The present invention relates to a cargo carrier and more particularly, to hitch mounted type cargo carrier that includes a hinge mechanism for pivoting and supporting the carrier in position behind a vehicle.
Cargo carrier equipment may include various configurations of rail members, arms, and fasteners designed to assist a user to stabilize cargo such as a bicycle on a vehicle for storage or transport. Conventional cargo carrier equipment can be roof mounted, strap mounted or hitch mounted to the vehicle. These carriers include various fastening systems to secure the carrier to the vehicle.
A disadvantage of hitch mounted carriers, however, is that they are generally bulky and take up a lot of space of the rear portion of the vehicle. Additionally, many of these carriers provide insufficient support to the cargo, such as a bicycle, which may require several points of contact for a secured attachment. Additionally, hitch mounted carriers for multiple bicycles take up a large relative amount of space that is undesirable for the user when the carriers are not being utilized to transport or store bicycles.
The hitch-mounted carriers that extend from the rear of a vehicle, however, often result in making the vehicle more difficult to park, maneuver, and the like. This may result in the carriers needing to either be moved or removed from the vehicle in order to park, effectively maneuver the vehicle, or access trunk space or rear cargo. This, however, can be time consuming and may require the carrier to be stored, which may not be feasible and is not likely preferred.
Current hitch-mounted carriers often are limited as they may not be configured to be pivoted between an in use position and a storage position. There are known bike carriers that are configured with vertical mast frames configured in an upright position that may be tilted between a support position and a loading position such as known by U.S. Pat. No. 5,529,231 to Burgess and U.S. Pat. No. 6,644,525 to Allen. However, these vertical mast type bike carriers support the bikes from a top portion of the bike frame in which the bikes are susceptible to increased damage during transport and tilting of the carrier frames. In these instances, mounted bikes may impact one another as the carrier frames are tilted.
Alternatively, some cargo management systems are capable of being re-positioned while remaining secured to the vehicle. These systems, however, often require the user to go between the cargo management system and the vehicle to re-position the cargo management system, which is often difficult to do. Further, these systems are often very difficult to re-position, require more than one person to re-position, or require the removal of the system from the vehicle before being re-positioned.
Further, various platform type cargo and bike carriers may be provided that include hinge mechanisms that may rattle or are too cumbersome to pivot or rotate with bikes positioned thereon.
Previously known bike carriers suffer from disadvantages that make it inconvenient for a user to transport, store, and pivot at least one bicycle onto them. Therefore, there is a need for a cargo carrier that is capable of transporting and storing cargo that is easy to configure in a more compact position during non-use and to allow access to a rear of the vehicle without further risking damage to the cargo. In view thereof, there exists a need for a hitch-mounted carrier of such design that it affords a solution that overcomes the disadvantages of previously known carriers.
The present disclosure includes a bike carrier assembly with a hinge mechanism attachable to the rear of a vehicle. The assembly includes a hitch bar to connect to the vehicle and a carrier member to support at least one bike thereon. A hinge mechanism is attached to the hitch bar and carrier member and includes a bracket with a contoured path to receive a pin attached to the carrier member to allow the carrier member to be pivoted between an upward position, a straight position, and a lower position. A fulcrum bracket may be rotatably attached to the hitch bar and the carrier member to support the carrier member as it is rotating and positioned in place. In one embodiment, the pin may include a locking feature such as a spring loaded feature to assist with locking the carrier member in position along the contoured path.
Additionally, the bike carrier may attach to a hitch receiver, which is attached to an associated vehicle. The hitch receiver often attaches to the frame of the vehicle and may extend immediately below the bumper of the vehicle from the rear thereof. The bike carrier may be attached to a hinge mechanism that includes a draw bar that can be selectively attached to the hitch receiver and secured to the vehicle. The hinge mechanism may be configured to tilt the bike carrier from an in-use position to a storage position.
In another embodiment, the bike carrier can include a support arm that supports additional bike carriers in a generally scalable arrangement such that a plurality of bike carriers can extend from the hinge mechanism and tilt from the in-use position into the storage position.
The present disclosure includes a hinge mechanism for a cargo accessory as shown and described. The hinge mechanism may include a linkage selectively attachable to a vehicle, and a cargo accessory carrying member pivotally attached to the linkage, where the cargo accessory carrying member is pivotable between a straight position, an upward position, and a drop position. The hinge mechanism may also include a guide member and guide apertures wherein the guide member may be selectively positioned within the guide apertures permitting pivoting of the cargo accessory carrying member relative to the linkage.
The operation of the invention may be better understood by reference to the following detailed description taken in connection with the following illustrations, wherein:
Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. It is to be understood that other embodiments may be utilized and structural and functional changes may be made. Moreover, features of the various embodiments may be combined or altered. As such, the following description is presented by way of illustration only and should not limit in any way the various alternatives and modifications that may be made to the illustrated embodiments.
Here, the cargo carrier 10 may be attached to a hitch receiver that may be secured to a rear portion of a vehicle in any appropriate manner. In these embodiments, the cargo carrier 10 may include a draw bar 20 that may be capable of selectively attaching to the hitch receiver of the vehicle at any appropriate position such that the cargo carrier 10 may extend from the rear of the vehicle.
The draw bar 20 of the cargo carrier 10 may be capable of selectively engaging the hitch receiver in any appropriate manner. By way of a non-limiting example, the draw bar 20 may include at least one aperture that may be capable of generally aligning with a pin accepting aperture of the hitch receiver upon insertion of the draw bar 20 into the hitch receiver. Upon such insertion a hitch pin may be inserted into and through the hitch receiver pin accepting aperture and through the aperture, which may selectively secure the cargo carrier 10 with the hitch receiver. These configurations are exemplary embodiments and not all-inclusive nor exclusive. Any appropriate hitching system, mechanism or other means of attachment to the vehicle may be used without departing from the present teachings.
As illustrated by
The hinge mechanism 30 may be attached to the draw bar 20 and pivotally attached to a carrier member such as a tubular member 40. The carrier member 40 may extend from the hinge mechanism 30 and attach to the cargo 12 in any appropriate manner. The hinge mechanism 30 may include a linkage device 50, at least one pivot arm 60, and a guide member 70. The carrier member 40 may include a distal end 42 and a proximal end 44 wherein the distal end 42 may be attached to the hinge mechanism 30 and the proximal end 44 extends away from the hinge mechanism 30.
The distal end 42 of the carrier member 40 may be operatively secured to the linkage device 50. The linkage device 50 may be operatively secured to the carrier member 40 in any appropriate manner and may be secured with the draw bar 30 in any appropriate manner. In a non-limiting example, the linkage device 50 may include first and second plates 52, 54 spaced from one another—the first and second plates 52, 54 may extend generally parallel one another. The carrier member 40 may be pivotally secured between the first and second plates, 52, 54 in any appropriate manner. The first and second plates 52, 54 may also be attached to the draw bar 20 such as through using fasteners, welds or other appropriate manner to fixedly secure the linkage device 50 with the draw bar 20.
In some embodiments, the first and second plates 52, 54 may be secured to the carrier member 40 such that the first and second plates 52, 54 are positioned substantially parallel to each other. See
Further, a first pivot arm 60 may be attached to the carrier member 40 at a first pivot point 62. More specifically, the first pivot arm 60 may be pivotally attached to carrier member 40 at the first pivot point 62 and be pivotally attached to the draw bar 20 at a second pivot point 64. Alternatively, the second pivot point 64 could also be located on the linkage device 50 depending on the geometric configuration. The pivot arm 60 may provide structural support to the carrier member 40 as the carrier member 40 is pivoted relative to the hinge mechanism 30 or draw bar 20. The pivot arm 60 may allow the carrier member 40 to pivot relative to the first and second plates 52, 54. In some embodiments, the pivot arm 60 may include a fastener that may extend through the carrier member 40 to create the first pivot point 62 and a fastener that may extend through the draw bar 20 to create the second pivot point 64. This configuration may allow the carrier member 40 to pivot in a guided manner relative to the first and second plates 52, 54. Optionally, a second pivot arm may be provided along an opposite side of the carrier member 40 as the first pivot arm 60 wherein the first pivot arm 60 and the second pivot arm may be connected to one another with a bracket 69 (see
The hinge mechanism 30 may further include a guide member 70. The guide member 70 may be an elongated pin or other member that protrudes from the sides of the carrier member 40. By way of a non-limiting example, the guide member 70 may be moveably engaged with the linkage device 50 and more specifically may be moveably engaged with the first and second plates 52, 54. For example, the guide member 70 may extend through the carrier member 40 as well as guide apertures 56, 58 that are formed within the first and second plates, 52, 54, respectively.
The guide apertures 56, 58 may be slots formed in a particular configuration to allow the guide member 70 to be moved to various positioned along the slots as the carrier member 40 is pivoted between various positions as desired. The guide apertures 56, 58 may be elongated in shape and include a width that may allow the guide member 70 to slide within the guide apertures. The guide apertures 56 may be integrally formed in the first and second plates 52, 54 or alternatively may be formed therein through a subsequent operation, such as machining. The guide apertures 56, 58 may be of any appropriate shape and size. The guide apertures 56, 58 may include a straight position groove 72, an unlock position groove 74, a drop position groove 76, a rotational groove 78, and an upward position groove 80. These various groove shapes may be a generally continuous shape within the guide apertures 56 along each of the first and second plates 52, 54, respectively. A protrusion 73 may extend between the straight position groove 72 and the unlock position groove 74 to allow the guide member 70 and carrier member 40 to be maintained in the straight position. The shape of the contoured surfaces 68 of the pivot arms 60 and the contoured surface 86 of the linkage device 50 as well as the shape of the guide apertures 56, may provide the pivotal range of motion or freedom of movement that allows for mechanical advantage as the carrier member 40 is pivoted relative to the draw bar 20. The nested configuration of the pivot arms 60 and linkage device 50, and distance between the guide member 70 and pivot points 62, 64, may allow for stable movement that reduces wobbling or vibrations during pivoting motion.
In some embodiments, the guide apertures 56 may be of a shape and size such that the guide member 70 may be positioned therethrough. Still further, in some embodiments, the guide apertures 56, 58 may be of generally a same size as one another. In other embodiments, at least one of, the guide apertures 56 may be of a generally different size. The present teachings are not limited to such, but include any combination of approaches disclosed or to any appropriate configuration. While the guide apertures 56, 58 are shown in both the first and second plates 52, 54 the present teachings are not limited to such. In some embodiments only one of the first or second plates 52, 54 may include the guide aperture 56. In other embodiments the guide apertures may be a slot or slots formed within an interior surface of the plates 52, 54 in which the guide member 70 moveable engages therein.
The linkage device 50 may include the guide member 70 as noted above. The guide member 70 may extend through the first and second plates 52, 54 and through the carrier member 40. The guide member 70 may be selectively positionable between the straight position groove 72, the unlock position groove 74, the drop position groove 76, the rotational groove 78, and the upward position groove 80. In a non-limiting example, a user may be able to manually manipulate the carrier member 40 to pivot the carrier member 40 between the straight position (
As illustrated by
As the carrier member 40 may be operatively secured with the guide member 70, the guide member 70 may be positioned from either of the straight position groove 72, the unlock position groove 74, the drop position groove 76, the rotational groove 78 and the upward position groove 80. Doing so may allow the pivot arm 60 of the hinge mechanism 30 to pivot around pivot points 62 and 64 between the generally straight position, the generally upward position, the drop position and back to the generally straight position. The pivoting motion may be completed manually with a user's support as the pivot arm 60 provides added mechanical advantage for a generally controlled pivoting motion. The guide member 70 being positioned in straight position groove 72 of the guide apertures 56 may generally lock the hinge mechanism 30 in the generally straight position whereas the guide member 70 being positioned in the drop position groove 76 may generally lock the hinge mechanism 30 in the drop position. Similarly, the guide member 70 being positioned in the upward position groove 80 may generally lock the hinge mechanism 30 in the upward position.
The hinge mechanism 30 may operate by translating the carrier member 40 to cause the guide member 70 to release from either of the straight position groove 72, the unlock position groove 74, the drop position groove 76, the rotational groove 78, and the upward position groove 80. By way of a non-limiting example, the cargo 12 may pivot from a substantially straight position to a substantially upward position or to a drop position. Notably, when in the drop position, a user may access the trunk portion of the vehicle with reduced interference from the bicycles or other cargo stored on the cargo assembly 10.
The guide member 70 pay be positioned at a fixed distance away from the first pivot point 62 along the carrier member 40. This may allow the pivoting action of the hinge mechanism 30 to be structurally stable and provide ease of use for a single person to pivot the cargo secured thereon.
The cargo accessory 10 depicted in
Further, as illustrated by
A receiving member 346 may be attached to the distal end 42 of the carrier member 40 such that the pin 340 may be received within the receiving member 346 to place the assembly in the locked configuration. In one non-limiting embodiment, the receiving member 346 may be a cylindrical shaped sleeve welded to a plate that is fastened to the distal end 42 of the tube member 40. The pin 340 may be positioned though the apertures 342, 344 and the receiving member 346 to place the hinge mechanism in the locked configuration as the receiving member 346 is aligned with the respective apertures 342, 344. The receiving member 346 may be positioned within the hinge mechanism 30 and be between the plates 52, 54. A cover plate 348, as illustrated by
Although the present embodiments have been illustrated in the accompanying drawings and described in the foregoing detailed description, it is to be understood that the bike carrier is not to be limited to just the embodiments disclosed, but that the bike carrier described herein is capable of numerous rearrangements, modifications and substitutions. The exemplary embodiment has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiment be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims the benefit from Provisional Patent Application No. 62/336,909 entitled “CARGO CARRIER ASSEMBLY WITH HINGE MECHANISM” filed on May 16, 2016 and is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3240406 | Logan | Mar 1966 | A |
3529737 | Daugherty | Sep 1970 | A |
3951434 | Sause | Apr 1976 | A |
4084736 | Jacobs | Apr 1978 | A |
4575112 | Tremblay | Mar 1986 | A |
4702401 | Graber | Oct 1987 | A |
4844497 | Allen | Jul 1989 | A |
4875608 | Graber | Oct 1989 | A |
4991865 | Francisco | Feb 1991 | A |
5011176 | Eppinette | Apr 1991 | A |
5067742 | Relja | Nov 1991 | A |
5100349 | Perkins | Mar 1992 | A |
5288095 | Swindall | Feb 1994 | A |
5303857 | Hewson | Apr 1994 | A |
5322315 | Carsten | Jun 1994 | A |
5445300 | Eipper | Aug 1995 | A |
5527055 | Breslin | Jun 1996 | A |
5529231 | Burgess | Jun 1996 | A |
5570825 | Cona | Nov 1996 | A |
5624129 | Clark | Apr 1997 | A |
5658119 | Allsop | Aug 1997 | A |
5685686 | Burns | Nov 1997 | A |
5730345 | Yeckley | Mar 1998 | A |
5820002 | Allen | Oct 1998 | A |
6047869 | Chiu | Apr 2000 | A |
6053336 | Reeves | Apr 2000 | A |
6068281 | Szczypski | May 2000 | A |
6170852 | Kimbrough | Jan 2001 | B1 |
6244483 | Mclemore | Jun 2001 | B1 |
6439397 | Reeves | Aug 2002 | B1 |
6491195 | McLemore | Dec 2002 | B1 |
6523731 | Pedrini | Feb 2003 | B1 |
6644525 | Allen | Nov 2003 | B1 |
6655562 | Jeong | Dec 2003 | B2 |
6736301 | Huang | May 2004 | B1 |
6752303 | Mclemore | Jun 2004 | B2 |
6761297 | Pedrini | Jul 2004 | B1 |
6789815 | Moss | Sep 2004 | B2 |
6968986 | Lloyd | Nov 2005 | B1 |
7108140 | Whitnall | Sep 2006 | B2 |
7240816 | Tsai | Jul 2007 | B2 |
7658569 | De Oliveira | Feb 2010 | B2 |
7703804 | Cymbal | Apr 2010 | B2 |
7815083 | Clausen | Oct 2010 | B2 |
7832607 | Clausen | Nov 2010 | B2 |
20060029483 | Allen | Feb 2006 | A1 |
20110011909 | Liu | Jan 2011 | A1 |
20150021371 | Ward | Jan 2015 | A1 |
20150217703 | Deming | Aug 2015 | A1 |
20160068110 | Prescott | Mar 2016 | A1 |
20160068111 | Walker | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
0943495 | Sep 1999 | EP |
2425997 | Nov 2006 | GB |
Entry |
---|
International Searching Authority—European Patent Office, International Search Report and Written Opinion of International application No. PCT/US2017/032903, dated Jul. 6, 2017, 13pp. |
International Searching Authority—European Patent Office, International Search Report and Written Opinion of International application No. PCT/US2015/048874, dated Feb. 9, 2016, 15pp. |
Number | Date | Country | |
---|---|---|---|
20170327053 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62336909 | May 2016 | US |