and accommodate changes in the body lumen diameter, while maintaining the proper placement of valve. As described herein, the valve can engage the lumen so as to reduce the volume of retrograde flow through and around valve. It is, however, understood that some leaking or fluid flow may occur between the valve and the body lumen and/or through valve leaflets.


While the present invention has been shown and described in detail above, it will be clear to the person skilled in the art that changes and modifications may be made without departing from the spirit and scope of the invention. As such, that which is set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. The actual scope of the invention is intended to be defined by the following claims, along with the full range of equivalents to which such claims are entitled.


In addition, one of ordinary skill in the art will appreciate upon reading and understanding this disclosure that other variations for the invention described herein can be included within the scope of the present invention. For example, the support frame 102 and/or the cover 104 can be coated with a non-thrombogenic biocompatible material, as are known or will be known. Other biologically active agents or cells may also be utilized.


In the foregoing Detailed Description, various features are grouped together in several embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the invention require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A valve comprising: a frame having a longitudinal frame length measured from a first frame end member to a second frame end member, the longitudinal frame length being uniform at all locations about an entire circumference of the frame, the frame defining a first valve end;a cover engaged to an outer surface of the frame and having an edge terminating at the first frame end member about the entire circumference of the frame, the cover including leaflets movable relative to the frame, wherein when the valve is fully open the cover including the leaflets defines a variable longitudinal cover length comprising: minimum longitudinal cover lengths equal to the longitudinal frame length, andmaximum longitudinal cover lengths greater than the longitudinal frame length,each minimum longitudinal cover length is positioned between two maximum longitudinal cover lengths, andeach maximum longitudinal cover length is positioned between two minimum longitudinal cover lengths, anda number of locations with the maximum longitudinal cover length is equal to a number of the leaflets.
  • 2. The valve of claim 1, wherein the leaflets include a first valve leaflet and a second valve leaflet each attached to and pivoting along the second frame end member to form a reversibly sealable opening.
  • 3. A valve comprising: a tubular frame with a first frame end comprising convex curves and concave curves, each concave curve of the first frame end having a maximum depth measured parallel to a longitudinal axis of the valve, and each concave curve of the first frame end extending between two convex curves of the first frame end; andleaflets for regulating flow through the tubular frame, wherein each leaflet extends across an area defined between two circumferentially adjacent convex frame portions of the first frame end and extends a maximum longitudinal distance beyond the first frame end greater than the maximum depth of the concave curve of the first frame end when the leaflets are fully open;wherein the tubular frame further includes a second frame end comprising convex curves and concave curves, and a plurality of longitudinally-oriented cross-members extending between the first frame end and the second frame end;wherein the first frame end is substantially parallel to the second frame end as viewed perpendicular to the longitudinal axis of the valve;wherein when the leaflets are closed, at least a portion of an outward facing surface of each leaflet disposed between the first frame end and a free edge of the leaflet is oriented substantially perpendicular to the longitudinal axis of the valve;each leaflet having a curved free edge curving longitudinally outward from the two circumferentially adjacent convex frame portions when the valve is in the open configuration.
  • 4. The valve of claim 3, wherein each leaflet has a variable longitudinal length in an open state.
  • 5. The valve of claim 3, the leaflets each having a free edge, wherein the free edges form a first valve end when the valve is in an open state, and an outer surface of the leaflets forms the first valve end when the valve is in a closed state.
  • 6. The valve of claim 3, wherein the curved free edge extends radially inward when the valve is in the closed configuration.
  • 7. The valve of claim 3, wherein the valve has a greater longitudinal length when the leaflets are open than when the leaflets are closed.
  • 8. The valve of claim 3, the tubular frame defining a lumen with a diameter, wherein when the valve is in a closed configuration, the leaflets extend across the diameter of lumen.
  • 9. The valve of claim 8, each leaflet having a side attached to the first frame end, a free edge, and a major surface between the side and the free edge, wherein when the valve is in a closed configuration the major surface has a concave shape.
  • 10. The valve of claim 3, wherein when the valve is in an open configuration each leaflet is semi-tubular.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/084,088, filed Nov. 19, 2013; which is a continuation of U.S. application Ser. No. 13/214,520 filed Aug. 22, 2011; which is a continuation of U.S. application Ser. No. 12/508,369 filed Jul. 23, 2009, now U.S. Pat. No. 8,002,824; which is a continuation of U.S. application Ser. No. 10/933,088, filed Sep. 2, 2004, now U.S. Pat. No. 7,566,343; the contents of each are incorporated herein by reference.

US Referenced Citations (638)
Number Name Date Kind
3671979 Moulopoulos Jun 1972 A
4291420 Reul Sep 1981 A
4787901 Baykut Nov 1988 A
4872874 Taheri Oct 1989 A
4935030 Alonso Jun 1990 A
4994077 Dobben Feb 1991 A
5002567 Bona et al. Mar 1991 A
5141491 Bowald Aug 1992 A
5163953 Vince Nov 1992 A
5219355 Parodi et al. Jun 1993 A
5254127 Wholey et al. Oct 1993 A
5300086 Gory et al. Apr 1994 A
5327774 Nguyen et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5370685 Stevens Dec 1994 A
5411552 Andersen et al. May 1995 A
5469868 Reger Nov 1995 A
5480423 Ravenscroft et al. Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545214 Stevens Aug 1996 A
5554185 Block et al. Sep 1996 A
5643208 Parodi Jul 1997 A
5693087 Parodi Dec 1997 A
5713953 Vallana et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5735859 Fischell et al. Apr 1998 A
5741326 Solovay Apr 1998 A
5741333 Frid Apr 1998 A
5800506 Perouse Sep 1998 A
5824061 Quijano et al. Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5855601 Bessler et al. Jan 1999 A
5879320 Cazenave Mar 1999 A
5895419 Tweden et al. Apr 1999 A
5910170 Reimink et al. Jun 1999 A
6007557 Ambrisco et al. Dec 1999 A
6010531 Donlon et al. Jan 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6139575 Shu et al. Oct 2000 A
6287334 Moll et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6419696 Ortiz et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6451054 Stevens Sep 2002 B1
6454799 Schreck Sep 2002 B1
6461366 Seguin Oct 2002 B1
6478819 Moe Nov 2002 B2
6503272 Duerig et al. Jan 2003 B2
6508833 Pavcnik et al. Jan 2003 B2
6564805 Garrison et al. May 2003 B2
6569196 Vesely May 2003 B1
6602286 Strecker Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6635085 Caffey et al. Oct 2003 B1
6666885 Moe Dec 2003 B2
6666886 Tranquillo et al. Dec 2003 B1
6669725 Scott Dec 2003 B2
6673090 Root et al. Jan 2004 B2
6673109 Cox Jan 2004 B2
6676698 McGuckin, Jr. et al. Jan 2004 B2
6676702 Mathis Jan 2004 B2
6682558 Tu et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6692512 Jang Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6695878 McGuckin, Jr. et al. Feb 2004 B2
6709456 Langberg et al. Mar 2004 B2
6709457 Otte et al. Mar 2004 B1
6716241 Wilder et al. Apr 2004 B2
6716244 Klaco Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6719784 Henderson Apr 2004 B2
6719786 Ryan et al. Apr 2004 B2
6719787 Cox Apr 2004 B2
6719788 Cox Apr 2004 B2
6719789 Cox Apr 2004 B2
6719790 Brendzel et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6723122 Yang et al. Apr 2004 B2
6723123 Kazatchkov et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6726716 Marquez Apr 2004 B2
6726717 Alfieri et al. Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6730121 Ortiz et al. May 2004 B2
6730122 Pan et al. May 2004 B1
6736845 Marquez et al. May 2004 B2
6736846 Cox May 2004 B2
6749630 McCarthy et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6752828 Thornton Jun 2004 B2
6755857 Peterson et al. Jun 2004 B2
6761734 Suhr Jul 2004 B2
6761735 Eberhardt et al. Jul 2004 B2
6764494 Menz et al. Jul 2004 B2
6764508 Roehe et al. Jul 2004 B1
6764509 Chinn et al. Jul 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6767362 Schreck Jul 2004 B2
6769434 Liddicoat et al. Aug 2004 B2
6770083 Seguin Aug 2004 B2
6780200 Jansen Aug 2004 B2
6786924 Ryan et al. Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6790231 Liddicoat et al. Sep 2004 B2
6793673 Kowalsky et al. Sep 2004 B2
6797000 Simpson et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6802860 Cosgrove et al. Oct 2004 B2
6805710 Bolling et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6821297 Snyders Nov 2004 B2
6824562 Mathis et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6830585 Artof et al. Dec 2004 B1
6837902 Nguyen et al. Jan 2005 B2
6840246 Downing Jan 2005 B2
6840957 DiMatteo et al. Jan 2005 B2
6846324 Stobie Jan 2005 B2
6846325 Liddicoat Jan 2005 B2
6858039 McCarthy Feb 2005 B2
6869444 Gabbay Mar 2005 B2
6872226 Cali et al. Mar 2005 B2
6875224 Grimes Apr 2005 B2
6875230 Morita et al. Apr 2005 B1
6875231 Anduiza et al. Apr 2005 B2
6881199 Wilk et al. Apr 2005 B2
6881224 Kruse et al. Apr 2005 B2
6883522 Spence et al. Apr 2005 B2
6890352 Lentell May 2005 B1
6890353 Cohn et al. May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6896700 Lu et al. May 2005 B2
6902576 Drasler et al. Jun 2005 B2
6908478 Alferness et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6911043 Myers et al. Jun 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6916338 Speziali Jul 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6921811 Zamora et al. Jul 2005 B2
6926715 Hauck et al. Aug 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6929653 Strecter Aug 2005 B2
6932838 Schwartz et al. Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6939359 Tu et al. Sep 2005 B2
6942694 Liddicoat et al. Sep 2005 B2
6945957 Freyman Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945996 Sedransk Sep 2005 B2
6945997 Huynh et al. Sep 2005 B2
6949122 Adams et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6951573 Dilling Oct 2005 B1
6955689 Ryan et al. Oct 2005 B2
6958076 Acosta et al. Oct 2005 B2
6962605 Cosgrove et al. Nov 2005 B2
6964682 Nguyen-Thien-Nhon et al. Nov 2005 B2
6964683 Kowalsky et al. Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6966925 Stobie Nov 2005 B2
6966926 Mathis Nov 2005 B2
6974464 Quijano et al. Dec 2005 B2
6974474 Pavcnik et al. Dec 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976995 Mathis et al. Dec 2005 B2
6979350 Moll et al. Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997950 Chawla Feb 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7007396 Rudko et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011681 Vesely Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018407 Wright et al. Mar 2006 B1
7018408 Bailey et al. Mar 2006 B2
7022134 Quijano et al. Apr 2006 B1
7025780 Gabbay Apr 2006 B2
7033390 Johnson et al. Apr 2006 B2
7037333 Myers et al. May 2006 B2
7037334 Hlavka et al. May 2006 B1
7041128 Mcguckin, Jr. et al. May 2006 B2
7041132 Quijano et al. May 2006 B2
7044966 Svanidze et al. May 2006 B2
7044967 Solem et al. May 2006 B1
7048754 Martin et al. May 2006 B2
7048757 Shaknovich May 2006 B2
7052487 Cohn et al. May 2006 B2
7052507 Wakuda et al. May 2006 B2
7063722 Marquez Jun 2006 B2
7066954 Ryan Jun 2006 B2
7070616 Majercak Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7081131 Thornton Jul 2006 B2
7087064 Hyde Aug 2006 B1
7089051 Javerud et al. Aug 2006 B2
7090695 Solem et al. Aug 2006 B2
7854755 Lafontaine et al. Dec 2010 B2
7959666 Salahieh et al. Jun 2011 B2
7988724 Salahieh et al. Aug 2011 B2
8012198 Hill et al. Sep 2011 B2
8128681 Shoemaker Mar 2012 B2
8460368 Taylor et al. Jun 2013 B2
8747458 Tuval et al. Jun 2014 B2
20020013571 Goldfarb et al. Jan 2002 A1
20020026216 Grimes Feb 2002 A1
20020082630 Menz et al. Jun 2002 A1
20020095116 Strecter Jul 2002 A1
20020123802 Snyders Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020183835 Taylor et al. Dec 2002 A1
20020183838 Liddicoat et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030050694 Yang et al. Mar 2003 A1
20030055492 Shaolian et al. Mar 2003 A1
20030109922 Peterson Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030163194 Quijano et al. Aug 2003 A1
20030167071 Martin Sep 2003 A1
20030171806 Mathis et al. Sep 2003 A1
20030199975 Gabbay Oct 2003 A1
20030229394 Ogle et al. Dec 2003 A1
20030229395 Cox Dec 2003 A1
20030233142 Morales et al. Dec 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20030236569 Mathis et al. Dec 2003 A1
20040002719 Oz et al. Jan 2004 A1
20040003819 St. Goar et al. Jan 2004 A1
20040010305 Alferness et al. Jan 2004 A1
20040015230 Moll et al. Jan 2004 A1
20040015232 Shu et al. Jan 2004 A1
20040015233 Jansen Jan 2004 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040019377 Taylor et al. Jan 2004 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024447 Haverich Feb 2004 A1
20040024451 Johnson et al. Feb 2004 A1
20040024452 Kruse et al. Feb 2004 A1
20040030321 Fangrow, Jr. Feb 2004 A1
20040030381 Shu Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040030405 Carpentier et al. Feb 2004 A1
20040034380 Woolfson et al. Feb 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040039443 Solem et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040044403 Bischoff et al. Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049211 Tremulis et al. Mar 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040059351 Eigler et al. Mar 2004 A1
20040059411 Strecker Mar 2004 A1
20040059412 Lytle, IV et al. Mar 2004 A1
20040060161 Leal et al. Apr 2004 A1
20040073301 Donlon et al. Apr 2004 A1
20040073302 Rourke et al. Apr 2004 A1
20040078072 Tu et al. Apr 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040082910 Constantz et al. Apr 2004 A1
20040082923 Field Apr 2004 A1
20040082991 Nguyen et al. Apr 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040088045 Cox May 2004 A1
20040088046 Speziali May 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093060 Seguin et al. May 2004 A1
20040093070 Hojeibane et al. May 2004 A1
20040093080 Helmus May 2004 A1
20040097979 Svanidze et al. May 2004 A1
20040098098 McGuckin, Jr. et al. May 2004 A1
20040098112 DiMatteo et al. May 2004 A1
20040102839 Cohn et al. May 2004 A1
20040102840 Solem et al. May 2004 A1
20040102842 Jansen May 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040106990 Spence et al. Jun 2004 A1
20040106991 Hopkins et al. Jun 2004 A1
20040111096 Tu et al. Jun 2004 A1
20040117009 Cali et al. Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040122512 Navia et al. Jun 2004 A1
20040122513 Navia et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122515 Chu Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040127979 Wilson et al. Jul 2004 A1
20040127980 Kowalsky et al. Jul 2004 A1
20040127981 Randert et al. Jul 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040133220 Lashinski et al. Jul 2004 A1
20040133267 Lane Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138742 Myers et al. Jul 2004 A1
20040138743 Myers et al. Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040138745 Macoviak et al. Jul 2004 A1
20040148018 Carpentier et al. Jul 2004 A1
20040148019 Vidlund et al. Jul 2004 A1
20040148020 Vidlund et al. Jul 2004 A1
20040153052 Mathis Aug 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040153147 Mathis Aug 2004 A1
20040158321 Reuter et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040167539 Keuhn et al. Aug 2004 A1
20040167620 Ortiz et al. Aug 2004 A1
20040172046 Hlavka et al. Sep 2004 A1
20040176839 Huynh et al. Sep 2004 A1
20040176840 Langberg et al. Sep 2004 A1
20040181238 Zarbatany et al. Sep 2004 A1
20040186444 Daly et al. Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186561 Mcguckin, Jr. et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040193253 Thorpe et al. Sep 2004 A1
20040193260 Alferness et al. Sep 2004 A1
20040199155 Mollenauer Oct 2004 A1
20040199183 Oz et al. Oct 2004 A1
20040199191 Schwartz Oct 2004 A1
20040204758 Eberhardt et al. Oct 2004 A1
20040206363 Mccarthy et al. Oct 2004 A1
20040210240 Saint Oct 2004 A1
20040210301 Obermiller Oct 2004 A1
20040210303 Sedransk Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210305 Shu et al. Oct 2004 A1
20040210306 Quijano et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215333 Duran et al. Oct 2004 A1
20040215339 Drasler et al. Oct 2004 A1
20040220654 Mathis et al. Nov 2004 A1
20040220657 Nieminen et al. Nov 2004 A1
20040225322 Garrison et al. Nov 2004 A1
20040225344 Hoffa et al. Nov 2004 A1
20040225348 Case et al. Nov 2004 A1
20040225352 Osborne et al. Nov 2004 A1
20040225353 McGuckin, Jr. et al. Nov 2004 A1
20040225354 Allen et al. Nov 2004 A1
20040225355 Stevens Nov 2004 A1
20040225356 Frater Nov 2004 A1
20040230117 Tosaya et al. Nov 2004 A1
20040230297 Thornton Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040236418 Stevens Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243153 Liddicoat et al. Dec 2004 A1
20040243219 Fischer et al. Dec 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040243228 Kowalsky et al. Dec 2004 A1
20040243230 Navia et al. Dec 2004 A1
20040254600 Zarbatany et al. Dec 2004 A1
20040254601 Eskuri Dec 2004 A1
20040254636 Flagle et al. Dec 2004 A1
20040260276 Rudko et al. Dec 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260322 Rudko et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20040260393 Randert et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267357 Allen et al. Dec 2004 A1
20050004583 Oz et al. Jan 2005 A1
20050004667 Swinford et al. Jan 2005 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050010287 Macoviak et al. Jan 2005 A1
20050015112 Cohn et al. Jan 2005 A1
20050021056 St. Goar et al. Jan 2005 A1
20050021136 Xie et al. Jan 2005 A1
20050027261 Weaver et al. Feb 2005 A1
20050027348 Case et al. Feb 2005 A1
20050027351 Reuter et al. Feb 2005 A1
20050027353 Alferness et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050033419 Alferness et al. Feb 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050038506 Webler et al. Feb 2005 A1
20050038507 Alferness et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050043792 Solem Feb 2005 A1
20050049679 Taylor et al. Mar 2005 A1
20050049692 Numamoto et al. Mar 2005 A1
20050049696 Siess et al. Mar 2005 A1
20050049697 Sievers Mar 2005 A1
20050054977 Laird et al. Mar 2005 A1
20050055079 Duran Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050055088 Liddicoat et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050060029 Le et al. Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050065460 Laird Mar 2005 A1
20050065550 Starksen et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050065597 Lansac Mar 2005 A1
20050070998 Rourke et al. Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075659 Realyvasquez et al. Apr 2005 A1
20050075662 Pedersen et al. Apr 2005 A1
20050075712 Biancucci et al. Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075723 Schroeder et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050075725 Rowe Apr 2005 A1
20050075726 Svanidze et al. Apr 2005 A1
20050075729 Nguyen et al. Apr 2005 A1
20050075730 Myers et al. Apr 2005 A1
20050075731 Artof et al. Apr 2005 A1
20050080483 Solem et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050085903 Lau Apr 2005 A1
20050085904 Lemmon Apr 2005 A1
20050090846 Pedersen et al. Apr 2005 A1
20050096735 Hojeibane et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050096739 Cao May 2005 A1
20050096740 Langberg et al. May 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050102026 Turner et al. May 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107812 Starksen et al. May 2005 A1
20050107872 Mensah et al. May 2005 A1
20050113910 Paniagua et al. May 2005 A1
20050119673 Gordon et al. Jun 2005 A1
20050119734 Spence et al. Jun 2005 A1
20050119735 Spence et al. Jun 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050137449 Nieminen et al. Jun 2005 A1
20050137450 Aronson et al. Jun 2005 A1
20050137451 Gordon et al. Jun 2005 A1
20050137676 Richardson et al. Jun 2005 A1
20050137681 Shoemaker et al. Jun 2005 A1
20050137682 Justino Jun 2005 A1
20050137685 Nieminen et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137689 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137691 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137693 Haug et al. Jun 2005 A1
20050137694 Haug et al. Jun 2005 A1
20050137696 Salahieh et al. Jun 2005 A1
20050137697 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050137699 Salahieh et al. Jun 2005 A1
20050137700 Spence et al. Jun 2005 A1
20050137701 Salahieh et al. Jun 2005 A1
20050137702 Haug et al. Jun 2005 A1
20050143807 Pavcnik et al. Jun 2005 A1
20050143809 Salahieh et al. Jun 2005 A1
20050143810 Dauner et al. Jun 2005 A1
20050143811 Realyvasquez Jun 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050149179 Mathis et al. Jul 2005 A1
20050149180 Mathis et al. Jul 2005 A1
20050149181 Eberhardt Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050159811 Lane Jul 2005 A1
20050165477 Anduiza et al. Jul 2005 A1
20050165478 Song Jul 2005 A1
20050171472 Lutter Aug 2005 A1
20050171601 Cosgrove et al. Aug 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050177277 Kuroki Aug 2005 A1
20050182483 Osborne et al. Aug 2005 A1
20050184122 Hlavka et al. Aug 2005 A1
20050187614 Agnew Aug 2005 A1
20050187616 Realyvasquez Aug 2005 A1
20050187617 Navia Aug 2005 A1
20050192606 Paul, Jr. et al. Sep 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050197692 Pai et al. Sep 2005 A1
20050197693 Pai et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203605 Dolan Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216077 Mathis et al. Sep 2005 A1
20050216078 Starksen et al. Sep 2005 A1
20050222675 Sauter Oct 2005 A1
20050222678 Lashinski et al. Oct 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050228479 Pavcnik et al. Oct 2005 A1
20050228486 Case et al. Oct 2005 A1
20050228494 Marquez Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050228496 Mensah et al. Oct 2005 A1
20050234541 Hunt et al. Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240202 Shennib et al. Oct 2005 A1
20050240255 Schaeffer Oct 2005 A1
20050240259 Sisken et al. Oct 2005 A1
20050240262 White Oct 2005 A1
20050244460 Alferiev et al. Nov 2005 A1
20050246013 Gabbay Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050256566 Gabbay Nov 2005 A1
20050261704 Mathis Nov 2005 A1
20050261759 Lambrecht et al. Nov 2005 A1
20050267493 Schreck et al. Dec 2005 A1
20050267560 Bates Dec 2005 A1
20050267565 Dave et al. Dec 2005 A1
20050267571 Spence et al. Dec 2005 A1
20050267573 Macoviak et al. Dec 2005 A9
20050267574 Cohn et al. Dec 2005 A1
20050272969 Alferness et al. Dec 2005 A1
20050273160 Lashinski et al. Dec 2005 A1
20050278015 Dave et al. Dec 2005 A1
20050283178 Flagle et al. Dec 2005 A1
20050288779 Shaoulian et al. Dec 2005 A1
20060000715 Whitcher et al. Jan 2006 A1
20060004439 Spenser et al. Jan 2006 A1
20060004442 Spenser et al. Jan 2006 A1
20060009841 Mcguckin, Jr. et al. Jan 2006 A1
20060009842 Huynh et al. Jan 2006 A1
20060013805 Hebbel et al. Jan 2006 A1
20060013855 Carpenter et al. Jan 2006 A1
20060015136 Besselink Jan 2006 A1
20060015178 Moaddeb et al. Jan 2006 A1
20060015179 Bulman-Fleming et al. Jan 2006 A1
20060020275 Goldfarb Jan 2006 A1
20060020327 Lashinski et al. Jan 2006 A1
20060020332 Lashinski et al. Jan 2006 A1
20060020334 Lashinski et al. Jan 2006 A1
20060020335 Kowalsky et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025750 Startksen et al. Feb 2006 A1
20060025784 Startksen et al. Feb 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060025854 Lashinski et al. Feb 2006 A1
20060025855 Lashinski et al. Feb 2006 A1
20060025856 Ryan et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030747 Kantrowitz et al. Feb 2006 A1
20060030866 Schreck Feb 2006 A1
20060030882 Adams et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060036317 Vidlund et al. Feb 2006 A1
20060041305 Lauterjung Feb 2006 A1
20060041306 Vidlund et al. Feb 2006 A1
20060047297 Case Mar 2006 A1
20060047338 Jenson Mar 2006 A1
20060047343 Oviatt et al. Mar 2006 A1
20060052804 Mialhe Mar 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058817 Starksen et al. Mar 2006 A1
20060058865 Case et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058889 Case et al. Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064118 Kimblad Mar 2006 A1
20060064174 Zadno Mar 2006 A1
20060069400 Burnett et al. Mar 2006 A1
20060069430 Randert et al. Mar 2006 A9
20060074483 Schrayer Apr 2006 A1
20060074484 Huber Apr 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060089708 Osse et al. Apr 2006 A1
20060095115 Bladillah et al. May 2006 A1
20060095125 Chinn et al. May 2006 A1
20060099326 Keogh et al. May 2006 A1
20060100697 Casanova May 2006 A1
20060100699 Vidlund et al. May 2006 A1
20060106278 Machold et al. May 2006 A1
20060106279 Machold et al. May 2006 A1
20060106456 Machold et al. May 2006 A9
20060111660 Wolf et al. May 2006 A1
20060111773 Rittgers et al. May 2006 A1
20060111774 Samkov et al. May 2006 A1
20060116572 Case Jun 2006 A1
20060116756 Solem et al. Jun 2006 A1
20060122686 Gilad et al. Jun 2006 A1
20060122692 Gilad et al. Jun 2006 A1
20060122693 Biadillah et al. Jun 2006 A1
20060127443 Helmus Jun 2006 A1
20060129235 Seguin et al. Jun 2006 A1
20060129236 Mccarthy Jun 2006 A1
20060135476 Kutryk et al. Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060135967 Realyvasquez Jun 2006 A1
20060136044 Osborne Jun 2006 A1
20060136045 Flagle et al. Jun 2006 A1
20060136052 Vesely Jun 2006 A1
20060136054 Berg et al. Jun 2006 A1
20060142846 Pavcnik et al. Jun 2006 A1
20060142847 Shaknovich Jun 2006 A1
20060142848 Gabbay Jun 2006 A1
20060142854 Alferness et al. Jun 2006 A1
20060149358 Zilla et al. Jul 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060149367 Sieracki Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161133 Laird et al. Jul 2006 A1
20060161248 Case et al. Jul 2006 A1
20060161250 Shaw Jul 2006 A1
20060167468 Gabbay Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060167542 Quintessenza Jul 2006 A1
20060167543 Bailey Jul 2006 A1
20060173490 Lafontaine et al. Aug 2006 A1
20080036113 Chun Feb 2008 A1
20080269877 Jenson et al. Oct 2008 A1
20100131056 Lapeyre May 2010 A1
Foreign Referenced Citations (169)
Number Date Country
0380666 Aug 1990 EP
0466518 Jan 1992 EP
2450008 May 2012 EP
2728457 Jun 1996 FR
2788217 Jul 2000 FR
8800459 Jan 1988 WO
9015582 Dec 1990 WO
9501669 Jan 1995 WO
9619159 Jun 1996 WO
9803656 Jan 1998 WO
9846115 Oct 1998 WO
9904724 Feb 1999 WO
9916382 Apr 1999 WO
0067679 Nov 2000 WO
0115650 Mar 2001 WO
0117462 Mar 2001 WO
03047468 Jun 2003 WO
03084443 Oct 2003 WO
2004019825 Mar 2004 WO
2004023980 Mar 2004 WO
2004030568 Apr 2004 WO
2004030569 Apr 2004 WO
2004030570 Apr 2004 WO
2004032724 Apr 2004 WO
2004032796 Apr 2004 WO
2004037128 May 2004 WO
2004037317 May 2004 WO
2004039432 May 2004 WO
2004043265 May 2004 WO
2004043273 May 2004 WO
2004043293 May 2004 WO
2004045370 Jun 2004 WO
2004045378 Jun 2004 WO
2004045463 Jun 2004 WO
2004047677 Jun 2004 WO
2004060217 Jul 2004 WO
2004060470 Jul 2004 WO
2004062725 Jul 2004 WO
2004066803 Aug 2004 WO
2004066826 Aug 2004 WO
2004069287 Aug 2004 WO
2004075789 Sep 2004 WO
2004080352 Sep 2004 WO
2004082523 Sep 2004 WO
2004082527 Sep 2004 WO
2004082528 Sep 2004 WO
2004082536 Sep 2004 WO
2004082537 Sep 2004 WO
2004082538 Sep 2004 WO
2004082757 Sep 2004 WO
2004084746 Oct 2004 WO
2004084770 Oct 2004 WO
2004089246 Oct 2004 WO
2004089250 Oct 2004 WO
2004089253 Oct 2004 WO
2004091449 Oct 2004 WO
2004091454 Oct 2004 WO
2004093638 Nov 2004 WO
2004093726 Nov 2004 WO
2004093728 Nov 2004 WO
2004093730 Nov 2004 WO
2004093745 Nov 2004 WO
2004093935 Nov 2004 WO
2004096100 Nov 2004 WO
2004103222 Dec 2004 WO
2004103223 Dec 2004 WO
2004105584 Dec 2004 WO
2004105651 Dec 2004 WO
2004112582 Dec 2004 WO
2004112585 Dec 2004 WO
2004112643 Dec 2004 WO
2004112652 Dec 2004 WO
2004112657 Dec 2004 WO
2004112658 Dec 2004 WO
2005000152 Jan 2005 WO
2005002424 Jan 2005 WO
2005002466 Jan 2005 WO
2005004753 Jan 2005 WO
2005007017 Jan 2005 WO
2005007018 Jan 2005 WO
2005007036 Jan 2005 WO
2005007037 Jan 2005 WO
2005009285 Feb 2005 WO
2005009286 Feb 2005 WO
2005009505 Feb 2005 WO
2005009506 Feb 2005 WO
2005011473 Feb 2005 WO
2005011534 Feb 2005 WO
2005011535 Feb 2005 WO
2005013860 Feb 2005 WO
2005018507 Mar 2005 WO
2005021063 Mar 2005 WO
2005023155 Mar 2005 WO
2005025644 Mar 2005 WO
2005027790 Mar 2005 WO
2005027797 Mar 2005 WO
2005034812 Apr 2005 WO
2005039428 May 2005 WO
2005039452 May 2005 WO
2005046488 May 2005 WO
2005046528 May 2005 WO
2005046529 May 2005 WO
2005046530 May 2005 WO
2005046531 May 2005 WO
2005048883 Jun 2005 WO
2005049103 Jun 2005 WO
2005051226 Jun 2005 WO
2005055811 Jun 2005 WO
2005055883 Jun 2005 WO
2005058206 Jun 2005 WO
2005065585 Jul 2005 WO
2005065593 Jul 2005 WO
2005065594 Jul 2005 WO
2005070342 Aug 2005 WO
2005070343 Aug 2005 WO
2005072654 Aug 2005 WO
2005072655 Aug 2005 WO
2005079706 Sep 2005 WO
2005082288 Sep 2005 WO
2005082289 Sep 2005 WO
2005084595 Sep 2005 WO
2005087139 Sep 2005 WO
2005087140 Sep 2005 WO
2006000763 Jan 2006 WO
2006000776 Jan 2006 WO
2006002492 Jan 2006 WO
2006004679 Jan 2006 WO
2006005015 Jan 2006 WO
2006009690 Jan 2006 WO
2006011127 Feb 2006 WO
2006012011 Feb 2006 WO
2006012013 Feb 2006 WO
2006012038 Feb 2006 WO
2006012068 Feb 2006 WO
2006012322 Feb 2006 WO
2006019498 Feb 2006 WO
2006026371 Mar 2006 WO
2006026377 Mar 2006 WO
2006026912 Mar 2006 WO
2006027499 Mar 2006 WO
2006028821 Mar 2006 WO
2006029062 Mar 2006 WO
2006031436 Mar 2006 WO
2006031469 Mar 2006 WO
2006032051 Mar 2006 WO
2006034245 Mar 2006 WO
2006035415 Apr 2006 WO
2006041505 Apr 2006 WO
2006044679 Apr 2006 WO
2006048664 May 2006 WO
2006050459 May 2006 WO
2006050460 May 2006 WO
2006054107 May 2006 WO
2006054930 May 2006 WO
2006055982 May 2006 WO
2006060546 Jun 2006 WO
2006063108 Jun 2006 WO
2006063181 Jun 2006 WO
2006063199 Jun 2006 WO
2006064490 Jun 2006 WO
2006065212 Jun 2006 WO
2006065930 Jun 2006 WO
2006066148 Jun 2006 WO
2006066150 Jun 2006 WO
2006069094 Jun 2006 WO
2006070372 Jul 2006 WO
2006073628 Jul 2006 WO
2006076890 Jul 2006 WO
2006135831 Dec 2006 WO
Related Publications (1)
Number Date Country
20150088252 A1 Mar 2015 US
Continuations (4)
Number Date Country
Parent 14084088 Nov 2013 US
Child 14556960 US
Parent 13214520 Aug 2011 US
Child 14084088 US
Parent 12508369 Jul 2009 US
Child 13214520 US
Parent 10933088 Sep 2004 US
Child 12508369 US