The present invention is in the field of electromechanical devices designed to provide the means to intercept and terminate a terrorist's or renegade's use of cargo trailers (and like vehicles equipped with air brakes) for delivering explosive or hazardous materials to a potential target. A collateral benefit is its capability to deter theft of vehicles with air brakes. More particularly, the present invention is directed to a device or system that remotely locks the brakes of trailers, tractors, fuel tankers, and like vehicles (that are equipped with dual chamber air brakes) with a coded radio signal.
Cargo-trailers, tractors, fuel tankers and like vehicles are capable of being used to deliver hazardous material for terrorist attacks on vulnerable targets. These vehicles may have been stolen or rented under false pretenses. In the case of trailers and like equipment that do not have their own motive power (engines), compressed air for operating the brake system is supplied through a conduit from the tractor or truck that pulls the trailer. Such trailers and the like towed equipment, as well as many tractors and trucks, are usually equipped with a dual chamber brake system that operates in such a manner that the brakes are automatically locked if pressurized air becomes unavailable. In order to take such a trailer without authorization, that is to steal it when it is parked, the thief typically mates a tractor to the trailer and supplies pressurized air to the dual chamber brake system of the trailer. In other words, by hooking up the thief's tractor's or truck's air pressure conduit to the brake system of the trailer, the thief is able to release the brakes and Pull the trailer with the brakes operating normally. To this date and to the best knowledge of the present inventor, the state-of-the-art has attempted to prevent or discourage the theft of cargo-trailers by providing devices that make it difficult for an unauthorized person to access the trailer's hitch or “fifth wheel” or by providing a keyed cover (“glad hand” cover) that prevents attachment of a pressurized air conduit to the pressurized air inlet of the dual chamber air brake system of the trailer. Experience has shown however, that a determined thief circumvents these devices relatively easily.
Additional disclosures pertaining to brake systems, and to means for locking brake systems for various reasons and not necessarily for preventing theft are found in U.S. Pat. Nos. 3,597,016; 3,826,176; 4,007,815; 4,014,414; 4,014,579; 4,268,093; 4,273,388; 4,589,704; 4,685,744; 4,873,824; 5,402,866; Re. 32,885; Statutory Invention Registration Nos. H117 and H748. U.S. Pat. Nos. 4,354,536 and 6,076,385 include additional disclosures pertaining to some type of locking or latching mechanism.
Therefore, there is still a serious need in the art for a device or system that renders the dual chamber air brake system of a trailer (or of a tractor) non-operational for unauthorized users. The present invention provides such a system. In addition there is a serious need in the art for means that enables law enforcement and the like to remotely stop a renegade vehicle which is suspected of being loaded with hazardous material on route to a target. The present invention provides such means.
It is an object of the present invention to provide a secure and difficult to circumvent remote braking and/or brake locking device for trailers, tractors, or other vehicles equipped with dual chamber air brake systems, which can be initiated (and released) only by an authorized organization or individual.
It is another object of the invention to provide means for remotely stopping a trailer, tractor, or other vehicle equipped with dual chamber air brake system by using a coded signal which is available only to law enforcement agencies or authorized organizations or individuals.
It is still another object of the present invention to provide the locking device that meets the above-noted objective, and which operates within the interior of the dual chamber air brake system, thereby making it more difficult and time consuming to disassemble or inactivate the locking device and make unauthorized use of the trailer, tractor, or other vehicle equipped with the device less likely.
The foregoing and other objects and advantages are attained by a remotely activated device that has means mounted within the interior of the dual chamber brake system which, responsive to a coded signal, vents pressure in the emergency chamber of a dual chamber brake system to automatically apply the brakes thereby bringing a moving vehicle to a stop. This coded signal is ideally made available only to law enforcement agencies and the like. Upon receiving a different coded signal, usually available only to persons who are authorized users of the trailer or vehicle, the device also vents pressure in the emergency chamber and locks the brakes and blocks the brake actuator rod from being retracted into its non-braking operative position by preventing pressurized air from being supplied to the dual chamber brake system of a stopped or parked vehicle. The means for accomplishing these objectives is an electro mechanical device such as a solenoid valve which is remotely actuated by the above-noted coded signals that can only be transmitted by an authorized user or users. This solenoid valve is internally located, preferably at the air inlet port in the emergency chamber of the dual chamber brake system.
The features of the present invention can be best understood together with further objects and advantages by reference to the following description taken in connection with the accompanying drawings wherein like numerals indicate like parts.
The following specification taken in conjunction with the drawings sets forth the preferred embodiment of the present invention. The embodiment of the invention disclosed herein is the best mode contemplated by the inventor for carrying out his invention in a commercial environment, although it should be understood that various modifications can be accomplished within the parameters of the present invention.
The present invention is best explained and understood in conjunction with a thorough understanding of the operation of the dual chamber air brake system that is constructed in accordance with the state-of-the-art. For this reason operation of the common state-of-the-art dual chamber air brake system is first explained with reference to
Referring now to
Each of the two chambers 34 and 36 has a vent 46 that permits escape of air from the non-pressurized air space when the space behind the respective diaphragm 38 or 40 is pressurized with compressed air. The vented space in the emergency housing chamber 36 has a pressure plate 48 located between a high spring-rate (powerful) spring 50 and the diaphragm 40. A guide 52 links the movement of the pressure plate 48 in the emergency housing chamber 36 to the service diaphragm 38 in the service housing chamber 34 and to a push plate 54 that is located in the service housing chamber 34 between the service diaphragm 38 and the front wall of the service housing 34. The guide 52 includes a rod 56 that travels through an opening 58 in the common bulkhead. The rod 56 allows reciprocation of the guide 52 in the longitudinal direction relative to the two housings 34 and 36. A low spring-rate spring 60 is disposed between the push plate 54 and the front wall of the service housing 34. Two bolts 62 that attach the dual chamber brake system to the trailer (not shown), tractor (not shown), or other vehicle (not shown) are shown in the front of the housing 34, although more than two bolts may be used. A removable plug 64 is located in the back wall of the emergency housing chamber 36. The purpose of the removable plug 64 is to allow access with a special tool (not shown) into the interior of the emergency housing chamber 36. The low spring-rate spring 60 in the service housing 34 is significantly weaker than the high spring-rate spring 50 in the emergency housing 36. The push plate 54 is connected to a brake actuator rod 66 which passes through an opening 68 in the front wall of the service housing chamber 34. It will be readily understood by those skilled in the art that longitudinal movement of the brake actuator rod 66 “controls” the actual brakes of the wheels (not shown); forward movement applies them and rearward movement, that is retraction, releases them.
In accordance with invention, and in the herein described preferred embodiment, a solenoid valve 100 or the like electro-mechanical valving device is employed to control the flow of pressurized air into and out of the emergency housing chamber 36 to stop a moving vehicle equipped with dual chamber air brakes or to secure such a vehicle against unauthorized removal in a parked condition.
The solenoid valve 100 as a component in the apparatus of the present invention is responsive to electrical current (or lack of it) the flow of which is enabled by a receiver decoder 102 that is itself responsive to coded signals, such as electromagnetic or infra red signals akin to the signals that are virtually ubiquitously used in modern times for opening and locking car doors and the like by remote control. The coded signals may be sent by a hand-held “remote control” transmitter, schematically shown in the drawings as 69, that is ideally possessed only by law enforcement and by persons authorized to operate the trailer (not shown), truck (not shown), or other vehicle (not shown) or to stop its unauthorized operation. When the remote control transmitter is hand-held then it can be characterized as portable.
Alternatively, the coded signals may be supplied to the solenoid valve 100 or like electro mechanically actuated valving device from a transmitter built into the cab of the towing vehicle (not shown) or a hard wire connection (rather than by radiation) in certain of the applications. However, for the anti-terrorism feature of the invention whereby a moving vehicle can be stopped by law enforcement or the like using a coded signal, it is necessary for the receiver decoder 102 to be responsive to a signal originating from a remote source, which may or may not be hand held. Power to operate the solenoid valve 100 or like electromechanical valving device can be supplied by batteries in the trailer (not shown), truck (not shown), or other vehicle (not shown). In any event, the solenoid valve 100 or like electro mechanical valving devices and the receiver decoder 102 which are used as components of the apparatus of the present invention and which are responsive to a coded signal, are readily available in the state-of-the-art, and need not be described further. In the presently preferred embodiment the receiver decoder 102 is located in a different housing than the solenoid valve 100 or like electro mechanical valving device, and this configuration is shown in the drawing figures. However, it is possible to mount the solenoid valve 100 or like electro mechanical valving device and the receiver decoder 102 in the same housing, and such configuration or variations of these configurations are also within the scope of the invention.
In the first preferred embodiment, shown in
Referring now primarily to
Still another coded signal, fourth signal (or “to go” signal) ideally available only to the driver or to persons authorized by the owner closes the first switch 116 thereby supplying power to the solenoid valve 100. The circuit in the “to go” operating state of the trailer, tractor, or vehicle is depicted in
It can be seen from the
Those skilled in the art will readily understand that the above description teaches generic principles as well as discloses a presently preferred embodiment, and that several mechanical equivalents of the herein described device may become apparent to those skilled in the art in light of the present disclosure. Similarly, numerous electrical and electronic equivalents of the simple electrical circuit disclosed herein may become readily apparent to those skilled in the art in light of the present disclosure. Nevertheless such mechanical, electrical and electronic equivalents are intended to be within the scope of the present invention. Examples of such equivalent include the employment of a piston in place of the emergency chamber diaphragm, and many variations in other hardware, arrangement of the ports and vents. Other equivalents are using solenoid valves which are normally closed when power is supplied, requiring a rearrangement of the electric circuit, still well within the skill of the ordinary artisan in light of the present disclosure. Nevertheless, the embodiment disclosed herein is presently thought to be the preferred one to manufacture and provide the best security and compatibility with current dual chamber air brake systems in use on a multitude of trailers and vehicles to guard both against unauthorized use (theft) and to enable law enforcement to stop a moving vehicle when the circumstances render this necessary.
In one apparent alternative embodiment the electronic circuit may include only the second switch 118 (or an electric or electronic equivalent), and the receiver decoder 102 is responsive only to the first (anti-terrorist) coded signal to open the second switch 118 and thereby stop a moving vehicle, and to a second coded signal which would cause the second switch 118 to close. Ideally, these coded signals would be made available only to law enforcement or the like, thereby providing the trailer, tractor or vehicle equipped with a dual chamber brake system an this embodiment of the present invention only with the anti-terrorist feature of the invention.
The present application is a continuation-in-part of application Ser. No. 09/466,655 filed on Dec. 20, 1999 now U.S. Pat. No. 6,402,261.
Number | Name | Date | Kind |
---|---|---|---|
3597016 | Gachot | Aug 1971 | A |
3735834 | St. Onge | May 1973 | A |
3826176 | Ike | Jul 1974 | A |
3880477 | Stevenson et al. | Apr 1975 | A |
4007815 | Acre | Feb 1977 | A |
4014414 | Yamamoto et al. | Mar 1977 | A |
4014579 | Dubois | Mar 1977 | A |
4085716 | Minami | Apr 1978 | A |
4192557 | Leiber | Mar 1980 | A |
4268093 | Muller | May 1981 | A |
4273388 | Muller | Jun 1981 | A |
4354536 | Moss | Oct 1982 | A |
4589704 | Graham | May 1986 | A |
H117 | Graham | Sep 1986 | H |
4621874 | Gustafsson | Nov 1986 | A |
4685744 | Luce | Aug 1987 | A |
4793449 | Smith | Dec 1988 | A |
4793661 | Munro | Dec 1988 | A |
RE32885 | Graham | Mar 1989 | E |
4873824 | Cox | Oct 1989 | A |
H748 | Graham | Mar 1990 | H |
5133323 | Treusch | Jul 1992 | A |
5145240 | Harless et al. | Sep 1992 | A |
5378929 | Mor et al. | Jan 1995 | A |
5402866 | Naedler et al. | Apr 1995 | A |
6076385 | Pedroso et al. | Jun 2000 | A |
6322161 | Maslonka et al. | Nov 2001 | B1 |
6367888 | Kee et al. | Apr 2002 | B1 |
6402261 | Barnett | Jun 2002 | B1 |
20010050509 | Holt | Dec 2001 | A1 |
20020036428 | Jacob | Mar 2002 | A1 |
20020140282 | Costa | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
0891908 | Jan 1999 | FR |
2205620 | Dec 1988 | GB |
Number | Date | Country | |
---|---|---|---|
Parent | 09466655 | Dec 1999 | US |
Child | 10060840 | US |