Arteries are the primary blood vessels that are responsible for providing blood and oxygen to the heart muscle. Arterial disease occurs when arteries become narrowed or blocked by a buildup of plaque (as some examples, atherosclerotic plaque or other deposits). When the blockage is severe, the flow of blood and oxygen to the heart muscle is reduced, causing chest pain. Arterial blockage by clots formed in a human body may be relieved in a number of traditional ways. Drug therapy, including nitrates, beta-blockers, and peripheral vasodilatator drugs to dilate the arteries or thrombolytic drugs to dissolve the clot, can be effective. If drug treatment fails, angioplasty may be used to reform or remove the atherosclerotic plaque or other deposits in the artery.
Traditional balloon angioplasty is sometimes used to address the blockage by inserting a narrow, flexible tube having a balloon into an artery in the arm or leg. The blocked area in the artery can be stretched apart by passing the balloon to the desired treatment site and gently inflating it a certain degree. In the event drug therapy is ineffective or angioplasty is ineffective or too risky (often introduction of a balloon in an occluded artery can cause portions of the atherosclerotic material to become dislodged, which may cause a total blockage at a point downstream of the subject occlusion, thereby requiring emergency procedures), the procedure known as excimer laser angioplasty may be indicated.
Excimer laser angioplasty procedure is similar in some respects to conventional coronary balloon angioplasty. A narrow, flexible tube, the laser catheter, is inserted into an artery in the arm or leg. The laser catheter contains one or more optical fibers, which can transmit laser energy. The laser catheter is then advanced inside the artery to the targeted obstruction at the desired treatment site. After the laser catheter has been positioned, the laser is energized to “remove” the obstruction.
In many procedures, the lesion is often engaged similar to conventional balloon angioplasty by crossing the blockage with a guidewire. The laser catheter's thin, flexible optical fibers facilitate the desired positioning and alignment of the catheter. Using the excimer laser, the clinician performs a controlled blockage removal by sending bursts of ultraviolet light through the catheter and against the blockage, a process called “ablation.” The catheter is then slowly advanced through the blockage reopening the artery. If there are multiple blockages, the catheter is advanced to the next blockage site and the above step is repeated. When the indicated blockages appear to be cleared, the catheter is withdrawn.
Due to the configuration of the optical fibers in most prior art laser catheters, the clinician is able to ablate only material that is typically directly in front of the distal end of the catheter. Thus, the debulked tissue area is limited to an area approximately the size of the optical fiber area at the distal end of the catheter. Typically, follow-up balloon angioplasty is recommended.
Imaging during atherectomy or angioplasty procedures often uses fluoroscopy imaging techniques for targeting and ablation of blockages. Fluoroscopy, however, has limitations. For example, does not allow a doctor or technician to visualize plaque or vessel walls.
Embodiments of the invention are directed toward laser catheters. In one embodiment, a laser catheter can include a catheter body, a light guide, a distal tip, and an imaging device disposed distal relative to the exit aperture of the light guide. The catheter body, for example may include a central axis, a proximal end and a distal end. The catheter body may also include a lumen disposed between the proximal end and the distal end, the lumen having an opening at the distal end. The light guide may also include a proximal end and a distal end. In some embodiments, the light guide may also include at least one fiber optic and may at least partially be disposed within the lumen and/or movable therein. The distal tip may be positioned at the periphery of the catheter body and may extend from the distal end of the catheter body. The imaging device can be disposed on the distal tip, for example, at a position distal from the exit aperture of the light guide. The distal tip may also include a guidewire lumen that includes a guidewire port at the distal end of the distal tip. A retaining wire may also be used in some embodiments and can be coupled with the distal tip and slidably coupled with the light guide. A balloon, for example, may be positioned between the opening at the first distal end of the catheter body and the distal tip.
Some embodiments of the invention can also include a balloon catheter. The balloon catheter can include a catheter body, for example may include a central axis, a proximal end and a distal end. The catheter body may also include a lumen disposed between the proximal end and the distal end, the lumen having an opening at the distal end. The balloon catheter can also include a light guide that may also include a proximal end and a distal end. In some embodiments, the light guide may also include at least one fiber optic and may at least partially be disposed within the lumen and/or movable therein. The balloon can be disposed at the radial exterior of the catheter body. In use, for example, the balloon can be inflated such that the balloon makes contact with a vessel wall. Contact with the vessel wall can move the distal tip of the catheter away from vessel wall toward an opposing vessel wall.
Some embodiments of the invention can also include an imaging catheter that gates imaging during ablation. For example, an imaging catheter can include a light guide coupled with a laser and an imaging device disposed distally relative to the light guide exit aperture. During operation, in some embodiments, images from the light guide can be filtered and/or gated while the laser is activated. In other embodiments, the imaging device can be deactivated during ablation.
The following detailed description, together with the accompanying drawings, will provide a better understanding of the nature and advantage of the embodiments disclosed herein.
Embodiments of the present invention include a laser catheter that employs an imaging device. In some embodiments, the imaging device is disposed distal (or forward) relative to the exit aperture of the laser catheter. In some embodiments, the laser catheters can employ gating techniques to ensure that laser pulses don't interfere with imaging. Other embodiments include laser catheters that include balloons or ramps that can deflect the exit aperture of the laser catheter.
As shown in
Imaging device 260, for example, can be an ultrasonic device such as an Intracoronary/Intravascular Ultrasound (ICUS/IVUS) device, which can employ very small transducers arranged on a catheter and provides electronic transduced echo signals to an external imaging system in order to produce a two or three-dimensional image of the lumen, the arterial tissue, plaque, blockages, and/or tissue surrounding the artery. These images can be generated in substantially real time and can provide images of superior quality to the known x-ray imaging methods and apparatuses. Other imaging methods and intravascular ultrasound imaging applications would also benefit from enhanced image resolution. An ultrasound device, for example, can include a flexible polyimide film layer.
Imaging device 260 can be coupled with a number of wires and/or fiber optics that extend through catheter body 205 toward the proximal end of catheter 200. For example, for IVUS imaging devices, seven braided wires can be used. Some or all of these wires, for example, can have a diameter less than 0.01 inches.
Catheter body 205 can include tip 213, that extends from opening 207. In some embodiments, tip 213 can be coupled with catheter body 205. In other embodiments, tip 213 can be integral with catheter body 205. In some embodiments, tip 213 can support the distal end of fiber optic bundle 210. Fiber optic bundle 205 can include a guidewire lumen that extends through a portion of the catheter body. During use guidewire 215 can be positioned within a vessel, laser catheter 200 can be threaded over guidewire 215 using the guidewire lumen in order to direct the catheter through a vessel toward a target. In some embodiments, guidewire lumen can extend through at least a portion of tip 213. Retaining wire 216 can extend from the distal tip of fiber optic bundle 210 and be coupled with tip 213. In some embodiments, retaining wire 216 and guidewire can be the same wire.
In some embodiments, tip 213 can also include an imaging device 260 disposed at the distal end of tip 213. Imaging device 260 can be located at least 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 cm longitudinally (or forward) from the distal end (or exit aperture) of fiber optic bundle 210. Any type of imaging device can be used.
Imaging device 260 can include any ultrasound sensor or laser interferometry device. A laser interferometry device can include a plurality of fiber optics with an exit aperture disposed near the distal end of the laser catheter and extending through a sheath of the catheter. Imaging device 260, for example, can be formed cylindrically around tip 213 as a patch, or a ring. In some embodiments, imaging device 260 can include any shape or size.
In some embodiments, balloon 227 can be disposed between fiber optic bundle 210 and tip 213. In
In some embodiments, catheter body 205 may have a diameter of approximately 2.0 mm. Each fibers 217, for example, may be less than about 0.1 mm. As another example, the fibers may be less than about 0.05 mm. The fiber optics may be contained within bundle 210. For example, bundle 210 can be about 1.0 mm by about 2.0 mm. Guidewire lumen 230, for example, can have an inside diameter of approximately 0.024 inches and inside diameter of approximately 0.018 inches. In other embodiments, guidewire lumen 230 may have an outside diameter less than about 0.025 inches and/or an inside diameter less than about 0.02 inches.
While a fiber optic bundle 210 is shown in the figures, any type of light guide can be used. For example, a liquid light guide and or a solid light guide can be used in place of the fiber optic bundle without limitation.
In some embodiments that include retaining wire 216, retaining wire 216 may be detachably coupled with either or both distal tip 213 and/or light guide 210. For example, retaining wire 216 may be connected with the distal tip using solder, clamps, glue, fused, etc. In some embodiments, retaining wire is soldered with radiopaque marker band 211. In other embodiments, retaining wire 216 may be coiled around the distal tip and glued or fused with distal tip 213. In some embodiments, retaining wire 216 may be sandwiched between distal tip 213 and radiopaque marker band 211. In some embodiments, retaining wire 216 may extend through a portion of light guide 210. For example, retaining wire 216 may extend through light guide 210 next to and/or with a plurality of optical fibers. Retaining wire 216 may aid in retaining the position and/or bias of the light guide when light guide is extended up ramp 505. Retaining wire 216 may also aid in providing the proper bias when light guide is extended up ramp 505. For example, retaining wire 216 may be lengthened and/or include elasticity such that biasing catheter may be more or less biased when light guide is extended up ramp 505. In some embodiments, retaining wire provides resistance to light guide 210 when balloon 705 is inflated and/or when light guide is extended up ramp 505, which may align light guide 210 parallel with distal tip 213 and/or catheter body 205.
Various other configurations of biasing laser catheters can be used. In some embodiments, laser catheters described in U.S. Pat. No. 7,572,254, entitled “Rapid Exchange Bias Laser Catheter Design,” which is incorporated herein by reference in its entirety, can be used in conjunction with various aspects described herein. Similarly, the laser catheters described in U.S. patent application Ser. Nos. 12/406,807, entitled “Apparatus and Methods for Directional Delivery of Laser Energy;” Ser. No. 12/265,441, entitled “Biasing Laser Catheter: Monorail Design;” Ser. No. 12/337,190, entitled “Eccentric Balloon Laser Catheter;” and/or Ser. No. 12/337,232, entitled “Rapid Exchange Bias Laser Catheter Design,” each of which are incorporated herein by reference in their entirety, can also be used in conjunction with various aspects described herein. For example, laser catheters described in any of the documents incorporated by reference can be implemented with a distal imaging device.
In some embodiments, catheter 700 can include imaging device 260 and in other embodiments imaging device 206 can be excluded. Similarly, catheters in some embodiments can include radiopaque band 211, while catheters in other embodiments do not.
A balloon biasing catheter may also include a guidewire lumen. The guidewire lumen may be configured to allow a guidewire to pass and/or slide therethrough. In some embodiments, the guidewire lumen may extend, for example, from distal guidewire port through a portion of catheter body 205. In some embodiments, the guidewire lumen may extend to or near the proximal end of catheter body 205. In other embodiments, guidewire lumen may extend from the distal end to a position proximal with the light guide aperture and/or proximal with balloon 227. The guidewire lumen may be configured to accept a guidewire and allow the guidewire to slide within the guidewire lumen. Proximal guidewire port 720 may be located anywhere along catheter body 205.
In some embodiments, catheter 800 can include balloon tube port 725 that can be coupled with balloon 227 via a balloon tube (e.g. balloon tube 230). In some embodiments balloon lumen may couple with a luer fitting at balloon tube port 725. Balloon tube port 725 can be configured to accept any type of syringe or pump that can pressurize and depressurize balloon 227. For example, the inner diameter of balloon lumen may be approximately 0.001 inches. In some embodiments, the inner diameter of the balloon lumen (or tube) may be between 0.0005 and 0.01 inches. The outside diameter of the balloon lumen, for example, may be 0.016 inches. In some embodiments, the outside diameter of the balloon lumen may be 0.05 to 0.005 inches. At balloon port or luer, the balloon may be coupled with a syringe or an indeflator. Balloon 705 may be inflated by injecting fluid through balloon lumen using either a syringe or an indeflator. In some embodiments, the balloon may be inflated using a contrast agent fluid or saline solution. The balloon lumen 1813 may include any type of plastic tubing known in the art. For example, balloon lumen 1813 may comprise nylon, Teflon, polyethylene, etc.
Guidewire lumen port 720 can also be included. Guidewire lumen port 720 can be coupled with guidewire lumen 240 and can allow a guidewire to extend through the distal end toward the proximal end of the catheter. A bifurcated cover can be used to separate the ports from the body of the catheter.
After ablation of target portion 807, balloon 705 can be deflated and the catheter rotated within vessel 810 as shown in
In some embodiments, laser catheters can include a balloon (e.g., balloon 705). Such balloons, for example, can have a diameter of about 1 mm to 3 mm when inflated. In some embodiments, balloon may have an inflated diameter up to about 5 mm and as little as 0.5 mm. In some embodiments, the balloon may comprise a portion of tubing with a sealed distal end. In some embodiments, a portion of tubing may form the balloon and have thinner walls and/or a larger diameter such that the balloon portion of the tubing inflates under pressure. A balloon, for example, may comprise any type of plastic, for example, the balloon may comprise nylon, Teflon, polyethylene, etc. A balloon, in some embodiments, may extend the entire length of distal tip 213. For example, balloon 705 may be 10 cm, 9 cm, 8 cm, 7 cm, 6 cm, 5 cm, 4 cm, 3 cm, 2 cm, or 1 cm in length.
In some embodiments, a balloon can be used to deflect a light guide, fiber optic bundle and/or catheter body. In doing so, the balloon, for example, may deflect the light guide, fiber optic bundle and/or catheter body 205 1.0 mm. In other embodiments, the light guide, fiber optic bundle and/or catheter body may be biased 0.5 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm etc. from a deflated position. By biasing the light guide, fiber optic bundle and/or catheter body, the balloon biasing catheter may ablate a larger diameter area than if the light guide is not biased.
While
At block 1210 if the laser is activated images produced by the imaging device can be filtered at block 1215. In some embodiments, the filtering can occur in real time. In other embodiments, the filtering can occur after the imaging has occurred. In some embodiments, filtering can occur by disabling the imaging device while the laser is activated. Moreover, imaging can be filtered for an extended period of time beyond the time the laser is activated. Filtering can also occur at a display, such that, images produced while the laser is activated are not displayed to a user. If the laser is not activated at block 1215, the interior of the vessel can continued to be imaged at block 1210.
At block 1220, if the laser is not deactivated, images of the interior of the vessel can continue to be filtered at block 1215. Otherwise, the process continues to block 1225. At block 1225, if the procedure is not complete, the process returns to block 1205, otherwise imaging ceases at block 1230.
Various embodiments disclosed herein describe the use of an imaging device in conjunction with a laser catheter. Any type of imaging can be used. For example, the imaging device can include an ultrasound sensor or a laser interferometry device. A laser interferometry device can include a plurality of fiber optics with an exit aperture disposed near the distal end of the laser catheter and extending through a sheath of the catheter. The imaging device, for example, can be formed cylindrically, as a patch, or a ring.
An ultrasound device can include an Intracoronary/Intravascular Ultrasound (ICUS/IVUS) device that can employ very small transducers arranged on a catheter and provides electronic transduced echo signals to an external imaging system in order to produce a two or three-dimensional image of the lumen, the arterial tissue, plaque, blockages, and/or tissue surrounding the artery. These images can be generated in substantially real time and can provide images of superior quality to the known x-ray imaging methods and apparatuses. Other imaging methods and intravascular ultrasound imaging applications would also benefit from enhanced image resolution. An ultrasound device, for example, can include a flexible polyimide film layer.
In some embodiments of the invention, imaging can be gated while the laser catheter is pulsing. Signal processing techniques can be implemented (e.g. at computer 180 in
Moreover, photochemical effects in an area ablated by a laser catheter can remain for up to about 0.6 ms. Thus, imaging data recorded using a forward imaging device can also include filtering data recorded 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.1, 1.2, 1.3 or 1.4 ms after the laser pulse has begun. Thus, for example, signal capture (or data retention) can begin after 1.0 ms after the beginning of the laser pulse. Delaying signal capture until 1 ms after the laser pulse still allows for a better than 10 frames per second data acquisition and signal processing even operating at 80 Hz.
In some embodiments, elimination of data using filtering techniques can be implemented in software operating at computer 180. In other embodiments, dedicated electrical circuitry can be used to filter the data after the data has been received. In some embodiments, data filtering can occur well after the imaging data has been captured and recorded. In yet other embodiments, filtering can occur in real time. That is, for example, the data from the imaging device can be ignored, deleted, or not displayed while the laser is active and/or during some post activation time period. As another example, the imaging device can be disabled during filtering periods. In other embodiments, gating can prevent images from being displayed on a display (e.g., a display associated with computer 180 shown in
In some embodiments, the laser can be electrically, mechanically, or optically interrupted to allow for data acquisition. For example, imaging can occur at predetermined intervals during which laser pulses are stopped to allow for better imaging. As another example, imaging can be initiated by a doctor or technician. During this time, the laser can be deactivated to allow for better imaging. Once imaging is complete, the laser can be reactivated and pulsing can recommence (whether automatically or manually).
Circuits, logic modules, processors, and/or other components may be described herein as being “configured” to perform various operations. Those skilled in the art will recognize that, depending on implementation, such configuration can be accomplished through design, setup, interconnection, and/or programming of the particular components and that, again depending on implementation, a configured component might or might not be reconfigurable for a different operation. For example, a programmable processor can be configured by providing suitable executable code; a dedicated logic circuit can be configured by suitably connecting logic gates and other circuit elements; and so on.
While embodiments of the invention are described herein with reference to particular blocks, it is to be understood that the blocks are defined for convenience of description and are not intended to imply a particular physical arrangement of component parts. Further, the blocks need not correspond to physically distinct components.
While the embodiments described above may make reference to specific hardware and software components, those skilled in the art will appreciate that different combinations of hardware and/or software components may also be used and that particular operations described as being implemented in hardware might also be implemented in software or vice versa.
Computer programs incorporating various features of the present invention may be encoded on various computer readable storage media; suitable media include magnetic disk or tape, optical storage media such as compact disk (CD) or digital versatile disk (DVD), flash memory, and the like. Computer readable storage media encoded with the program code may be packaged with a compatible device or provided separately from other devices. In addition program code may be encoded and transmitted via wired optical, and/or wireless networks conforming to a variety of protocols, including the Internet, thereby allowing distribution, e.g., via Internet download.
This application is a continuation in part of U.S. Non-Provisional application Ser. No. 12/337,232 filed on Dec. 17, 2008, which is a continuation in part of U.S. Non-Provisional application Ser. No. 11/228,845 filed on Sep. 16, 2006, which claims the benefit of U.S. Provisional Application Ser. No. 60/611,191 filed Sep. 17, 2004. Each of these disclosures are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4053845 | Gould | Oct 1977 | A |
4641912 | Goldenberg | Feb 1987 | A |
4669465 | Moore et al. | Jun 1987 | A |
4686979 | Gruen et al. | Aug 1987 | A |
4732448 | Goldenberg | Mar 1988 | A |
4747405 | Leckrone | May 1988 | A |
4769005 | Ginsburg et al. | Sep 1988 | A |
4784132 | Fox et al. | Nov 1988 | A |
4788975 | Shturman et al. | Dec 1988 | A |
4799754 | Goldenberg | Jan 1989 | A |
4807620 | Strul | Feb 1989 | A |
4830460 | Goldenberg | May 1989 | A |
4844062 | Wells | Jul 1989 | A |
4848336 | Fox et al. | Jul 1989 | A |
4924863 | Sterzer | May 1990 | A |
5016964 | Donnelly | May 1991 | A |
5024234 | Leary et al. | Jun 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5040548 | Yock | Aug 1991 | A |
5041108 | Fox et al. | Aug 1991 | A |
5188632 | Goldenberg | Feb 1993 | A |
5207672 | Roth et al. | May 1993 | A |
5217454 | Khoury | Jun 1993 | A |
5250045 | Bohley | Oct 1993 | A |
5263952 | Grace | Nov 1993 | A |
5267341 | Shearin | Nov 1993 | A |
5300085 | Yock | Apr 1994 | A |
5304171 | Gregory et al. | Apr 1994 | A |
5318032 | Lonsbury et al. | Jun 1994 | A |
5350375 | Deckelbaum et al. | Sep 1994 | A |
5350377 | Winston et al. | Sep 1994 | A |
5350395 | Yock | Sep 1994 | A |
5352197 | Hammersmark et al. | Oct 1994 | A |
5377683 | Barken | Jan 1995 | A |
5415653 | Wardle et al. | May 1995 | A |
5425355 | Kulick | Jun 1995 | A |
5429604 | Solar | Jul 1995 | A |
5429617 | Hammersmark et al. | Jul 1995 | A |
5440664 | Harrington et al. | Aug 1995 | A |
5451233 | Yock | Sep 1995 | A |
5456680 | Taylor et al. | Oct 1995 | A |
5464395 | Faxon et al. | Nov 1995 | A |
5470330 | Goldenberg et al. | Nov 1995 | A |
5484433 | Taylor et al. | Jan 1996 | A |
5514128 | Hillsman et al. | May 1996 | A |
5571151 | Gregory | Nov 1996 | A |
5573531 | Gregory | Nov 1996 | A |
5623940 | Daikuzono | Apr 1997 | A |
5643251 | Hillsman et al. | Jul 1997 | A |
5649923 | Gregory | Jul 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5722972 | Power et al. | Mar 1998 | A |
5755714 | Murphy-Chutorian | May 1998 | A |
5792118 | Kurth et al. | Aug 1998 | A |
5803083 | Buck et al. | Sep 1998 | A |
5817144 | Gregory | Oct 1998 | A |
5824026 | Diaz | Oct 1998 | A |
5836946 | Diaz et al. | Nov 1998 | A |
RE36104 | Solar | Feb 1999 | E |
5891133 | Murphy-Chutorian | Apr 1999 | A |
5938609 | Pomeranz | Aug 1999 | A |
5976124 | Reiser | Nov 1999 | A |
5989243 | Goldenberg | Nov 1999 | A |
6022342 | Mukherjee | Feb 2000 | A |
6033402 | Tu et al. | Mar 2000 | A |
6036715 | Yock | Mar 2000 | A |
6056743 | Ellis et al. | May 2000 | A |
6066130 | Gregory et al. | May 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6231563 | White et al. | May 2001 | B1 |
6287297 | Woodruff et al. | Sep 2001 | B1 |
6290668 | Gregory et al. | Sep 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6419684 | Heisler et al. | Jul 2002 | B1 |
6432115 | Mollenauer et al. | Aug 2002 | B1 |
6447504 | Ben-Haim et al. | Sep 2002 | B1 |
6447525 | Follmer et al. | Sep 2002 | B2 |
6458098 | Kanesaka | Oct 2002 | B1 |
6575993 | Yock | Jun 2003 | B1 |
6743208 | Coyle | Jun 2004 | B1 |
7238178 | Maschke | Jul 2007 | B2 |
8016748 | Mourlas et al. | Sep 2011 | B2 |
20010014805 | Burbank et al. | Aug 2001 | A1 |
20020045811 | Kittrell et al. | Apr 2002 | A1 |
20020103459 | Sparks et al. | Aug 2002 | A1 |
20030032936 | Lederman | Feb 2003 | A1 |
20030078566 | Elliott et al. | Apr 2003 | A1 |
20030219202 | Loeb et al. | Nov 2003 | A1 |
20040059280 | Makower et al. | Mar 2004 | A1 |
20040133154 | Flaherty et al. | Jul 2004 | A1 |
20040162548 | Reiser | Aug 2004 | A1 |
20050149176 | Heggestuen et al. | Jul 2005 | A1 |
20060094930 | Sparks et al. | May 2006 | A1 |
20060167442 | Hebert et al. | Jul 2006 | A1 |
20080108867 | Zhou | May 2008 | A1 |
20090163900 | Taylor et al. | Jun 2009 | A1 |
20090198221 | Hebert et al. | Aug 2009 | A1 |
20100114081 | Keeler et al. | May 2010 | A1 |
20100152717 | Keeler | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
2208807 | Apr 1989 | GB |
WO 9819614 | May 1998 | WO |
Entry |
---|
International Search Report for International (PCT) Patent Application No. PCT/US05/33029, mailed Oct. 3, 2006, 1 page. |
Extended European Search Report for European Patent Application No. 05796879.4, dated Mar. 6, 2008, 7 pages. |
Extended European Search Report for European Patent Application No. 08010688.3, dated Feb. 17, 2009, 6 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2009/066133, mailed Jun. 30, 2011, 8 pages. |
Grundfest, Warren S., MD, et al., “Laser Ablation of Human Atherosclerotic Plaque Without Adjacent Tissue Injury,” JACC vol. 5, No. 4, pp. 929-933, Apr. 1985. |
PCT International Search Report and Written Opinion mailed Jan. 26, 2010; International Application No. PCT/US2009/066133; 9 pages. |
Official Action for U.S. Appl. No. 11/228,845, mailed Sep. 3, 2008. |
Official Action for U.S. Appl. No. 11/228,845, mailed Jan. 12, 2009. |
Notice of Allowance for U.S. Appl. No. 11/228,845, mailed Jun. 5, 2009. |
Notice of Allowance for U.S. Appl. No. 12/406,807, mailed Aug. 2, 2010. |
Official Action for U.S. Appl. No. 12/337,232, mailed Mar. 23, 2012. |
Official Action for U.S. Appl. No. 12/337,232, mailed Sep. 13, 2012 10 pages. |
Number | Date | Country | |
---|---|---|---|
20110009750 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
60611191 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12337232 | Dec 2008 | US |
Child | 12649759 | US | |
Parent | 11228845 | Sep 2005 | US |
Child | 12337232 | US |