This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). <br/><br/>Fast-charging, high-temperature and sustainable batteries are critical for the applications of energy storage devices in stationary energy storage, well drilling industry, and high temperature regions. This project focuses on developing advanced organic materials, electrodes, and electrolytes for organic rechargeable potassium batteries under fast-charging and high-temperature conditions. This set of materials represents a “beyond lithium” chemistry for energy storage applications for grid-scale storage integrated with intermittent renewable energy such as solar or wind. The materials, including the organic polymers, organic electrolytes, and potassium salts, are plentiful domestically and have a lower environmental footprint. The fundamental research program and complementary educational activities include interrelated components: 1) principles of organic material, electrolyte, and interphase structure design for organic batteries and extreme conditions; 2) integrated educational activities involving middle school, high school, undergraduate and graduate students with an emphasis on groups historically underrepresented in science and engineering. <br/><br/>The objectives of this project are to develop organic rechargeable potassium batteries (RPBs) as alternatives to Li-ion batteries and to seek fundamental understanding of 1) the correlation between organic structure and electrochemical performance in RPBs; 2) the impact of highly conductive one-dimensional (1D)/two-dimensional (2D) carbon materials such as carbon nanotube and graphene to the ion/electron transport and structural integrity of organic electrodes; and 3) the impact of solid electrolyte interphase structure, composition and stability to the battery cycle life. Extensive structural characterizations will be performed to investigate reaction mechanisms of organic electrode materials in RPBs, the interplay between 1D/2D carbon materials and organic electrode materials by π-π interaction and heteroatom effect, as well as the interfacial chemistry of organic electrodes in RPBs. This project will afford structure design principles for organic materials, electrodes, and interphase to enable rational structure design and performance optimization of fast-charging, high-temperature, and sustainable batteries.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.