The present invention relates to a cargo device that carries a number of submunitions whereby the cargo device is preferably equipped with guidance and/or target seeking functions and may constitute a missile or a missile or equivalent, launchable from a ramp or other weapon platform in the form of, for example, an aircraft. The triggering or actuation of the submunitions carried shall then be determinable by a programming function on the ground or on board the weapon platform in question, such as an aircraft, or via a fixed or wireless communication link from the ground or on board said weapon platform. The submunitions shall, moreover, be actuatable either individually or jointly by means of or via an impact function, proximity fuze, remote triggering, or by another admittedly known triggering device.
The designing of missiles and other ammunition or cargo-bearing devices so that they are specially suited to combating targets or situations of a certain given type is previously known. This means that the ammunition or warhead designed for a specific type of target is often completely unsuitable for combating a different type of target, and vice versa Such dedicated ammunition units are already well known and exist in a multitude of designs, among other things because of the above mentioned target type dedication. This can be referenced in the patent literature in the field.
There is a general need to be able to reduce the assortment of weapon borne ammunition units without losing the desired effectiveness against each type of target or combat situation. The measures and ammunition units proposed must also satisfy the stringent requirements pertaining to handling, service and storage, and the matter must be characterised by singularity of purpose while safety during handling and operation must not be neglected. The objective of the present invention is to resolve this problem completely or partially.
The feature that can be considered to be the main characteristic for the initially mentioned cargo device is, among other things, that the programming function incorporated comprises or interacts with mode determining devices which, for example, dependent on at least one manual or automatic actuation enables the cargo device and its submunitions to act either jointly in a penetrator mode in which the submunitions are at least essentially conjoined in a joint triggering or actuation function, or in a separation mode in which the submunitions sequentially exit their cargo space in the device and subsequently function via an individual triggering or actuation function whereby the said triggering or actuation function in each submunition can be independent of or coordinated with the triggering or actuation function of the other submunitions. In principle the same submunitions can be utilised in either mode. Alternatively, the direction of the submunitions can be determined on the ground before the cargo device starts its journey to the target, whereby the submunitions are further matched to the target and are arranged to be either conjoined in the device or for dispersal from the device according to the mode employed.
The basic principle behind the present invention is thus—as the expressions ‘penetrator mode’ and ‘separation mode’ indicate—that if penetrator mode is selected all the submunitions shall be tightly conjoined to form a single body whose combined effect provides good penetration capability in hard targets such as bunkers and which, when the cargo device reaches the target and more or less itself disintegrates against the target the conjoined submunitions continue into the target where they detonate and blow up the target from inside, or blow up the target on impact. Implementation of the penetrator mode involving a pure penetration of the target and no detonation of the submunitions until inside the target presupposes that the conjoined submunitions have a reinforced nose section which, by means of its inherent hardness and the kinetic energy acquired from the cargo device, is able to penetrate the target.
Should the reinforced nose section of the submunitions not be capable of penetrating the target, all submunitions detonate on impact with the target.
In one design version of the invention concept the mode determining devices—dependent on an additional actuation—can even be arranged to enable the cargo device and its submunitions to operate with a distributed penetrator mode in which the submunitions achieve a minor sequential dispersal and are actuated as penetration of the target progresses.
In its other main variant—separation mode—the submunitions are dispersed on command over a pre-determined target zone, and each submunition is thus actuated by its own initiation device that can be time controlled, point detonating, or have its own elementary target seeker or proximity fuze. The separation mode can be a good alternative when engaging enemy forces attacking in light armour vehicles, for example. In this variant the cargo device can even continue its flight after releasing all its submunitions. In this case the dedicated, joint nose section for penetrator mode remains in the cargo device. Dispersal of the submunitions utilises already known techniques.
Additional design versions of the present invention are disclosed in the subsequent patent claims.
The above proposals enable major technical and financial benefits by enabling a substantial reduction in the diverse range of submunition cargo devices. Well proven technical methods are used in this respect for the realisation of the present invention which means that current handling and service functions can be utilised and safety requirements can be met. As claimed in the present invention the position of the submunitions in their space in the cargo device is controlled to enable the penetrator and separation modes to be implemented. This can, of course, be achieved by using already known techniques, which further contributes to the above mentioned technical and financial benefits.
Various aspects of this disclosure relate to a cargo device (1) for submunitions (2) that is preferably equipped with guidance and/or target seeking functions (8, 9), such as a missile, where the triggering or actuation of the submunitions is determinable by means of a programming function on the ground or on board another weapon platform (aircraft) or via wireless link from the ground or said other platform. The submunitions moreover are actuatable by impact function and/or proximity fuze function or time function wherein the programming function (22) incorporates or interacts with mode determining devices (18,19, 20,21) which, dependent on at least one manual or automatic actuation, cause the cargo device (1) and its submunitions (2) to operate either in a penetrator mode in which the submunitions are essentially conjoined in a common triggering or actuation function, or in a separation mode in which the submunitions sequentially leave the said cargo device and thereafter function by means of an individual triggering or actuation function, each of which is either independent from or coordinated with the triggering or actuation functions of the other submunitions.
As is conventionally known in ordnance design, and as described above, submunitions may be actuated by an impact function, e.g., an impact fuze, or using a time function, e.g., a time fuze.
Some of the currently proposed design forms for a cargo device displaying characteristics that are significant for the present invention are described below with reference to the appended
Number 1 in
Conjoining of the submunitions in penetrator mode and dispersal in separation mode can be performed manually or electrically. Locking devices can thereby be actuated manually or automatically via electrical control so that either mode can be enabled in conjunction with the cargo device's or vehicle's path towards the target in question. Actuation of the locking devices for locking in penetrator mode or opening in separation mode can be carried out on the ground, by wireless link from the ground, or by the weapon platform carrying the cargo device such as an aircraft, etc. Alternatively, the locking devices can be set or actuated before the cargo device is launched. In an alternative design the cargo device can in principle be loaded with different submunitions whereby the first type of submunitions are so arranged in the cargo device's cargo space that they cannot be separated, or in such a way that they can be separated. Opening of the locking devices and dispersal of the submunitions in the distributed penetrator mode can be performed in a corresponding manner to that for the separation mode. The only difference is that the sequential release of the submunitions from the cargo device shall be with closer intervals. In
In
The four tightly conjoined identical submunitions 28–31 illustrated in
The present invention is not limited to the design examples illustrated above, but can be subjected to modifications within the framework of the subsequent patent claims and the invention concept.
Number | Date | Country | Kind |
---|---|---|---|
0002486 | Jul 2000 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE01/01431 | 6/21/2001 | WO | 00 | 8/20/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/03018 | 1/10/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3938438 | Anderson et al. | Feb 1976 | A |
3980019 | Anderson et al. | Sep 1976 | A |
4029016 | Cole | Jun 1977 | A |
4638736 | Farmer | Jan 1987 | A |
4799429 | LaBudde et al. | Jan 1989 | A |
4998480 | Denis et al. | Mar 1991 | A |
5429052 | Bross et al. | Jul 1995 | A |
6244184 | Tadmor | Jun 2001 | B1 |
Number | Date | Country |
---|---|---|
3048618 | Jul 1982 | DE |
3326877 | Feb 1985 | DE |
3920016 | Jan 1991 | DE |
0961098 | Dec 1999 | EP |
2135411 | Dec 1972 | FR |
Number | Date | Country | |
---|---|---|---|
20040139877 A1 | Jul 2004 | US |