This invention relates generally to cargo management systems for automotive vehicles having trim panels such as cargo trim panels.
Some plastic automotive parts are covered with wood trim after they are molded. Sometimes such plastic parts are composite plastic parts wherein an outer layer of the part is in-molded with a structural substrate of the part.
One practice in the automotive industry is utilization of all-plastic, fabricated parts, such as, but not limited to, instrument panels, interior trims, and door panels. It is known in other automotive parts areas that different, aesthetically pleasing outer surfaces enhance the overall appearance of the interior of automotive vehicles. Use of decorative appliques having wood grain finishes is often sought after.
Wood grain finishes are typically in the form of either simulated wood grain or genuine wood grain. The simulated wood grain finish may be achieved in one of several known manners: 1) backing a pre-printed film by a thin layer of a thermoplastic, such as polycarbonate; ABS (acrylonitrile/butadiene/styrene), or aluminum, followed by vacuum-forming to obtain the desired shape of the trim; 2) applying a lithograph on an aluminum sheet; and 3) dipping a substrate into a container of ink defining the wood grain appearance. Simulated wood grain finishes, however, are generally not as attractive as genuine wood grain finishes.
Genuine wood grain finishes may also be obtained in one of several known manners: 1) staining, sealing and protecting preformed laminates of wood having varying thicknesses which are then attached to a substrate via stapling, gluing, or any other similar attachment manner; 2) laminating an aluminum sheet with the genuine wood which is then welded or screwed onto a plastic part; and 3) adhesively bonding a thin laminate of wood to a pre-processed plastic substrate which is then stained and covered with a protective top-coat. Although the appearance of genuine wood is more attractive than simulated wood, the use of genuine wood is more expensive than that of simulated wood.
U.S. Pat. No. 5,423,933 discloses a method of producing a plastic-wood composite having the appearance of coated genuine wood. U.S. Pat. No. 5,744,210 discloses a natural wood-covered plastic part for an automotive vehicle and a method of making the part. U.S. Pat. No. 5,750,160 discloses a method of making plastic products such as door panels using nickel shell door molds having an authentic, textured mold surface reproduction of original wood.
The following U.S. patent documents relate to cargo management systems and trim panels for automotive vehicles: U.S. Pat. Nos. 6,752,443; 6,800,325; 6,843,525; 6,905,155; 6,926,348; 6,945,594; 7,059,646; 7,090,274; 7,121,601; 7,188,881; 7,207,616; 7,222,915; 7,628,440; 7,909,379; 8,298,675; 8,475,884; 2004/0078929; 2006/0008609; 2006/0255611; 2007/0065264; 2007/0256379; 2008/0185866; 2009/0108639; 2010/0206467; 2011/0260359; 2012/0247654; 2013/0031752; 2013/0075955; and 2013/0137798.
The following recent U.S. published applications are also related to the present application: 2013/0278002; 2013/0278003; 2013/0278007; 2013/0278008; 2013/0278009; 2013/0278015; 2013/0278018; 2013/0278019; 2013/0278020; 2013/0280459; 2013/0280472; and 2013/0280473.
Compression molding is a method of molding in which the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured. The process may employ thermosetting resins in a partially cured stage, either in the form of granules, putty-like masses, or preforms. Compression molding is a high-volume, high-pressure method suitable for molding complex, high-strength fiberglass reinforcements. Advanced composite thermoplastics can also be compression molded with unidirectional tapes, woven fabrics, randomly oriented fiber mat or chopped strand. The advantage of compression molding is its ability to mold large, fairly intricate parts. Also, it is one of the lowest cost molding methods compared with other methods such as transfer molding and injection molding; moreover it wastes relatively little material, giving it an advantage when working with expensive compounds.
An object of at least one embodiment of the present invention is to provide a cargo management system including a vehicle load floor and a pair of opposing cargo trim panels, each of which is press molded and each of which has a wood grain finish.
In carrying out the above object and other objects of at least one embodiment of the present invention, a cargo management system including a vehicle load floor and a pair of opposing cargo trim panels supported above the load floor at opposite sides of the load floor within the interior of the vehicle is provided. The system includes a vehicle load floor to compartmentalize a cargo area into an upper compartment and a covered lower compartment. The load floor has a wood grain finish. A pair of compression-molded, composite cargo trim panels are supported above the vehicle load floor at opposite sides of the load floor within the interior of the vehicle to at least partially define the upper compartment of the cargo area. Each panel includes a base layer and a coverstock sheet bonded to the base layer by press molding. Each coverstock sheet provides its respective trim panel with a wood grain finish in the upper compartment of the cargo area.
Each coverstock sheet may include a natural wood layer.
The wood grain finish of each coverstock sheet may be simulated.
Each coverstock sheet may have a textured, real-wood surface appearance.
Each coverstock sheet may include a synthetic resin layer.
Each coverstock sheet may include a simulated real-wood layer.
The base layer may be a fiber-reinforced polymeric material.
The material may be sheet molding compound (SMC).
Each of the cargo trim panels may include a curved portion adjacent a lateral edge portion of the load floor. At least one of the trim panels may include a handle so that the at least one trim panel is movable between open and closed positions.
Further in carrying out the above object and other objects of at least one embodiment of the present invention, a cargo management system including a vehicle load floor and pairs of opposing cargo trim panels supported above the load floor at opposite sides of the load floor within the interior of the vehicle is provided. The system includes a vehicle load floor to compartmentalize a cargo area into an upper compartment and a covered lower compartment. The load floor has a wood grain finish. First and second pairs of compression-molded, composite cargo trim panels are supported above the vehicle load floor at opposite sides of the load floor within the interior of the vehicle to at least partially define the upper compartment of the cargo area. Each panel includes a base layer and a coverstock sheet bonded to the base layer by press molding. Each coverstock sheet provides its respective trim panel with a wood grain finish in the upper compartment of the cargo area.
Each coverstock sheet may include a natural wood layer.
The wood grain finish of each coverstock sheet may be simulated.
Each coverstock sheet may have a textured, real-wood surface appearance.
Each coverstock sheet may include a synthetic resin layer.
Each coverstock sheet may include a simulated real-wood layer.
The base layer may be a fiber-reinforced polymeric material. The material may be sheet molding compound (SMC).
Each of the cargo trim panels may include a curved portion adjacent a lateral edge portion of the load floor.
At least one of the trim panels may include a handle so that the at least one trim panel is movable between open and closed positions.
Still further in carrying out the above object and other objects of at least one embodiment of the present invention, a cargo management system including a vehicle load floor and a pair of opposing cargo trim panel supported above the load floor at opposite sides of the load floor within the interior of the vehicle is provided. The system includes a vehicle load floor to compartmentalize a cargo area into an upper compartment and a covered lower compartment. The load floor has a wood grain finish. A pair of compression-molded, composite cargo trim panels are supported above the vehicle load floor at opposite sides of the load floor within the interior of the vehicle to at least partially define the upper compartment of the cargo area. Each panel includes a base layer and a coverstock sheet bonded to the base layer by press molding. Each coverstock sheet provides its respective trim panel with a wood grain finish in the upper compartment of the cargo area. A cargo trim panel is secured to a backrest of a seat of the vehicle. The trim panel secured to the backrest has a wood grain finish.
Other technical advantages will be readily apparent to one skilled in the art from the following figures, descriptions and claims. Moreover, while specific advantages have been enumerated, various embodiments may include all, some or none of the enumerated advantages.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to
A part of the load floor 14 includes a hinged cover, generally indicated at 34, which has a handle 15 to allow a user to hingedly move the cover 34 between open and closed positions as described in many of the above-mentioned, recently published U.S. patent applications. For example, a living hinge may be provided between the cover 34 and the rest of the load floor 14 to allow a user to open the cover 34 and access the lower compartment of the cargo area.
Referring now to
Each of the skins 20 and 22 may be fiber reinforced. The thermoplastic of the skins 20 and 22 and the core 24 may be polypropylene. At least one of the skins 20 and 22 may be woven skin, such as a polypropylene skin. Each of the skins 20 and 22 may be reinforced with fibers, e.g., glass fibers, carbon fibers or natural fibers. At least one of the skins 20 and 22 may advantageously be made up of woven glass fiber fabric and of a thermoplastics material.
The cellular core 24 may be a honeycomb core. In this example, the cellular core 24 has an open-celled structure of the type made up of tubes or a honeycomb, and it is made mainly of polyolefin and preferably of polypropylene. It is also possible to use a cellular structure having closed cells of the foam type.
The hinged cover 34, as well as the rest of the load floor 14, is typically manufactured by providing a stack of material located or positioned within a compression mold. The stack typically includes the first and second reinforced thermoplastic skins or outer layers 20 and 22, respectively, and the thermoplastic cellular core 24 disposed between and bonded to the skins 20 and 22 by press molding. The skins 20 and 22 are heated typically outside of the mold to a softening temperature. The mold is preferably a low-pressure, compression mold having upper and lower mold halves which perform a thermo-compression process on the stack of materials together with a multi-layer coverstock sheet, generally indicated at 30. In the molding process, the sheet 30 is bonded to the top surface 28 of the outer layer 20. The sheet 30 has a substantially planar upper support surface 32 to support cargo in the upper compartment of the cargo area. A pattern layer 38 of the sheet 30 provides the load floor 14 with the wood grain finish 16 shown in
As shown in
The multi-layer sheet 30 may be similar to an engineered wood floor. An engineered wood floor oftentimes includes two or more layers of wood. The pattern layer 38 typically is the wood that is visible to provide the wood grain finish. A veneer sheet uses a thin layer of wood.
Alternatively, instead of an engineered wood sheet, a laminate or vinyl (i.e. vinyl chloride) sheet may be used. A laminate sheet uses an image of wood at the surface of the pattern layer 38. A vinyl sheet is plastic formed as look like wood. A laminate sheet is a multi-layer synthetic sheet formed together in a lamination process. A laminate sheet simulates wood with an applique layer as the pattern layer 38 under a clear protective layer such as the wear layer 36. An inner core layer serves as the substrate layer 40. The inner core layer may be composed of melamine resin and fiber board materials.
An advantage of an engineered wood, laminate or vinyl sheet utilized as the coverstock sheet 30 is that periodic maintenance is minimized. An all-wood coverstock sheet finished in varnish requires periodic recoating. Also, bolts and screws require periodic tightening as wood expands and contracts through the seasons of the year.
Also, other advantages of engineered wood laminate or vinyl sheets is lower cost and a more durable surface provided by the wear layer 36. Also, engineered wood laminate or vinyl sheets accommodate design variations not always possible with solid wood sheets. Finally, engineered wood, vinyl and laminate sheets can be formed with a compression-molded composite panel, such as the panel 18, in a single compression or press molding operation as shown in
Referring again to
The load floor 14 may also have hooks 45 or tie-down loops fixedly secured to and extending above the top surface of the load floor 14.
In one example method of making the load floor 14, a stack of material may be pressed in the low pressure, cold-forming mold after the stack or layers of material are placed in the mold. The stack is made up of the first skin 20, the cellular core 24, the second skin 22 and the covering or sheet 30, and is pressed at a pressure lying in the range of 10×105 Pa. to 30×105 Pa. The first and second skins 20 and 24 (as well as some of the other layers such as the binder layer 42) are preferably pre-heated to make them malleable and stretchable. Advantageously, in order to soften the first and second skins 20 and 24, respectively, heat is applied to a pre-assembly constituted by the stack made up of at least the first skin 20, the cellular core 24, and the second skin 22 so that, while the panel 18 is being formed in the mold, the first and second skins 20 and 24 have a forming temperature lying approximately in the range of 160° C. to 200° C., and, in this example, about 180° C. Finally, after curing and cooling, the mold halves are separated to remove the part.
Referring again to
Each cargo trim panel 50 or 50′ comprises a compression-molded, composite cargo trim panel secured to the backrest 48 and facing the upper compartment of the cargo area above the load floor 14 in an upright sitting position of the backrest 48. As shown in
The layer 54′ may be a synthetic resin layer molded to have the wood grain finish 51 after the application of a varnish/stain coating or layer 56′ and a clear coat or wear layer 58′. The layer 54 may be a natural wood layer with a varnish/stain layer 56 and a clear coat or wear layer 58 to provide the wood grain finish 51. The layers 53 and 53′ may be porous, fibrous layers including an adhesive and possibly a catalyst to bond the layers 52 and 54 together and the layers 52′ and 55′ together, respectively. The base layers 52 and 52′ may be made of a fiber-reinforced polymeric material such as sheet molding component (SMC). SMC is a ready-to-mold, glass-fibre reinforced polyester material often used in compression molding.
The cargo trim panel 50 or 50′ may be molded in a mold similar to the mold 95 of
As described above, in this way the coverstock sheet may have either simulated wood grain finish or a natural or genuine wood grain finish.
As shown in
Still referring to
In the example of
The system 12 may also include panels 80 also having wood grain finishes 82 at the rear of vehicle 10 to further contribute to the overall look and feel of the system 12.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 13/523,209 filed Jun. 14, 2012, which, in turn, is a continuation-in-part of U.S. application Ser. No. 13/453,201 filed Apr. 23, 2012. This application is also related to U.S. applications entitled “Cargo Management System Including a Vehicle Load Floor Made By a Composite, Compression Molding Process and Having a Wood Grain Finish” and “Cargo Management System Including an Automotive Vehicle Seat Having a Cargo Trim Panel Made By a Composite, Compression Molding Process and Having a Wood Grain Finish” both filed on the same day as this application.
Number | Name | Date | Kind |
---|---|---|---|
3651563 | Volkmann | Mar 1972 | A |
3750525 | Waters et al. | Aug 1973 | A |
4717612 | Shackelford | Jan 1988 | A |
4941785 | Witten | Jul 1990 | A |
5298694 | Thompson et al. | Mar 1994 | A |
5316604 | Fell | May 1994 | A |
5417179 | Niemier et al. | May 1995 | A |
5423933 | Horian | Jun 1995 | A |
5474008 | Vespoli et al. | Dec 1995 | A |
5502930 | Burkette et al. | Apr 1996 | A |
5700050 | Gonas | Dec 1997 | A |
5915445 | Rauenbusch | Jun 1999 | A |
5928735 | Padmanabhan et al. | Jul 1999 | A |
5979962 | Balentin et al. | Nov 1999 | A |
6050630 | Hochet | Apr 2000 | A |
6102464 | Schneider et al. | Aug 2000 | A |
6435577 | Renault | Aug 2002 | B1 |
6537413 | Hochet et al. | Mar 2003 | B1 |
6631785 | Khambete et al. | Oct 2003 | B2 |
6655299 | Preisler et al. | Dec 2003 | B2 |
6659223 | Allison et al. | Dec 2003 | B2 |
6682675 | Vandangeot et al. | Jan 2004 | B1 |
6682676 | Renault et al. | Jan 2004 | B1 |
6720058 | Weeks et al. | Apr 2004 | B1 |
6748876 | Preisler et al. | Jun 2004 | B2 |
6752443 | Thompson et al. | Jun 2004 | B1 |
6790026 | Vandangeot et al. | Sep 2004 | B2 |
6793747 | North et al. | Sep 2004 | B2 |
6800325 | Ehrath et al. | Oct 2004 | B2 |
6823803 | Preisler | Nov 2004 | B2 |
6843525 | Preisler | Jan 2005 | B2 |
6890023 | Preisler et al. | May 2005 | B2 |
6905155 | Presley et al. | Jun 2005 | B1 |
6918625 | Storto et al. | Jul 2005 | B2 |
6926348 | Krueger et al. | Aug 2005 | B2 |
6945594 | Bejin et al. | Sep 2005 | B1 |
6981863 | Renault et al. | Jan 2006 | B2 |
7014259 | Heholt | Mar 2006 | B2 |
7059646 | DeLong et al. | Jun 2006 | B1 |
7090274 | Khan et al. | Aug 2006 | B1 |
7093879 | Putt et al. | Aug 2006 | B2 |
7121601 | Mulvihill et al. | Oct 2006 | B2 |
7188881 | Sturt et al. | Mar 2007 | B1 |
7207616 | Sturt | Apr 2007 | B2 |
7222915 | Philippot et al. | May 2007 | B2 |
7264685 | Katz et al. | Sep 2007 | B2 |
7320739 | Thompson, Jr. et al. | Jan 2008 | B2 |
7399515 | Thele | Jul 2008 | B1 |
7402537 | Lenda et al. | Jul 2008 | B1 |
7419713 | Wilkens et al. | Sep 2008 | B2 |
7628440 | Bernhardsson et al. | Dec 2009 | B2 |
7837009 | Gross et al. | Nov 2010 | B2 |
7909379 | Winget et al. | Mar 2011 | B2 |
7918313 | Gross et al. | Apr 2011 | B2 |
7919031 | Winget et al. | Apr 2011 | B2 |
8062762 | Stalter | Nov 2011 | B2 |
8117972 | Winget et al. | Feb 2012 | B2 |
8262968 | Smith et al. | Sep 2012 | B2 |
8298675 | Alessandro et al. | Oct 2012 | B2 |
8475884 | Kia | Jul 2013 | B2 |
8622456 | Preisler et al. | Jan 2014 | B2 |
8690233 | Preisler et al. | Apr 2014 | B2 |
20040037995 | Nicolai et al. | Feb 2004 | A1 |
20040078929 | Schoemann | Apr 2004 | A1 |
20050189674 | Hochet et al. | Sep 2005 | A1 |
20060008609 | Snyder et al. | Jan 2006 | A1 |
20060255611 | Smith et al. | Nov 2006 | A1 |
20070065264 | Sturt et al. | Mar 2007 | A1 |
20070256379 | Edwards | Nov 2007 | A1 |
20080105866 | Jeong et al. | May 2008 | A1 |
20080145635 | Stoll et al. | Jun 2008 | A1 |
20080193256 | Neri | Aug 2008 | A1 |
20090108639 | Sturt et al. | Apr 2009 | A1 |
20100026031 | Jouraku | Feb 2010 | A1 |
20100060038 | Takakura et al. | Mar 2010 | A1 |
20100206476 | Motoki et al. | Aug 2010 | A1 |
20110260359 | Durand et al. | Oct 2011 | A1 |
20110315310 | Trevisan et al. | Dec 2011 | A1 |
20120247654 | Piccin et al. | Oct 2012 | A1 |
20130031752 | Davies | Feb 2013 | A1 |
20130075955 | Piccin et al. | Mar 2013 | A1 |
20130137798 | Piccin | May 2013 | A1 |
20130278002 | Preisler et al. | Oct 2013 | A1 |
20130278003 | Preisler et al. | Oct 2013 | A1 |
20130278007 | Preisler et al. | Oct 2013 | A1 |
20130278008 | Preisler et al. | Oct 2013 | A1 |
20130278009 | Preisler et al. | Oct 2013 | A1 |
20130278015 | Preisler et al. | Oct 2013 | A1 |
20130278018 | Preisler et al. | Oct 2013 | A1 |
20130278019 | Preisler et al. | Oct 2013 | A1 |
20130278020 | Preisler et al. | Oct 2013 | A1 |
20130280459 | Nakashima et al. | Oct 2013 | A1 |
20130280469 | Preisler et al. | Oct 2013 | A1 |
20130280472 | Preisler et al. | Oct 2013 | A1 |
20130280473 | Preisler et al. | Oct 2013 | A1 |
20130312652 | Preisler et al. | Nov 2013 | A1 |
20130316123 | Preisler et al. | Nov 2013 | A1 |
20140077518 | Preisler et al. | Mar 2014 | A1 |
20140077530 | Preisler et al. | Mar 2014 | A1 |
20140077531 | Preisler et al. | Mar 2014 | A1 |
20140145465 | Preisler et al. | May 2014 | A1 |
20140145470 | Preisler et al. | May 2014 | A1 |
20140147617 | Preisler et al. | May 2014 | A1 |
20140147622 | Preisler et al. | May 2014 | A1 |
Entry |
---|
Office Action; Related U.S. Appl. No. 13/479,974; Date of mailing Oct. 15, 2014. |
Non-Final Office Action, related U.S. Appl. No. 13/762,879; dated Feb. 13, 2015. |
Non-Final Office Action, related U.S. Appl. No. 13/479,974; dated Feb. 13, 2015. |
Notice of Allowance and Fee(s) Due; related U.S. Appl. No. 13/603,552; dated Feb. 18, 2015. |
Office Action; related U.S. Appl. No. 13/479,974; date of mailing Mar. 20, 2014. |
Office Action; related U.S. Appl. No. 13/686,362; date of mailing Mar. 25, 2014. |
Office Action; related U.S. Appl. No. 13/523,253; date of mailing Mar. 25, 2014. |
Office Action; related U.S. Appl. No. 13/688,972; date of mailing Mar. 28, 2014. |
Office Action; related U.S. Appl. No. 13/687,232; date of mailing Mar. 28, 2014. |
Office Action; related U.S. Appl. No. 13/689,809; date of mailing Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/687,213; date of mailing Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/690,265; date of mailing Mar. 31, 2014. |
Office Action; related U.S. Appl. No. 13/762,904; date of mailing Apr. 8, 2014. |
Office Action; related U.S. Appl. No. 13/762,800; date of mailing Apr. 8, 2014. |
Office Action; related U.S. Appl. No. 13/762,861; date of mailing Apr. 9, 2014. |
Office Action; related U.S. Appl. No. 13/690,566; date of mailing Apr. 9, 2014. |
Office Action; related U.S. Appl. No. 13/762,832; date of mailing Apr. 11, 2014. |
Office Action; related U.S. Appl. No. 13/762,921; date of mailing Apr. 14, 2014. |
Notice of Allowance; related U.S. Appl. No. 13/686,388; date of mailing Apr. 15, 2014. |
Related U.S. Appl. No. 13/690,566, filed Nov. 30, 2012. |
Related U.S. Appl. No. 13/762,921, filed Feb. 8, 2013. |
Related U.S. Appl. No. 13/762,956, filed Feb. 8, 2013. |
Office Action; related U.S. Appl. No. 13/453,201 (now USPN 8,690,233); date of mailing Nov. 20, 2013. |
Office Action; related U.S. Appl. No. 13/523,209 (now USPN 8,622,456) date of mailing Apr. 29, 2013. |
Number | Date | Country | |
---|---|---|---|
20140077531 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13523209 | Jun 2012 | US |
Child | 14087591 | US | |
Parent | 13453201 | Apr 2012 | US |
Child | 13523209 | US |