The present invention relates to improvements in carpet or rug making machinery, particularly but not necessarily exclusively, of the type adapted to make samples, smaller rugs or carpets of a specialist nature often in limited numbers.
Currently available carpet rug making machinery of the aforementioned type are typically constructed in a manner similar to commercial carpet or rug making machines, that is, with an in line array of needles disposed transversely across a backing sheet or web adapted to form a line of yarn loops in the longitudinal or feed direction of the backing sheet with the backing sheet being incrementally moved in said feed direction each time a yarn loop is formed. A loop forming hook and/or cutting means for each needle is provided on the opposite side of the backing sheet or web and individual or collective yarn feed systems are also provided for each needle in the array. While these systems generally work well and reasonably quickly when commercially making carpet or rugs, the machines are particularly costly, even when built on a smaller scale for making samples. These types of machines also suffer some disadvantages in their levels or ease of adjustability or flexibility when various designs are desired to be made when samples are to be produced. For example, adjustment of the spacing between the needles in the array of needles to vary the distance between the yarn loops formed thereby is difficult and, if possible to achieve, is certainly a slow process to achieve. Further, the ability to alter the direction of the loops to be inclined to the feed or transverse directions is possible with purpose built conventional machines by bodily moving an array of loop forming needles to the left or the right but the flexibility of curved or individual sections of stitching is difficult or impossible to achieve. Producing sections of stitching pile loops in the feed direction alone is certainly extremely difficult or impossible with conventional machines. It is also to be recognized that speed of carpet or rug production is important when carpet or rugs are being produced commercially but it is not so important when samples or specialist limited run carpets/rugs are being made. With sample or specialist limited run production, ease and speed of being able to vary various parameters is generally a more desirable attribute.
While modern carpet or rug making machinery is generally constructed as described above whether it is intended for making samples or commercially sized rugs or carpets, however, it is also recognized that U.S. Pat. Nos. 1,757,795 and 1,883,599 disclose a different type of machine for making commercial sized rugs or carpets where a single needle head to which one yarn filament is fed, the needle head being moved across the backing sheet or web where yarn loops are formed in a line across the backing sheet or web by movement of the needle head. Once a line is produced, either the needle head is moved relative to the previous line produced, or the backing web is moved relative to the needle head, and the needle head is returned to the other side of the backing web to start a new line. No level of adjustability is described in these prior art specifications.
The objective of the present invention is to provide a carpet or rug making machine, which preferably may be used to make samples or specialist type rugs or carpets that has an increased level of flexibility and adjustability relative to currently known machines of this type.
In the following description and the accompanying claims, reference is made to carpet and carpet making machinery and by this language it is intended to also refer to rugs, rug making machinery and any similar products and equipment.
Accordingly, the present invention provides carpet making machinery including a support and movement means to support and move a backing material web through a pile forming station in first discrete steps in a first direction, at least one needle head supported on one side of said pile forming station for movement in a second direction transverse to said first direction from one lateral region to a second lateral region whereby a needle of the or each said needle head carrying yarn penetrates said backing material web at a plurality of locations and with cooperation of a loop forming head on the other side of said pile forming station forms a plurality of yarn loops on one face of the backing material web, said loop forming head including at least one looper element and a loop cutting mechanism, said loop cutting mechanism being selectably operable independently of operation of said looper element.
Preferred features of this aspect of the invention may be as defined in claims 2 to 22 as annexed hereto, which claims are hereby made part of the disclosure of this specification by this reference thereto.
By the provision of the various adjustments and selections as set out above and hereafter, a very flexible and easily modified carpet making machine is provided particularly suitable for making carpet samples of various test designs as well as specialist rug or carpet designs.
In a further preferred aspect of this invention, there is provided carpet making machinery including a support and movement means to support and move a backing material web through a pile forming station in first discrete steps in a first direction at least one needle head supported on one side of said pile forming station for movement in a second direction transverse to said first direction between one lateral region and a second lateral region whereby a needle of the or each said needle head carrying yarn penetrates said backing material web at a plurality of locations and with cooperation of a loop forming head on the other side of said pile forming station forms a plurality of yarn loops on one face of the backing material web, the or each said needle head together with an associated said loop forming head, being mounted to selectably move in at least said second direction while also being selectably movable in said first direction. Preferably, the or each said needle head and its associated said loop forming head are relatively movable in said first direction, conveniently in response to a predetermined positional displacement schedule ensuring correct location of the loop forming head relative to its associated said needle head when a said yarn loop is formed. It is also preferred that the or each said needle head together with an associated said loop forming head be mounted to selectably move in said second direction, said first direction, or both said first and said second directions simultaneously. Further preferred features of this aspect may be as defined in any one of claims 31, 24, 25 or 26, the subject matter of which claims are included in the disclosure of this specification by this reference thereto.
According to a still further preferred aspect, the present invention also provides carpet making machinery including a support and movement means to support and move a backing material web through a pile forming station in first discrete steps in a first direction, at least one needle head supported on one side of said pile forming station for movement in a second direction transverse to said first direction between one lateral region and a second lateral region whereby a needle of the or each said needle head carrying yarn penetrates said backing material web at a plurality of locations and with cooperation of a loop forming head on the other side of said pile forming station forms a plurality of yarn loops on one face of the backing material web, the or each said needle head carrying a plurality of said needles whereby each said needle is selectably movable from a non operative position into an operative position, each said needle in use having a separate yarn supplied thereto. Preferred features of this further aspect may be as defined in claims 24, 25 and 26 as annexed hereto, which claims are hereby made part of the disclosure of this specification by this reference thereto.
In yet another preferred aspect, the present invention provides carpet making machinery including a support and movement means to support and move a backing material web through a pile forming station in first discrete steps in a first direction, at least one needle head supported on one side of said pile forming station for movement in a second direction transverse to said first direction from one lateral region to a second lateral region whereby a needle of the or each said needle head carrying yarn penetrates said backing material web at a plurality of locations and with cooperation of a loop forming head on the other side of said pile forming station forms a plurality of yarn loops on one face of the backing material web, the or each said needle head is driven from said second lateral region to said one lateral region without operation of a said needle of the or each said needle head.
Conveniently the or each said needle head may include a plurality of said needles each separately supplied with yarn and each being arranged to form a row of said yarn loops on one face of the backing material substantially simultaneously with other needles of said needle head. The machinery may include two or more such needle heads operating substantially simultaneously to decrease production times. Preferably the or each said needle head together with an associated said loop forming head, are mounted to selectably move in said second direction or said first direction, or both said first and said second directions simultaneously, during components of movement between said lateral regions.
The present invention also anticipates providing a needle head including a plurality of needles supported by a carriage member rotatable about an axis parallel to an operational direction of movement of said needle, said carriage member upon rotation about said axis being arranged to selectively move each said needle from one or more inoperative positions to an operative position.
It will be recognized by those skilled in this art that any of the features disclosed or described in any of the claims annexed hereto or elsewhere in the text of this specification may be used in any of the above discussed aspects.
One preferred embodiment of the present invention will hereinafter be described with reference to the accompanying representations, in which:
a is a schematic cross-sectional view of the discharge spiked roller and associated tube sheath used in the configuration illustrated in
a and 7b are front elevation views of the yarn thread guidance springs illustrated in
a, 13b and 13c are schematic stage drawings showing sequential stages in forming loop pile on the backing material web; and
a, 14b, 14c and 14d are schematic stage drawings showing sequential stages in forming cut pile on the backing material web.
Referring initially to the annexed drawings
The positioning of the upper head 26 and the lower head 27 provides a space 28 therebetween through which a backing web 29 passes as shown in
Reference will now be made to
Below the yarn drive assembly 43, the yarn 48 passes through a lower yarn spacer ring 60 with eight eyelets 61 spaced around its periphery. The spacer ring 60 is adjustable up or down to give adjustable pull back on the yarn as needle upper extension 70 moves to a top position. Each of the eight needle units 47 have a lower needle part 62 with a yarn eyelet 88 through which the yarn 48 passes. Above the lower needle part is a guide part 63 supporting the needle part 62 and slidably disposed in an opening 64 in a lower wall 65 of a drum structure 66 connected to the gear or sprocket wheel 46. An elongate upright rod 67 extends upwardly from the lower guide part 63 through an opening 69 in an upper wall 68 of the drum structure 66. The upright rod 67 has the upper extension 70 with a yarn eyelet 71 at its upper end. Rotatable wheels 72 are rotatably supported on a transverse axis extending from an upper region of the upright rod 67 as will be further explained hereafter. The yarn threads 48 pass downwardly from the eyelets 71 through individual eyelet opening 73 in the upper wall 68 of the drum structure 66, through individual guidance tubes 74 within the drum structure 66 and downwardly through individual eyelet openings 75 in the lower drum wall 65. In this manner, multiple yarn threads 48 are kept separate and tangles are avoided.
As can be seen in FIGS. 3 and 10/11, a lower needle retainer plate 76 is provided movable between a lowered position (
As can be seen in FIGS. 3 and 8/9, a stationary (relative to the drum 66) structure 78 is positioned generally around the drum 66 and includes a support plate 79, upright supports 80 carrying a cam track 81 adapted to receive the roller wheels 72 between upper and lower track walls 82, 83. The track walls 82, 83 are horse shoe shaped defining an open space between their free ends and the track walls 82, 83 slope downwardly towards the aforesaid open space. Adjacent the open space, an upright slide member guide 84 is provided extending upwardly from the support plate 79, the slide member guide 84 carrying a slide member 85 that is capable of a sliding upward and downward movement on the guide 84. The slide member 85 has a pair of inwardly directed flange members 86, 87 defining a space therebetween of a size to receive a particular selected roller wheel 72 therein (
Referring now to
To create cut pile or to cut one or more loops of loop pile as described hereafter, the lower head 27 further includes a second hook member 91 with a hook end 92 oppositely directed to the hook end 90 of the looper element 89. As illustrated in
It is intended that the carpet/rug produced be manufactures by stitching yarn in one transverse direction across a backing web 29 with stitching of the yarn being stopped after completion of one transverse run and the upper and lower heads 26, 27 are returned to the start position while the backing web is indexed or ready for a second or further stitching run. This form of stitching of pile necessarily requires the thread to be cut at the end of each run to allow the heads to be returned to start a new stitching run. Conveniently at least one and preferably at least three cut pile loops are formed at the end of each stitching run. Each stitching run can be in the form of a straight line, ie in the X-direction or it might consist of curved or angled lines given the capability of moving the upper and lower heads 26, 27 in both the X and the Y directions as described above.
Forming lines of stitched pile loops in one direction across the backing material web 29 occurs primarily, because in the illustrated components of the preferred embodiment, functional parts of the lower head are operational only in the one direction. Stitching of these pile loops in a forward and reverse direction is possible if the componentry of the lower head are reversed at the completion of each line of stitching or if a second lower head is employed for the reverse run with its components operationally reversed.
The speed of production of carpet or rugs by this apparatus might be improved by providing two or more pairs of heads 26, 27 such that each pair of heads simultaneously produces a transverse line of pile stitching. In situations where the flexibility of being able to change colours or textures of yarn threads, a limited array of needles each supplied with a desired yarn (which might be the same yarn) could be provided with each needle in the array simultaneously moving transversely to create the pile stitches. This will also improve the speed of operation but will decrease the level of flexibility.
Number | Name | Date | Kind |
---|---|---|---|
1757795 | Dahlen | May 1930 | A |
1883599 | Dahlen | Oct 1932 | A |
4266491 | Prichard | May 1981 | A |
4366761 | Card | Jan 1983 | A |
4549496 | Kile | Oct 1985 | A |
5193472 | Crossley | Mar 1993 | A |
5390613 | Shibata | Feb 1995 | A |
5653184 | Bardsley | Aug 1997 | A |
5743200 | Miller et al. | Apr 1998 | A |
6293211 | Samilo | Sep 2001 | B1 |
6651571 | Bennett et al. | Nov 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20070074646 A1 | Apr 2007 | US |