Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 C.F.R. § 1.57 for all purposes.
Field
This disclosure relates generally to implants, and, more specifically, to hydrogel joint implants and various tools, devices, systems, and methods related thereto.
Description of Related Art
Implants can be used to replace deteriorated or otherwise damaged cartilage within a joint. Such devices can be used to treat osteoarthritis, rheumatoid arthritis, other inflammatory diseases, generalized joint pain, joints damaged in an accident, joints damaged while participating in athletics, joints damaged due to repetitive use, and/or other joint diseases.
In some embodiments, an implant comprises, or alternatively consists essentially of, a hydrogel body comprising an upper surface, a planar lower surface opposite the upper surface, and sidewalls extending between the upper surface and the lower surface. The upper surface comprises a saddle shape. The sadly shape includes a first peak, a second peak, a first trough, and a second trough. The first trough is laterally between the first peak and the second peak. The second trough is laterally between the first peak and the second peak. The first peak is laterally between the first trough and the second trough. The second peak is laterally between the first trough and the second trough.
The hydrogel may comprise polyvinyl alcohol (PVA). The hydrogel may comprise water. The hydrogel may comprise saline. The upper surface may be contoured to correspond to an outer surface of a trapezium. The body may have a diameter between 4 mm and 8 mm. The implant may be load bearing. The implant may be non-biodegradable. The implant may be configured to be placed in a carpometacarpal joint. The lower surface may be configured to be placed in a cavity in a first metacarpal bone. The upper surface may be configured to abut a trapezium. A distance between at least one of the first peak and the second peak and the planar lower surface may be between 10% and 20% greater than a distance between at least one of the first trough and the second trough and the planar lower surface.
In some embodiments, a placer comprises, or alternatively consists essentially of, a first end, a second end opposite the first end, and a body extending between the first end and the second end. The first end comprises a saddle shape. The saddle shape includes a first peak, a second peak, a first trough, and a second trough. The first trough is laterally between the first peak and the second peak. The second trough is laterally between the first peak and the second peak. The first peak is laterally between the first trough and the second trough. The second peak is laterally between the first trough and the second trough.
The placer may further comprise a lumen extending through the body from the first end to the second end. The lumen may be configured to facilitate placement of a guide pin. The placer may further comprise a measurement band proximate to the second end. The measurement band may comprise a plurality of measurement bands spaced by 1 mm. The first end may be contoured to correspond to an outer surface of a first metacarpal bone.
In some embodiments, a drill bit comprises, or alternatively consists essentially of, a distal end, a proximal end opposite the distal end, and a body extending between the distal end and the proximal end. The distal end comprises a flange and a plurality of cutters distal to the flange. The flange has a lateral dimension greater than a lateral dimension of the body. The proximal end is configured to be coupled to a drill.
The plurality of cutters may comprise three cutters. The plurality of cutters may be spaced 120° from each other. Each of the plurality of cutters may extend from a hub. The drill bit may further comprise a lumen extending through the body from the proximal end to the distal end. The lumen may be configured to be tracked over a guide pin. The proximal end may comprise a polygonal lateral cross-section.
In some embodiments, an introducer comprises, or alternatively consists essentially of, a distal end, a proximal end opposite the distal end, and a body extending between the distal end and the proximal end. The distal end comprises a neck portion. The body is coupled to the neck portion at a shoulder. The body comprises a lumen including a flared shape proximate to the proximal end.
The body may comprise alignment indicia. The body may be cylindrical.
In some embodiments, a plunger comprises, or alternatively consists essentially of, a distal end, a proximal end opposite the distal end, and a body extending between the distal end and the proximal end. The distal end comprises a saddle shape. The saddle shape includes a first peak, a second peak, a first trough, and a second trough. The first trough is laterally between the first peak and the second peak. The second trough is laterally between the first peak and the second peak. The first peak is laterally between the first trough and the second trough. The second peak is laterally between the first trough and the second trough. The proximal end comprises a head portion.
The distal end may be configured to abut an end surface of an implant contoured to abut a trapezium. The body may comprise alignment indicia. The head portion may comprise a T-shaped handle. The body may comprise alignment indicia. The body may be cylindrical.
In some embodiments, a deployment system comprises, or alternatively consists essentially of, the introducer and the plunger.
The body of the plunger may be configured to extend at least partially through the lumen of the introducer. The plunger may be configured distally advance an implant through the lumen of the introducer. The plunger may be radially inwardly compress an implant in the lumen of the introducer. The plunger may be configured deploy an implant out of the distal end of the introducer.
In some embodiments, a kit comprises, or alternatively consists essentially of, at least two of the placer, the drill bit, the introducer, the plunger, and a guide pin.
The kit may further comprise the implant.
In some embodiments, a method of positioning an implant in a carpometacarpal joint comprises, or alternatively consists essentially of, aligning an implant deployment system with a recess in a carpometacarpal bone. The carpometacarpal bone comprises the first metacarpal bone. The joint comprises a surface of a trapezium. The recess faces a carpometacarpal joint. The implant deployment system comprises an introducer comprising first alignment indicia and a plunger comprising second alignment indicia. The method further comprises deploying the implant out of the implant deployment system partially and partially into the recess. The implant comprises a contoured upper surface contoured to abut the surface of the trapezium. The contoured upper surface comprises a first peak, a second peak, a first trough laterally between the first peak and the second peak, and a second trough laterally between the first peak and the second peak. The first peak is laterally between the first trough and the second trough. The second peak is laterally between the first trough and the second trough. After deployment, the implant is 1 mm to 3 mm proud.
Aligning the implant deployment system may comprise aligning the first alignment indicia with a surface feature of the carpometacarpal bone. The method may further comprise loading the implant in the implant deployment system. Loading the implant may comprise aligning the contoured upper surface of the implant with at least one of the first alignment indicia and the second alignment indicia. The method may further comprise radially compressing the implant in the implant deployment system by distally urging the implant through a lumen of the introducer using the plunger.
In some embodiments, a method of positioning an implant in a carpometacarpal joint comprises, or alternatively consists essentially of, aligning an implant deployment system with a recess in a carpometacarpal bone and deploying the implant out of the implant deployment system partially and partially into the recess. The recess faces a carpometacarpal joint. The implant comprises a contoured upper surface.
The carpometacarpal bone may comprise the first metacarpal bone. The joint may comprise a surface of a trapezium. The upper surface of the implant may be contoured to abut the surface of the trapezium. An introducer of the implant deployment system may comprise alignment indicia. Aligning the implant deployment system may comprise aligning the alignment indicia with a surface feature of the carpometacarpal bone. Aligning the implant deployment system may comprise positioning neck portion of an introducer of the implant deployment system at least partially in the recess. Aligning the implant deployment system may comprise abutting a shoulder of an introducer of the implant deployment system against a surface of the carpometacarpal bone. The implant may comprise one of the implants described above. After deployment, the implant may be 1 mm to 3 mm proud. The deployment system may comprise one of the introducers described above. The deployment system may comprise one of the plungers described above. The deployment system may comprise one of the deployment systems described above. The method may further comprise loading the implant in the implant deployment system. Loading the implant may comprise aligning the implant in the implant deployment system. An introducer of the implant deployment system may comprise alignment indicia. A plunger of the implant deployment system may comprise alignment indicia. A plunger of the implant deployment system may comprise a contoured distal end. The method may further comprise radially compressing the implant in the implant deployment system. Radially compressing the implant in the implant deployment system may comprise distally urging the implant through a lumen of an introducer of the implant deployment system using a plunger of the implant deployment system. The lumen of the introducer of the implant deployment system may comprise a flared shape. Deploying the implant may comprise urging the implant through a lumen of an introducer of the implant deployment system using a plunger of the implant deployment system. Deploying the implant may be manual. Deploying the implant may comprise distally advancing a head portion of a plunger. Deploying the implant may be mechanically assisted. The method may further comprise forming an incision proximate to the carpometacarpal joint. The method may further comprise moving the carpometacarpal bone to expose the carpometacarpal joint. The method may further comprise tamping a guide pin in the carpometacarpal bone. Tamping the guide pin may comprise using a placer. The placer may comprise one of the placers described above. The method may further comprise, before deploying the implant, removing the guide pin. The method may further comprise forming the recess in the carpometacarpal bone. Forming the recess in the carpometacarpal bone may comprise using a drill bit. Using the drill bit may comprise tracking the drill bit over a guide pin. The drill bit may comprise one of drill bits described above. The drill bit may comprise a flange. Forming the recess in the carpometacarpal bone may comprise abutting a surface of in the carpometacarpal bone with the flange. The method may further comprise measuring a depth of the recess in the carpometacarpal bone. Measuring the recess may comprise using an end of a placer comprising measurement bands. Measuring the recess may comprise comparing a feature of a surface of the carpometacarpal bone to the measurement bands. The feature of the surface of the carpometacarpal bone may comprise a peak. The feature of the surface of the carpometacarpal bone may comprise a trough. Measuring the recess may comprise comparing a lateral dimension of the recess in the carpometacarpal bone to a lateral dimension of a placer. The placer may comprise one of placers described above. The method may further comprise, after measuring the recess, increasing at least one of a depth and a diameter of the recess. The method may further comprise, after deploying the implant, moving the carpometacarpal bone to close the carpometacarpal joint.
The carpometacarpal bone may comprise the first metacarpal bone. The joint may comprises a surface of a trapezium. The upper surface of the implant may be contoured to abut the surface of the trapezium. An introducer of the implant deployment system may comprise alignment indicia. Aligning the implant deployment system may comprise aligning the alignment indicia with a surface feature of the carpometacarpal bone. The upper surface of the implant may comprise a first peak, a second peak, a first trough laterally between the first peak and the second peak, a second trough. The second trough may be laterally between the first peak and the second peak, the first peak may be laterally between the first trough and the second trough, and the second peak may be laterally between the first trough and the second trough. After deployment, the implant may be 1 mm to 3 mm proud. The implant deployment system may comprise an introducer comprising first alignment indicia and a plunger comprising second alignment indicia. Loading the implant may comprise aligning the contoured upper surface of the implant with at least one of the first alignment indicia and the second alignment indicia. The method may further comprise radially compressing the implant in the implant deployment system by distally urging the implant through a lumen of an introducer of the implant deployment system using a plunger of the implant deployment system. The method may further comprise tamping a guide pin in the carpometacarpal bone using a placer. The method may further comprise forming the recess in the carpometacarpal bone using a drill bit.
Certain features, aspects, and advantages of the disclosure are described with reference to drawings, which are intended to illustrate, but not to limit, the various inventions disclosed herein. It is to be understood that the attached drawings are for the purpose of illustrating concepts and embodiments of the disclosure and may not be to scale.
The discussion and the figures illustrated and referenced herein describe various embodiments of a cartilage implant, as well as various tools, systems, and methods related thereto. A number of these devices and associated treatment methods are particularly well suited to replace deteriorated or otherwise damaged cartilage within a joint. Such implants are configured to remain within the patient's joint on a long-term basis (e.g., for most or all of the life of the patient or subject), and, as such, are configured, in some embodiments, to replace native cartilage. In some embodiments, an implant is configured to be substantially non-biodegradable and/or non-erodable. In some embodiments, an implant is configured to remain within the patient's joint or other portion of the anatomy for a minimum of 10 years, up to 100 years (e.g., about 10 years, about 20 years, about 25 years, about 30 years, about 35 years, about 40 years, about 45 years, about 50 years, about 55 years, about 60 years, about 65 years, about 70 years, about 75 years, about 80 years, about 85 years, about 90 years, about 95 years, about 100 years, duration ranges between the foregoing values, etc.) without losing structural and/or physical properties and/or without losing ability to function as a cartilage replacement component or device. In some embodiments, an implant is configured to remain within the anatomy for greater than 100 years without losing structural and/or physical properties and/or without losing ability to function as a cartilage replacement component. Certain implants described herein can be used to treat osteoarthritis, rheumatoid arthritis, other inflammatory diseases, generalized joint pain, joints damaged in an accident, joints damaged while participating in athletics, joints damaged due to repetitive use, and/or other joint diseases. However, the various devices, systems, methods, and other features of the embodiments disclosed herein may be utilized or applied to other types of apparatuses, systems, procedures, and/or methods, including arrangements that have non-medical benefits or applications.
Certain embodiments described herein may be advantageous because they include one, several, or all of the following benefits: (i) improved treatment of the carpometacarpal joint; (ii) improved coupling of disparate implant materials; (iii) improved cavity wall apposition; (iv) improved implant site preparation tooling and/or systems; (v) improved implant site preparation methods; (vi) improved implant deployment tooling and/or systems; and/or (vii) improved implant deployment methods.
Thumb arthritis or basal joint arthritis can be caused by cartilage in the joint at the base of the thumb wearing out or being damaged. Thumb arthritis can cause debilitating hand pain, making simple tasks, such as turning door knobs, sink faucets, and other activities, difficult. Treatment has generally been limited to immobilization, pain relief medicaments, removal of the trapezium, and/or ligament reconstruction and tendon interposition (LRTI). While these treatments may reduce pain, they inhibit function of the thumb and the hand and may result in further or ongoing medicament use. Devices (e.g., implants), systems, kits, and methods described herein can provide a treatment for thumb arthritis that preserves the trapezium.
The hydrogel of the implant 100, as well as other implants disclosed herein, can comprise water, saline, other liquids, combinations thereof, and/or the like. In some embodiments, saline may be used instead of water, because, under certain circumstances, saline can help maintain osmotic balance with surrounding anatomical tissues following implantation. The exact composition of hydrogel in an implant 100 (e.g., PVA or other hydrogel materials, water, saline or other liquids, other additives, etc.) can be selected so as to provide the implant 100 with the desired or required strength, load bearing capacity, compressibility, flexibility, longevity, durability, resilience, coefficient of friction, and/or other properties and characteristics. In some embodiments, any hydrogel portion of the implants disclosed herein consist essentially of saline and PVA. In some embodiments, such hydrogel portions of the implants do not comprise any additional additives (e.g., growth factors, surface or other coatings, etc.). In addition, according to some embodiments, the hydrogel portions of any of the implant configurations disclosed herein comprise a consistent concentration (e.g., no concentration gradients), density, and/or other chemical and/or physical properties throughout.
In some embodiments, the implant 100, as well as other implants disclosed herein, is configured or adapted for drug delivery and/or is seeded with growth factors and/or cells. In some embodiments, the implant 100 comprises one or more of the following: chondrocytes, growth factors, bone morphogenetic proteins, collagen, hyaluronic acid, nucleic acids, and stem cells. Such factors and/or any other materials included in the implant 100 and selectively delivered to an implant site can help facilitate and/or promote the long-term fixation of the implant 100 at the joint or other target area of the anatomy.
In some embodiments, the hydrogel comprises PVA and/or any other polymeric material. In some embodiments, the content of PVA in the hydrogel is between about 35% and about 45% by weight (e.g., about 35%, about 36%, about 37%, about 38%, about 39%, about 40%, about 41%, about 42%, about 43%, about 44%, about 45%, ranges between such values, etc.). In some embodiments, the content of PVA in the hydrogel is greater than about 45% by weight (e.g., about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, greater than about 70%, ranges between such values, etc.) or less than about 35% by weight (e.g., about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, ranges between such values, less than about 5%, etc.). In some embodiments, the content of PVA or other component in the hydrogel is about 40% by weight.
In some embodiments, the implant 100 is load bearing and generally non-biodegradable (e.g., non-bioerodible). In some embodiments, the implant 100 is configured or adapted for placement in at least one of a toe, finger, ankle, knee, shoulder, hip, or any other joint, preferably a carpometacarpal joint and more preferably between a first metacarpal bone and a trapezium. In some embodiments, a transition between the upper surface 102 and the sidewalls 106 is generally arcuate, curved, or otherwise smooth, for example compared to including an angle or corner. In some embodiments, such a transition can be non-curved or non-smooth, as desired or required.
In some embodiments, the implants disclosed herein are configured for anchoring during implantation. The implant can comprise one or more anchor sites (e.g., comprising non-hydrogel portions or tabs) to facilitate anchoring (e.g., suturing, stapling, etc.). In some embodiments, the implant is pre-coupled to one or more anchors. Such anchors can comprise removable and/or permanent fixtures. In some embodiments, the anchors are resorbable or otherwise dissolvable after implantation (e.g., following a particular time period, such as, for instance, 1-30 days, 2-30 weeks, 6-12 months, 1-5 years, greater than 5 years, less than 1 day, etc.). In some embodiments, the implant comprises at least one abrasive surface. In some embodiments, the implant comprises one or more adhesive components. In some embodiments, one or more implant surfaces can be configured to promote bone adhesion by one or more coatings, substances, and/or the like and/or by using an appropriate surface texture along the surface(s). For example, the implant surface can be roughened, can include pores (e.g., superficial pores), and/or can include any other feature, as desired or required.
In some embodiments, the implants disclosed herein are supported or reinforced by a rigid support frame, such as a ceramic, metallic, or other type (e.g., plastic, composite, etc.) of frame. In some embodiments, the implants disclosed herein are supported or reinforced by a flexible or rigid mesh structure. In some embodiments, the implants do not contain or are substantially free or free of any support or reinforcement structure.
Any of the implant embodiments disclosed herein, or equivalents thereof, can be manufactured using freeze/thaw cycling and/or any other production method. For example, a hydrogel formulation comprising water, saline, PVA (and/or other hydrogel materials), other polymeric materials, other additives, and/or the like can be heated and/or otherwise treated as part of a freeze/thaw manufacturing process.
In some embodiments, a hydrogel solution comprising saline and about 40% PVA by weight is heated to about 121° C. under elevated pressure conditions (e.g., to effect dissolution of the polymer). For example, such a solution can be autoclaved to facilitate complete or substantially complete dissolution of the PVA in the saline, water, and/or other liquid. Next, the temperature and/or pressure of the solution can be lowered to permit entrapped air and/or other gases to escape. In some embodiments, after the autoclaving or similar step, the solution is generally maintained at a temperature of approximately 95° C. and atmospheric pressure for a predetermined time period.
The solution can then be transferred (e.g., pumped, poured, etc.) into an open mold where, once set, the solution forms the desired shape of the implant. The mold can include a plurality of individual mold cavities, each of which is configured to receive a hydrogel solution to form an implant. The hydrogel solution may be configured to fill only a lower portion of a cavity of a mold, or the cavity can be filled with the hydrogel solution to a level above the lower portion of the cavity including an upper portion of the cavity. The cavity of the mold can be shaped, sized, and/or otherwise configured so that the implant formed therein comprises a desired configuration. Once the implant has been molded, the implant can be removed from the mold. The implant can be removed either after initial formation or after undergoing additional treatment (e.g., freeze/thaw cycling, other heat and/or pressure treatment, etc.). The implant may be cut, altered, or otherwise processed. For example, a portion of the implant formed in an upper portion of the cavity may be excised and discarded as part of a subsequent reshaping step.
Due in part to the remaining production steps, accommodation of any changes in size (e.g., expansion, contraction, etc.) that may occur or are likely to occur to the implants can be considered during manufacturing by properly sizing and otherwise designing the mold. The amount of contraction or expansion of the implant can be based on one or more factors or conditions, such as, for example, the number of freeze/thaw cycles to which the implant is subjected, the temperature and/or pressure ranges associated with the remaining steps, and/or the like.
In some embodiments, the implant can be formed, at least in part, using an injection molding process and/or any other molding or casting procedure. In such injection or transfer molding techniques, once the hydrogel or other implant solution has been prepared, the solution can be loaded into an injection cylinder or other container of a molding press. The solution can then be forcibly transferred into a closed mold assembly using a pneumatic or hydraulic ram or any other electromechanical device, system, and/or method. In some embodiments, the hydrogel and/or other solution or implant component is injected into a corresponding closed mold assembly through a standard runner and gate system. Injection molding of implants can provide one or more benefits relative to open mold assemblies. For example, an implant formed using an injection molding technique may be substantially free of or free of additional cutting, reshaping, resizing, and/or processing, due to being in essentially a final shape after completion of injection molding.
Regardless of how the implant is molded or otherwise shaped or manufactured, the implant can be subsequently subjected to one or more freeze/thaw cycles, as desired or required. In some embodiments, an implant in a mold cavity is cooled using a total of four freeze/thaw cycles in which the temperature is sequentially varied between about −20° C. and about 20° C. In some embodiments, the number of freeze/thaw cycles, the temperature fluctuation, and/or other details can be different than disclosed herein, in accordance with a specific production protocol and/or implant design.
Following freeze/thaw cycling, the implant can be at least partially removed (e.g., including fully removed) from the mold and placed in one or more saline and/or other fluid (e.g., other liquid) baths where the implant can be subjected to additional cooling and/or other treatment procedures (e.g., to further stabilize the physical properties of the implant). In some embodiments, the implant undergoes an additional eight freeze/thaw cycles while in saline. In some embodiments, such follow-up cooling procedures can be either different (e.g., more or fewer freeze/thaw cycles, different type of bath, etc.) or altogether eliminated from the production process, as desired or required.
When the cooling (e.g., freeze/thaw cycling) and/or other manufacturing processes have been completed, the implants can be inspected for any manufacturing flaws or other defects. At least some of the implants can be subjected to selective testing for physical and other characteristics, in accordance with the original design goals and/or target parameters. The implant may be cut or otherwise processed to remove any excess portions (e.g., flash). In some embodiments, one or more completed implant(s) is packaged in hermetically sealed plastic trays or other containers comprising foil or other types of lids or covering members. A volume of saline and/or other liquid can be included within such trays or other containers to provide hydration of the implant(s) during storage and/or any other steps preceding use. In some embodiments, the implant tray or other container is terminally sterilized using e-beam exposure between about 25 kilogray (kGy) and about 40 kGy.
Additional details related to implants comprising hydrogels, including methods of manufacturing and use, can be found in U.S. Pat. Nos. 5,981,826, 6,231,605, and PCT Patent Application Publication No. WO 2012/162552, each of which is hereby incorporated by reference in its entirety for all purposes.
In some embodiments, the implant 100 has a lateral dimension (e.g., diameter) between about 4 mm and about 8 mm (e.g., about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, ranges between such values, etc.), as measured in an uncompressed state. Lateral dimensions smaller than about 4 mm (e.g., between about 2 mm and about 4 mm) and larger than about 8 mm (e.g., between about 8 mm and about 10 mm) are also possible for use in subjects with small or large bones, respectively.
In some embodiments, the implant 100 comprises, or alternatively consists essentially of, or alternatively consists of, a top or upper surface 102, a bottom or lower surface 104 generally opposite the upper surface 102, and a hydrogel body between the upper surface 102 and the lower surface 104. In some embodiments, the implant 100 comprises a hydrogel (e.g., PVA) implant 100 or any other type of substrate-based implant 100. In some embodiments, the implant 100 is capable of being used and/or is configured to be used in a joint treatment method as disclosed herein, modifications thereof, and/or other methods. In some embodiments, sidewalls 106 generally extend between the upper surface 102 and the lower surface 104. In some embodiments, the implant 100 is configured for placement in an implant site having a corresponding recess.
In some embodiments, the overall height (e.g., between the top surface 102 and the bottom surface 104) of the implant 100 is between about 4 mm and about 8 mm (e.g., about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, ranges between such values, etc.), as measured in an uncompressed state. Heights smaller than about 4 mm (e.g., between about 2 mm and about 4 mm) and larger than about 8 mm (e.g., between about 8 mm and about 10 mm) are also possible for use in subjects with small or large bones, respectively.
The upper surface 102 may be configured to form an articulation surface when the implant 100 is implanted in a joint. As shown, the upper surface 102 can comprise a contour configured to correspond to contours of a lower surface of a first metacarpal bone (facing the trapezium) and/or an upper surface of a trapezium (facing the first metacarpal bone). In some embodiments, the upper surface 102 has a saddle shape comprising peaks 118a, 118b and troughs 120a, 120b. The contours of the upper surface 102 are illustrated by line contours in
The upper surface 102 comprises, or alternatively consists essentially of, or alternatively consists of, a saddle shape including a first peak 118a, a second peak 118b, a first trough 120a laterally between the first peak 118a and the second peak 118b, and a second trough 120b laterally between the first peak 118a and the second peak 118b. The first peak 118a is laterally between the first trough 120a and the second trough 120b. The second peak 118b is laterally between the first trough 120a and the second trough 120b. In some embodiments, a distance between the first peak 118a and/or the second peak 118b and the lower surface 104 is between about 10% and about 20% greater than a distance between at least one of the first trough 120a and the second trough 120b and the lower surface 104. One or both of the peaks 118a, 118b may be between about 1 mm and about 1.5 mm (e.g., about 1 mm, about 1.1 mm, about 1.2 mm, about 1.3 mm, about 1.4 mm, about 1.5 mm, ranges between such values, etc.) higher than one or both of the troughs 120a, 120b.
Although the implant 100 is illustrated as a substantially cylindrical plug or shape, other shapes of the implant 100 are also possible. For example, an upper surface 102 and/or the lower surface 104 may be contoured to abut particular anatomy (e.g., planar (e.g., flat), non-planar (e.g., curved, concave, convex, undulating, fluted)) and/or modified anatomy (e.g., a recess formed in a bone). The implant 100 can include a generally circular or oval cross-sectional shape. In some embodiments, the implant 100 is generally shaped like a cylinder. The overall shape of any of the implants disclosed herein can vary depending on the specific application or use. For example, the shape of at least part of the implant 100 can be generally polygonal (e.g., rectangular, round, hexagonal), irregular, and/or the like.
In some embodiments, the implant 100 lacks, is devoid of, is substantially free of, etc. attachment tabs or other features configured to fix the implant 100 in place. For example, the implant 100 may maintain position by being slightly oversized with respect to a cavity in which a portion of the implant 100 is positioned.
In some embodiments, the implant 100 lacks, is devoid of, is substantially free of, etc. surface contours on the bottom surface 104. For example, the implant 100 may lack configuration to be placed between a first metacarpal bone and a trapezium without forming a cavity in the first metacarpal bone.
In some embodiments, the implant 100 lacks, is devoid of, is substantially free of, etc. an upper surface 102 configured to replace a bone or an end of a bone. For example, the implant 100 may be configured to replace part of an end surface of a bone (e.g., a central portion, a bearing surface, etc.), but not to replace the entire bone and/or the end surface.
In some embodiments, the placer 200 includes a lumen 208 in the body 206 between the first end 202 and the second end 204. The lumen 208 is configured to accept a guide pin therethrough, for example as described with respect to
The placer 200 may comprise, for example proximate to the second end 204, a plurality of arcuate bands 210a, 210b, 210c, 210d, 210e that can be used to measure depth of a cavity, for example a cavity resulting from drilling into bone. In some embodiments, the band 210a may correspond to a depth from the second end 204 of about 6 mm, the band 210a may correspond to a depth from the second end 204 of about 6 mm, the band 210b may correspond to a depth from the second end 204 of about 7 mm, the band 210c may correspond to a depth from the second end 204 of about 8 mm, the band 210d may correspond to a depth from the second end 204 of about 9 mm, and the band 210e may correspond to a depth from the second end 204 of about 10 mm, the bands 210a, 210b, 210c, 210d, 210e being spaced by about 1 mm. The bands 210a, 210b, 210c, 210d, 210e may be spaced by about 0.1 mm, about 0.2 mm, about 0.3 mm, about 0.4 mm, about 0.5 mm, about 0.6 mm, about 0.7 mm, about 0.8 mm, about 0.9 mm, about 1 mm, about 1.1 mm, about 1.2 mm, about 1.3 mm, about 1.4 mm, about 1.5 mm, about 1.6 mm, about 1.7 mm, about 1.8 mm, about 1.9 mm, about 2 mm, greater than about 2 mm, combinations thereof, and the like. The plurality of bands may comprise between four bands and six bands (e.g., four, five, six, ranges between such values, etc.). More bands (e.g., between six bands and ten bands) or fewer bands (e.g., between one band and four bands) are also possible. For example, the bands may start closer to the second end 204 (e.g., about 0.1 mm, about 0.5 mm, about 1 mm, etc. from the second end 204). The bands may be fully arcuate (e.g., extending around part of the circumference of the body 206) and/or partially arcuate (e.g., extending around part of the circumference of the body 206). The bands may each be the same or may be different from each other. The bands may be used to measure a depth of a drilled hole in a bone, for example as described in further detail with respect to
The placer 200 may comprise the features described herein with respect to one or both of the first end 202 (e.g., a saddle shape) and the second end 204 (e.g., measurement bands). In some embodiments, a first tool can include the features of the first end 202 and a second, separate, tool can include the features of the second end 204.
In some embodiments, the body 306 of the drill bit 300 includes a generally cylindrical distal section 306a and a polygonal proximal section 306b. The cylindrical distal section 306a may provide strength to the drill bit 300 and/or reduce eccentricity during drill rotation. The polygonal proximal section 306b is sized, shaped, and otherwise configured to selectively mate with a corresponding portion of a bone drill (not shown). In some arrangements, the proximal section 306b comprises a generally triangular cross-sectional area, but other shapes, sizes, and/or other details of the proximal section 306b can vary. Other shapes of the body 306, including the distal section 306a and/or the proximal section 306b, are also possible. Bone drills with which the drill bit 300 or variations thereof can be coupled may be manually operated and/or power driven (e.g., mechanically, pneumatically, hydraulically, etc.).
The distal end 302 of the drill bit 300 can include a flange 312 and one or more abrading members or blades or cutters 310a, 310b, 310c extending distally from the flange 312. As best illustrated in
In some embodiments, the drill bit 300 comprises a lumen 308 extending (e.g., longitudinally) through the drill bit 300. For example, as illustrated in
As the drill bit 300 is rotated (e.g., either manually or using one or more external driving sources, etc.), sharp edges formed along the distal and/or peripheral portions of the cutters 310a, 310b, 310c can abrade and remove cartilage, bone, and/or other tissue. In some embodiments, the longitudinal distance between the distal face of the flange 312 and the distal ends of the cutters 310a, 310b, 310c can limit the depth of the recess or opening that is created by the drill bit 300. Peripheral surfaces of the cutters 310a, 310b, 310c can define a diameter φc (
As the drill bit 300 is rotated and advanced into a targeted region of the patient's anatomy, abraded bone, cartilage and/or other tissue, and/or other debris is created at or near the distal end 302. To permit such debris to be removed from the treatment site, the flange 312 can include one or more openings, for example in the form of through holes, channels, edge features, etc. Abraded materials can stay clear of and not interfere with the working end of the drill bit 300, allowing the cutters 310a, 310b, 310c to continue to function normally. Once the distal face of the flange 312 abuts the top surface of the bone being drilled, further advancement of the drill bit 300 can be inhibited or prevented. Resistance to further advancement can alert the clinician that an implant site having the desired depth and diameter has been properly created.
The cutters 310a, 310b, 310c can be joined along a hub 314 along or near the center of the distal face of the flange 312. As shown, the cutters 310a, 310b, 310c can extend at least radially outwardly from the hub 314, toward the outer periphery of the flange 312. The radial length of the cutters 310a, 310b, 310c can help determine a diameter of a recess or opening created by the drill bit 300. In embodiments in which peripheral edges of the cutters 310a, 310b, 310c are generally vertically oriented (e.g., as illustrated in
In some embodiments, the introducer 400 comprises alignment indicia 416 configured to align an implant having a contoured surface (e.g., a contoured upper surface) before and/or during deployment. As described with respect to
In some embodiments, the introducer 400 comprises a viewing window that permits an implant to be viewed as it is advanced through the introducer 400, for example prior to and/or during deployment. The viewing window can be separate or integrated as part of the alignment indicia 416. For example, the alignment indicia 416 may comprise ink, etching, and/or windows (e.g., comprising unfilled slits and/or a biologically compatible non-opaque or at least partially optically transparent material).
In some embodiments, the inner diameter, length, other dimension, and/or other details or properties of the introducer 400, including a flared shape 414, a generally cylindrical interior portion, a neck portion 410, and/or the like can be different than shown and described herein. For example, the flared shape 414 can extend along more, or even all or substantially all, of the length of the lumen 408. For another example, the interior surface of the body 406 may be at least partially non-linear (e.g., curved, rounded, irregular, etc.), in addition to or in lieu of any generally linear and/or constant portions, as desired or required.
In some embodiments, the longitudinal axis of the introducer 400 (and the longitudinal axis along which the implant is advanced through the introducer 400) is substantially perpendicular or perpendicular with or at another desired angle to the surface of the bone or other anatomical site (e.g., bottom of the recess) into which the implant will be delivered and/or the distal end 402 or a portion thereof is substantially parallel or parallel to a longitudinal axis of the bone or other anatomical structure (e.g., longitudinal axis of the recess).
In some embodiments, at least a portion of the interior of the introducer 400 comprises and/or is coated or lined with one or more absorbable or lubricious layers, materials, and/or other substances. Such materials can help preserve a moisture level of the implant during deployment. The interior surface of the introducer 400 can comprise a low coefficient of friction to facilitate the delivery of an implant through the lumen 408. In some embodiments, reducing an effective coefficient of friction along the interior of the introducer 400 can comprise polishing the interior surfaces of the introducer 400. The introducer 400, including interior surfaces, can comprise stainless steel (e.g., surgical grade stainless steel), titanium, other metals and/or alloys, plastic, combinations thereof, and/or the like.
The distal end 502 has a saddle shape comprising peaks 518a, 518b and troughs 520a, 520b. The contours of the distal end 502 are of the plunger 500 may be modified to match a specific anatomy (e.g., a surface (e.g., inferior surface) of a trapezium). The body 506 may comprise a substantially cylindrical body having threads or other coupling mechanisms for coupling to a modular distal end 502 (e.g., for different anatomies). In some embodiments, a modular distal end can be used as the distal end 202 of the spacer 200 and the distal end 502 of the plunger 500. As described with respect to
The proximal end 504 of the plunger 500 may comprise an enlarged head portion 512. In some embodiments, the head portion 512 is in a T-shape (e.g., as illustrated in
In some embodiments, the body 506 may be the same as the body 206, and modular first or distal ends 202, 502 and/or second or proximal ends 204, 504 may be coupled for use as a spacer or a head portion. For example, a body can be coupled to a modular distal end and first modular proximal end for use as a spacer, after which the first modular proximal end can be exchanged with a second modular proximal end for use as a plunger. The bands for a spacer and the indicia for a plunger may be integrated with each other on the body, the bands may be part of a modular proximal end, and/or the indicia may be part of a modular distal end. Such embodiments can reduce costs (e.g., because the same body is used for the spacer and the plunger and/or provide better alignment (e.g., because the same modular distal end is used to guide the drill bit and to deploy the implant). If the modular distal end of the plunger does not correspond to the proximal end of the implant, that could indicate a problem with the modular distal end and/or the implant, which could inhibit or prevent placement of improper implants that may be difficult to remove once deployed.
In some embodiments, the plunger 500 includes a motion limiter or depth stop. The motion limiter can comprise one or more knobs, protrusion members, and/or other features that generally extend outwardly from the body 506 and/or the head portion 512. In some embodiments, a motion limiter is configured to slide in a portion of the lumen 408 of the introducer 400 (e.g., in the flared shape 414 but not distal thereto). A motion limiter can help inhibit or prevent distal movement of the plunger 500 relative to the introducer 400 (e.g., when the motion limiter contacts or abuts a surface of the introducer 400). A motion limited can help inhibit or prevent rotation of the plunger 500 relative to the introducer 400 during use, which can aid in proper alignment and positioning of the implant during deployment.
The body 506 of the plunger 500 can comprise a generally cylindrical shape configured to fit through the lumen 408 of the introducer 400 (e.g., including distal to the flared shape 414). The body 506 can have a lateral dimension (e.g., diameter) that is slightly smaller than a smallest lateral dimension (e.g., diameter) of the lumen 408 of the introducer 400. As discussed in greater detail herein, by actuating the deployment device, a clinician, surgeon, or other user can selectively move the plunger 500 within an interior portion of the introducer 400 in order to urge an implant (e.g., the implant 100) through the distal end 402 of the introducer 400 and in a targeted implant site. Other shapes of the body 506 are also possible (e.g., having an elliptical cross-section, having a polygonal cross-section, etc.). The body 506 may be hollow (e.g., to reduce weight or material used, if the same as the body 206), solid (e.g., to increase strength or rigidity), and the like.
In some embodiments, the deployment system or delivery device comprises and/or is operatively coupled to one or more pressure gauges or other pressure or force measuring devices, members, and/or features. Such gauges or other measurement devices can help ensure that a certain (e.g., maximum or threshold) backpressure or force is not exceeded when operating the device, which can help protect the integrity of an implant being deployed (e.g., to maintain the structural integrity, water composition, and/or other properties of the implant), protect the delivery device, protect the user and/or the subject, and/or provide one or more other advantages or benefits.
The components of the delivery device can comprise one or more rigid and/or semi-rigid materials configured to withstand the forces, moments, chemicals, and/or other substances, temperature fluctuations, and/or other elements to which they may be exposed. For example, the components of the implant delivery device can comprise one or more metals (e.g., stainless steel, surgical stainless steel, other types of steel, etc.), alloys, plastics, combinations thereof, and/or the like. Such materials can permit the device to be autoclaved, sterilized, or otherwise cleaned during a specific disinfection protocol. The structural and other physical characteristics of the device can permit the user to exert appropriate forces to deliver implants of various sizes, shapes, and/or configurations through the introducer and in a target implant site of a subject.
In some embodiments, a kit comprises at least two of the placer, drill bit, introducer, plunger, and guide pin. For example, the kit may comprise the placer and drill bit; the placer and introducer; the placer and plunger; the placer and guide pin; the placer, drill bit, and introducer; the placer, drill bit, and plunger; the placer, drill bit, and guide pin; the placer, drill bit, introducer, and plunger; the placer, drill bit, introducer, and guide pin; the placer, drill bit, plunger, and guide pin; the drill bit and introducer; the drill bit and plunger; the drill bit and guide pin; the drill bit, introducer, and plunger; the drill bit, introducer, and guide pin; the drill bit, plunger, and guide pin; the drill bit, introducer, plunger, and guide pin; the introducer and plunger; the introducer and guide pin; the introducer, plunger, and guide pin; the plunger and guide pin; the placer, drill bit, introducer, plunger, and guide pin; and any other permutations of tools described herein, modifications thereof, and the like. In certain such embodiments, the kit may comprise the implant or a plurality of implants (e.g., having different dimensions). The kit may comprise a packaging in which the components are sterilized.
In some embodiments, the kit comprises at least two of means for placing an implant (e.g., the placer), means for forming a cavity (e.g., the drill bit), and means for deploying an implant (e.g., comprising the introducer and/or the plunger). In some embodiments, the kit further comprises means for treating a joint (e.g., the implant).
In some embodiments, the kit comprises a body having a proximal end and a distal end. The distal end of the body comprises a coupling feature (e.g., threads). The kit further comprises at least one modular distal end comprising a coupling feature (e.g., threads) complementary to the coupling feature of the distal end of the body. In some embodiments, a distal surface of the modular distal end comprises a saddle shape configured to correspond to a surface of an implant. The proximal end of the body comprises a coupling feature (e.g., threads). The kit further comprises at least one modular proximal end comprising a coupling feature (e.g., threads) complementary to the coupling feature of the proximal end of the body. In some embodiments, the kit comprises a plurality of modular proximal ends. For example, a first modular proximal end may comprise a substantially flat surface and depth bands and a second modular proximal end may comprise a T-shaped handle and implant alignment indicia.
In
As shown in
In
In some embodiments, a guide pin 22 is advanced through the lumen 208 of the placer 200 and positioned in or “tamped” at least partially in the first metacarpal bone 16.
In some embodiments, the lateral dimension (e.g., diameter) of the cavity 24 is smaller than the lateral dimension (e.g., diameter) of the implant 100, which may flex radially inwardly. Although illustrated as a cylindrical hole 24, other shapes are also possible (e.g., trapezoidal tapering inwards towards the upper surface). In some embodiments, a lateral dimension and/or cross-sectional area of the cavity 24 is about 5% to about 15% (e.g., about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, ranges between such values, etc.) narrower or otherwise smaller than the lateral dimension and/or cross-sectional area of the implant 100. The cavity 24 may be coated or otherwise treated prior to positioning of the implant 100.
In
In
In
Although several embodiments and examples are disclosed herein, the present application extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the various inventions and modifications, and/or equivalents thereof. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. Accordingly, various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, the scope of the various inventions disclosed herein should not be limited by any particular embodiments described above. While the embodiments disclosed herein are susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are described in detail herein. However, the inventions of the present application are not limited to the particular forms or methods disclosed, but, to the contrary, cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element and/or the like in connection with an implementation or embodiment can be used in all other implementations or embodiments set forth herein.
In any methods disclosed herein, the acts or operations can be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence and not be performed in the order recited. Various operations can be described as multiple discrete operations in turn, in a manner that can be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, any structures described herein can be embodied as integrated components or as separate components. For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, embodiments can be carried out in a manner that achieves or optimizes one advantage or group of advantages without necessarily achieving other advantages or groups of advantages.
The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “deploying an implant” include “instructing deployment of an implant.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers and should be interpreted based on the circumstances (e.g., as accurate as reasonably possible under the circumstances, for example ±5%, ±10%, ±15%, etc.). For example, “about 1 mm” includes “1 mm.” Phrases preceded by a term such as “substantially” include the recited phrase and should be interpreted based on the circumstances (e.g., as much as reasonably possible under the circumstances). For example, “substantially rigid” includes “rigid,” and “substantially parallel” includes “parallel.”
The present application claims priority benefit of U.S. Provisional Patent App. No. 62/141,186, filed on Mar. 31, 2015.
Number | Name | Date | Kind |
---|---|---|---|
3276996 | Lazare | Oct 1966 | A |
3663470 | Nishimura et al. | May 1972 | A |
3673612 | Merrill et al. | Jul 1972 | A |
3849238 | Gould et al. | Nov 1974 | A |
3859421 | Hucke | Jan 1975 | A |
4083906 | Schindler et al. | Apr 1978 | A |
4158684 | Klawitter et al. | Jun 1979 | A |
4205400 | Shen et al. | Jun 1980 | A |
4351069 | Ballintyn et al. | Sep 1982 | A |
4472542 | Nambu | Sep 1984 | A |
4517295 | Bracke et al. | May 1985 | A |
4524064 | Nambu | Jun 1985 | A |
4609337 | Wichterle et al. | Sep 1986 | A |
4663358 | Hyon et al. | May 1987 | A |
4664857 | Nambu | May 1987 | A |
4693939 | Ofstead | Sep 1987 | A |
4731081 | Tiffany et al. | Mar 1988 | A |
4734097 | Tanabe et al. | Mar 1988 | A |
4738255 | Goble et al. | Apr 1988 | A |
4753761 | Suzuki | Jun 1988 | A |
4759766 | Buttner-Janz et al. | Jul 1988 | A |
4772284 | Suzuki | Sep 1988 | A |
4784990 | Nimrod et al. | Nov 1988 | A |
4787905 | Loi | Nov 1988 | A |
4808353 | Nambu et al. | Feb 1989 | A |
4828493 | Nambu et al. | May 1989 | A |
4851168 | Graiver et al. | Jul 1989 | A |
4911720 | Collier | Mar 1990 | A |
4916170 | Nambu | Apr 1990 | A |
4946461 | Fischer | Aug 1990 | A |
4988761 | Ikada et al. | Jan 1991 | A |
4995882 | Destouet et al. | Feb 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5080674 | Jacobs et al. | Jan 1992 | A |
5095037 | Iwamitsu et al. | Mar 1992 | A |
5106743 | Franzblau et al. | Apr 1992 | A |
5106876 | Kawamura | Apr 1992 | A |
5108428 | Capecchi et al. | Apr 1992 | A |
5108436 | Chu et al. | Apr 1992 | A |
5118667 | Adams et al. | Jun 1992 | A |
5141973 | Kobayashi et al. | Aug 1992 | A |
5171322 | Kenny | Dec 1992 | A |
5171574 | Kuberasampath et al. | Dec 1992 | A |
5192326 | Bao et al. | Mar 1993 | A |
5206023 | Hunziker | Apr 1993 | A |
5219360 | Georgiade | Jun 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5244799 | Anderson | Sep 1993 | A |
5258023 | Reger | Nov 1993 | A |
5258042 | Mehta | Nov 1993 | A |
5258043 | Stone | Nov 1993 | A |
5260066 | Wood et al. | Nov 1993 | A |
5287857 | Mann | Feb 1994 | A |
5288503 | Wood et al. | Feb 1994 | A |
5290494 | Coombes et al. | Mar 1994 | A |
5314477 | Marnay | May 1994 | A |
5314478 | Oka et al. | May 1994 | A |
5326364 | Clift, Jr. et al. | Jul 1994 | A |
5336551 | Gravier et al. | Aug 1994 | A |
5336767 | Della Valle et al. | Aug 1994 | A |
5343877 | Park | Sep 1994 | A |
5344459 | Swartz | Sep 1994 | A |
5346935 | Suzuki et al. | Sep 1994 | A |
5397572 | Coombes et al. | Mar 1995 | A |
5399591 | Smith et al. | Mar 1995 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5409904 | Hecht et al. | Apr 1995 | A |
5410016 | Hubbell et al. | Apr 1995 | A |
5442053 | Della Valle et al. | Aug 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5458645 | Bertin | Oct 1995 | A |
5486197 | Le et al. | Jan 1996 | A |
5489310 | Mikhail | Feb 1996 | A |
5490962 | Cima et al. | Feb 1996 | A |
5492697 | Boyan et al. | Feb 1996 | A |
5494940 | Unger et al. | Feb 1996 | A |
5502082 | Unger et al. | Mar 1996 | A |
5512475 | Naughton et al. | Apr 1996 | A |
5522898 | Bao | Jun 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5541234 | Unger et al. | Jul 1996 | A |
5545229 | Parsons et al. | Aug 1996 | A |
5549690 | Hollister et al. | Aug 1996 | A |
5556429 | Felt | Sep 1996 | A |
5556431 | Buttner-Janz | Sep 1996 | A |
5578217 | Unger et al. | Nov 1996 | A |
5601562 | Wolf et al. | Feb 1997 | A |
5626861 | Laurencin et al. | May 1997 | A |
5645592 | Nicolais et al. | Jul 1997 | A |
5645605 | Klawitter | Jul 1997 | A |
5656450 | Boyan et al. | Aug 1997 | A |
5658329 | Purkait | Aug 1997 | A |
5674241 | Bley et al. | Oct 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5688459 | Mao et al. | Nov 1997 | A |
5700289 | Breitbart et al. | Dec 1997 | A |
5705780 | Bao | Jan 1998 | A |
5716416 | Lin | Feb 1998 | A |
5750585 | Park et al. | May 1998 | A |
5766618 | Laurencin et al. | Jun 1998 | A |
5769897 | Harle | Jun 1998 | A |
5769899 | Schwartz et al. | Jun 1998 | A |
5789464 | Muller | Aug 1998 | A |
5795353 | Felt | Aug 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5844016 | Sawhney et al. | Dec 1998 | A |
5847046 | Jiang et al. | Dec 1998 | A |
5855610 | Vacanti et al. | Jan 1999 | A |
5863297 | Walter et al. | Jan 1999 | A |
5863551 | Woerly | Jan 1999 | A |
5876452 | Anthanasiou et al. | Mar 1999 | A |
5876741 | Ron | Mar 1999 | A |
5880216 | Tanihara et al. | Mar 1999 | A |
5882351 | Fox | Mar 1999 | A |
5900245 | Sawhney et al. | May 1999 | A |
5916585 | Cook et al. | Jun 1999 | A |
5925626 | Della Valle et al. | Jul 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5935129 | McDevitt et al. | Aug 1999 | A |
5944754 | Vacanti | Aug 1999 | A |
5947844 | Shimosaka et al. | Sep 1999 | A |
5948829 | Wallajapet et al. | Sep 1999 | A |
5957787 | Hwang | Sep 1999 | A |
5976186 | Bao et al. | Nov 1999 | A |
5981826 | Ku et al. | Nov 1999 | A |
6001352 | Boyan et al. | Dec 1999 | A |
6027744 | Vacanti et al. | Feb 2000 | A |
6060534 | Ronan et al. | May 2000 | A |
6093205 | McLeod et al. | Jul 2000 | A |
6102954 | Albrektsson et al. | Aug 2000 | A |
6103255 | Levene et al. | Aug 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6171610 | Vacanti et al. | Jan 2001 | B1 |
6187329 | Agrawal et al. | Feb 2001 | B1 |
6206927 | Fell | Mar 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6231605 | Ku | May 2001 | B1 |
6245026 | Campbell | Jun 2001 | B1 |
6255359 | Agrawal et al. | Jul 2001 | B1 |
6264695 | Stoy | Jul 2001 | B1 |
6268405 | Yao et al. | Jul 2001 | B1 |
6271278 | Park et al. | Aug 2001 | B1 |
6280475 | Bao et al. | Aug 2001 | B1 |
6334044 | Wasai et al. | Dec 2001 | B1 |
6337198 | Levene et al. | Jan 2002 | B1 |
6340369 | Ferree | Jan 2002 | B1 |
6341952 | Gaylo et al. | Jan 2002 | B2 |
6344058 | Ferree | Feb 2002 | B1 |
6355699 | Vyakarnam et al. | Mar 2002 | B1 |
6358251 | Mirza | Mar 2002 | B1 |
6371984 | Van Dyke et al. | Apr 2002 | B1 |
6376573 | White et al. | Apr 2002 | B1 |
6379962 | Holy et al. | Apr 2002 | B1 |
6383519 | Sapieszko et al. | May 2002 | B1 |
6402784 | Wardlaw | Jun 2002 | B1 |
6402785 | Zdeblick et al. | Jun 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6428576 | Haldimann | Aug 2002 | B1 |
6451059 | Janas et al. | Sep 2002 | B1 |
6472210 | Holy et al. | Oct 2002 | B1 |
6482234 | Weber et al. | Nov 2002 | B1 |
6531523 | Davankov et al. | Mar 2003 | B1 |
6533818 | Weber et al. | Mar 2003 | B1 |
6534084 | Vyakarnam et al. | Mar 2003 | B1 |
6558421 | Fell et al. | May 2003 | B1 |
6602291 | Ray et al. | Aug 2003 | B1 |
6607558 | Kuras | Aug 2003 | B2 |
6610094 | Husson | Aug 2003 | B2 |
6629997 | Mansmann | Oct 2003 | B2 |
6645248 | Casutt | Nov 2003 | B2 |
6667049 | Janas et al. | Dec 2003 | B2 |
6679917 | Ek | Jan 2004 | B2 |
6686437 | Buchman et al. | Feb 2004 | B2 |
6707558 | Bennett | Mar 2004 | B2 |
6710126 | Hirt et al. | Mar 2004 | B1 |
6726721 | Stoy et al. | Apr 2004 | B2 |
6733533 | Lozier | May 2004 | B1 |
6734000 | Chin et al. | May 2004 | B2 |
6740118 | Eisermann et al. | May 2004 | B2 |
6773713 | Bonassar et al. | Aug 2004 | B2 |
6783546 | Zucherman et al. | Aug 2004 | B2 |
6783721 | Higham et al. | Aug 2004 | B2 |
6800298 | Burdick et al. | Oct 2004 | B1 |
6802863 | Lawson et al. | Oct 2004 | B2 |
6827743 | Eisermann et al. | Dec 2004 | B2 |
6840960 | Bubb | Jan 2005 | B2 |
6849092 | Van Dyke et al. | Feb 2005 | B2 |
6855743 | Gvozdic | Feb 2005 | B1 |
6875232 | Nigam | Apr 2005 | B2 |
6875386 | Ward et al. | Apr 2005 | B1 |
6875442 | Holy et al. | Apr 2005 | B2 |
6878384 | Cruise et al. | Apr 2005 | B2 |
6881228 | Zdeblick et al. | Apr 2005 | B2 |
6893463 | Fell | May 2005 | B2 |
6893466 | Trieu | May 2005 | B2 |
6923811 | Carl et al. | Aug 2005 | B1 |
6960617 | Omidian et al. | Nov 2005 | B2 |
6982298 | Calabro et al. | Jan 2006 | B2 |
6993406 | Cesarano, III et al. | Jan 2006 | B1 |
7008635 | Coury et al. | Mar 2006 | B1 |
7012034 | Heide et al. | Mar 2006 | B2 |
7022522 | Guan et al. | Apr 2006 | B2 |
7029479 | Tallarida et al. | Apr 2006 | B2 |
7048766 | Ferree | May 2006 | B2 |
7052515 | Simonson | May 2006 | B2 |
7060097 | Fraser et al. | Jun 2006 | B2 |
7066958 | Ferree | Jun 2006 | B2 |
7066960 | Dickman | Jun 2006 | B1 |
7083649 | Zucherman et al. | Aug 2006 | B2 |
7091191 | Laredo et al. | Aug 2006 | B2 |
7156877 | Lotz et al. | Jan 2007 | B2 |
7186419 | Petersen | Mar 2007 | B2 |
7201774 | Ferree | Apr 2007 | B2 |
7201776 | Ferree et al. | Apr 2007 | B2 |
7214245 | Marcolongo et al. | May 2007 | B1 |
7217294 | Kusanagi et al. | May 2007 | B2 |
7235592 | Muratoglu et al. | Jun 2007 | B2 |
7250060 | Trieu | Jul 2007 | B2 |
7258692 | Thelen et al. | Aug 2007 | B2 |
7264634 | Schmieding | Sep 2007 | B2 |
7282165 | Williams, III et al. | Oct 2007 | B2 |
7291169 | Hodorek | Nov 2007 | B2 |
7316919 | Childs et al. | Jan 2008 | B2 |
7332117 | Higham et al. | Feb 2008 | B2 |
7357798 | Sharps et al. | Apr 2008 | B2 |
7377942 | Berry | May 2008 | B2 |
7682540 | Boyan et al. | Mar 2010 | B2 |
7731988 | Thomas et al. | Jun 2010 | B2 |
7745532 | Ruberti et al. | Jun 2010 | B2 |
7828853 | Ek et al. | Nov 2010 | B2 |
7910124 | Boyan et al. | Mar 2011 | B2 |
7985781 | Muratoglu et al. | Jul 2011 | B2 |
8002830 | Boyan et al. | Aug 2011 | B2 |
8142808 | Boyan et al. | Mar 2012 | B2 |
8318192 | Boyan et al. | Nov 2012 | B2 |
8334044 | Myung et al. | Dec 2012 | B2 |
8475503 | Denoziere et al. | Jul 2013 | B2 |
8486436 | Boyan et al. | Jul 2013 | B2 |
8709045 | Folsom | Apr 2014 | B1 |
8895073 | Boyan et al. | Nov 2014 | B2 |
9155543 | Walsh et al. | Oct 2015 | B2 |
9526632 | Walsh et al. | Dec 2016 | B2 |
9545310 | Maher et al. | Jan 2017 | B2 |
9737294 | Wales et al. | Aug 2017 | B2 |
9907663 | Patrick et al. | Mar 2018 | B2 |
20010016741 | Burkus | Aug 2001 | A1 |
20010029399 | Ku | Oct 2001 | A1 |
20010038831 | Park et al. | Nov 2001 | A1 |
20010039455 | Simon et al. | Nov 2001 | A1 |
20010046488 | Vandenburgh et al. | Nov 2001 | A1 |
20020026244 | Trieu | Feb 2002 | A1 |
20020031500 | MacLaughlin et al. | Mar 2002 | A1 |
20020034646 | Canham | Mar 2002 | A1 |
20020072116 | Bhatia et al. | Jun 2002 | A1 |
20020140137 | Sapieszko et al. | Oct 2002 | A1 |
20020173855 | Mansmann | Nov 2002 | A1 |
20020183845 | Mansmann | Dec 2002 | A1 |
20020183848 | Ray et al. | Dec 2002 | A1 |
20020187182 | Kramer et al. | Dec 2002 | A1 |
20030008395 | Holy et al. | Jan 2003 | A1 |
20030008396 | Ku | Jan 2003 | A1 |
20030021823 | Landers et al. | Jan 2003 | A1 |
20030055505 | Sicotte et al. | Mar 2003 | A1 |
20030059463 | Lahtinen | Mar 2003 | A1 |
20030082808 | Guan et al. | May 2003 | A1 |
20030175656 | Livne et al. | Sep 2003 | A1 |
20030176922 | Lawson et al. | Sep 2003 | A1 |
20030199984 | Trieu | Oct 2003 | A1 |
20030220695 | Sevrain | Nov 2003 | A1 |
20030233150 | Bourne et al. | Dec 2003 | A1 |
20030236573 | Evans et al. | Dec 2003 | A1 |
20040010048 | Evans et al. | Jan 2004 | A1 |
20040024465 | Lambrecht et al. | Feb 2004 | A1 |
20040034434 | Evans | Feb 2004 | A1 |
20040044412 | Lambrecht et al. | Mar 2004 | A1 |
20040052867 | Canham | Mar 2004 | A1 |
20040059415 | Schmieding | Mar 2004 | A1 |
20040059425 | Schmieding | Mar 2004 | A1 |
20040063200 | Chaikof et al. | Apr 2004 | A1 |
20040064195 | Herr | Apr 2004 | A1 |
20040073312 | Eisermann et al. | Apr 2004 | A1 |
20040092653 | Ruberti et al. | May 2004 | A1 |
20040117022 | Marnay et al. | Jun 2004 | A1 |
20040143327 | Ku | Jul 2004 | A1 |
20040143329 | Ku | Jul 2004 | A1 |
20040143333 | Bain et al. | Jul 2004 | A1 |
20040147016 | Rowley et al. | Jul 2004 | A1 |
20040171143 | Chin et al. | Sep 2004 | A1 |
20040172135 | Mitchell | Sep 2004 | A1 |
20040220296 | Lowman et al. | Nov 2004 | A1 |
20040220669 | Studer | Nov 2004 | A1 |
20040220670 | Eisermann et al. | Nov 2004 | A1 |
20040249465 | Ferree | Dec 2004 | A1 |
20050037052 | Udipi et al. | Feb 2005 | A1 |
20050043733 | Eisermann et al. | Feb 2005 | A1 |
20050043802 | Eisermann et al. | Feb 2005 | A1 |
20050049706 | Brodke et al. | Mar 2005 | A1 |
20050055094 | Kuslich | Mar 2005 | A1 |
20050055099 | Ku | Mar 2005 | A1 |
20050071003 | Ku | Mar 2005 | A1 |
20050074877 | Mao | Apr 2005 | A1 |
20050079200 | Rathenow et al. | Apr 2005 | A1 |
20050090901 | Studer | Apr 2005 | A1 |
20050096744 | Trieu et al. | May 2005 | A1 |
20050106255 | Ku | May 2005 | A1 |
20050137677 | Rush | Jun 2005 | A1 |
20050137707 | Malek | Jun 2005 | A1 |
20050143826 | Zucherman et al. | Jun 2005 | A1 |
20050149196 | Zucherman et al. | Jul 2005 | A1 |
20050154462 | Zucherman et al. | Jul 2005 | A1 |
20050154463 | Trieu | Jul 2005 | A1 |
20050169963 | Van Dyke et al. | Aug 2005 | A1 |
20050171608 | Peterman et al. | Aug 2005 | A1 |
20050177238 | Khandkar et al. | Aug 2005 | A1 |
20050209704 | Maspero et al. | Sep 2005 | A1 |
20050216087 | Zucherman et al. | Sep 2005 | A1 |
20050228500 | Kim et al. | Oct 2005 | A1 |
20050233454 | Nies et al. | Oct 2005 | A1 |
20050244449 | Sayer et al. | Nov 2005 | A1 |
20050260178 | Vandenburgh et al. | Nov 2005 | A1 |
20050261682 | Ferree | Nov 2005 | A1 |
20050273176 | Ely et al. | Dec 2005 | A1 |
20050277921 | Eisermann et al. | Dec 2005 | A1 |
20050278025 | Ku et al. | Dec 2005 | A1 |
20050287187 | Mansmann | Dec 2005 | A1 |
20060002890 | Hersel et al. | Jan 2006 | A1 |
20060052874 | Johnson et al. | Mar 2006 | A1 |
20060052875 | Bernero et al. | Mar 2006 | A1 |
20060052878 | Schmieding | Mar 2006 | A1 |
20060058413 | Leistner et al. | Mar 2006 | A1 |
20060064172 | Trieu | Mar 2006 | A1 |
20060064173 | Guederian | Mar 2006 | A1 |
20060083728 | Kusanagi et al. | Apr 2006 | A1 |
20060100304 | Vresilovic et al. | May 2006 | A1 |
20060121609 | Yannas et al. | Jun 2006 | A1 |
20060122706 | Lo | Jun 2006 | A1 |
20060136064 | Sherman | Jun 2006 | A1 |
20060136065 | Gontarz et al. | Jun 2006 | A1 |
20060178748 | Dinger, III | Aug 2006 | A1 |
20060200250 | Ku | Sep 2006 | A1 |
20060206209 | Cragg et al. | Sep 2006 | A1 |
20060224244 | Thomas et al. | Oct 2006 | A1 |
20060229721 | Ku | Oct 2006 | A1 |
20060235541 | Hodorek | Oct 2006 | A1 |
20060241777 | Partin et al. | Oct 2006 | A1 |
20060257560 | Barone et al. | Nov 2006 | A1 |
20060259144 | Trieu | Nov 2006 | A1 |
20060282165 | Pisharodi | Dec 2006 | A1 |
20060282166 | Molz et al. | Dec 2006 | A1 |
20060287730 | Segal et al. | Dec 2006 | A1 |
20060293561 | Abay | Dec 2006 | A1 |
20060293751 | Lotz et al. | Dec 2006 | A1 |
20070010889 | Francis | Jan 2007 | A1 |
20070014867 | Kusanagi et al. | Jan 2007 | A1 |
20070032873 | Pisharodi | Feb 2007 | A1 |
20070038301 | Hudgins | Feb 2007 | A1 |
20070043441 | Pisharodi | Feb 2007 | A1 |
20070067036 | Hudgins et al. | Mar 2007 | A1 |
20070073402 | Vresilovic et al. | Mar 2007 | A1 |
20070093906 | Hudgins et al. | Apr 2007 | A1 |
20070106387 | Marcolongo et al. | May 2007 | A1 |
20070116678 | Sung et al. | May 2007 | A1 |
20070118218 | Hooper | May 2007 | A1 |
20070118225 | Hestad et al. | May 2007 | A1 |
20070134333 | Thomas et al. | Jun 2007 | A1 |
20070135922 | Trieu | Jun 2007 | A1 |
20070142326 | Shue | Jun 2007 | A1 |
20070162135 | Segal et al. | Jul 2007 | A1 |
20070164464 | Ku | Jul 2007 | A1 |
20070167541 | Ruberti et al. | Jul 2007 | A1 |
20070168039 | Trieu | Jul 2007 | A1 |
20070173951 | Wijlaars et al. | Jul 2007 | A1 |
20070179606 | Huyghe et al. | Aug 2007 | A1 |
20070179614 | Heinz et al. | Aug 2007 | A1 |
20070179615 | Heinz et al. | Aug 2007 | A1 |
20070179617 | Brown et al. | Aug 2007 | A1 |
20070179618 | Trieu et al. | Aug 2007 | A1 |
20070179620 | Seaton, Jr. et al. | Aug 2007 | A1 |
20070179621 | McClellan, III et al. | Aug 2007 | A1 |
20070179622 | Denoziere et al. | Aug 2007 | A1 |
20070196454 | Stockman et al. | Aug 2007 | A1 |
20070202074 | Shalaby | Aug 2007 | A1 |
20070203095 | Sadozai et al. | Aug 2007 | A1 |
20070203580 | Yeh | Aug 2007 | A1 |
20070208426 | Trieu | Sep 2007 | A1 |
20070213718 | Trieu | Sep 2007 | A1 |
20070213822 | Trieu | Sep 2007 | A1 |
20070213823 | Trieu | Sep 2007 | A1 |
20070213824 | Trieu | Sep 2007 | A1 |
20070213825 | Thramann | Sep 2007 | A1 |
20070224238 | Mansmann et al. | Sep 2007 | A1 |
20070225823 | Hawkins et al. | Sep 2007 | A1 |
20070227547 | Trieu | Oct 2007 | A1 |
20070233135 | Gil et al. | Oct 2007 | A1 |
20070233259 | Muhanna et al. | Oct 2007 | A1 |
20070265626 | Seme | Nov 2007 | A1 |
20070270876 | Kuo et al. | Nov 2007 | A1 |
20070270970 | Trieu | Nov 2007 | A1 |
20070270971 | Trieu et al. | Nov 2007 | A1 |
20070276392 | Beyar et al. | Nov 2007 | A1 |
20070299540 | Ku | Dec 2007 | A1 |
20080004707 | Cragg et al. | Jan 2008 | A1 |
20080015697 | McLeod et al. | Jan 2008 | A1 |
20080021563 | Chudzik | Jan 2008 | A1 |
20080031962 | Boyan et al. | Feb 2008 | A1 |
20080045949 | Hunt et al. | Feb 2008 | A1 |
20080051889 | Hodorek | Feb 2008 | A1 |
20080057128 | Li et al. | Mar 2008 | A1 |
20080075657 | Abrahams et al. | Mar 2008 | A1 |
20080077242 | Reo et al. | Mar 2008 | A1 |
20080077244 | Robinson | Mar 2008 | A1 |
20080097606 | Cragg et al. | Apr 2008 | A1 |
20080103599 | Kim et al. | May 2008 | A1 |
20080114367 | Meyer | May 2008 | A1 |
20080125870 | Carmichael et al. | May 2008 | A1 |
20080131425 | Garcia et al. | Jun 2008 | A1 |
20080145404 | Hill et al. | Jun 2008 | A1 |
20080154372 | Peckham | Jun 2008 | A1 |
20080166329 | Sung et al. | Jul 2008 | A1 |
20080221505 | Betts | Sep 2008 | A1 |
20080269908 | Warburton | Oct 2008 | A1 |
20080279941 | Boyan et al. | Nov 2008 | A1 |
20080279943 | Boyan et al. | Nov 2008 | A1 |
20090043398 | Yakimicki et al. | Feb 2009 | A1 |
20090138015 | Connor et al. | May 2009 | A1 |
20090177205 | McCormack et al. | Jul 2009 | A1 |
20090182421 | Silvestrini et al. | Jul 2009 | A1 |
20090263446 | Boyan et al. | Oct 2009 | A1 |
20100161073 | Thomas et al. | Jun 2010 | A1 |
20100198258 | Heaven et al. | Aug 2010 | A1 |
20100324693 | Hardenbrook | Dec 2010 | A1 |
20100324694 | Hassler et al. | Dec 2010 | A1 |
20110040332 | Culbert et al. | Feb 2011 | A1 |
20110172771 | Boyan et al. | Jul 2011 | A1 |
20110208305 | Malinin | Aug 2011 | A1 |
20110270400 | Kita et al. | Nov 2011 | A1 |
20110318704 | Teichmann | Dec 2011 | A1 |
20120022568 | Koblish et al. | Jan 2012 | A1 |
20120053642 | Lozier et al. | Mar 2012 | A1 |
20120203346 | Kraus | Aug 2012 | A1 |
20130006368 | Walsh et al. | Jan 2013 | A1 |
20130211451 | Wales et al. | Aug 2013 | A1 |
20140214080 | Wales et al. | Jul 2014 | A1 |
20140324169 | Maher et al. | Oct 2014 | A1 |
20150351815 | Wales et al. | Dec 2015 | A1 |
20160038308 | Walsh et al. | Feb 2016 | A1 |
20160287392 | Patrick et al. | Oct 2016 | A1 |
20160302930 | Axelrod et al. | Oct 2016 | A1 |
20170165074 | Walsh et al. | Jun 2017 | A1 |
20170304039 | Eaves, III et al. | Oct 2017 | A1 |
20180185159 | Patrick et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
20218703 | Mar 2003 | DE |
0222404 | May 1987 | EP |
0222407 | May 1987 | EP |
0346129 | Dec 1989 | EP |
0505634 | Sep 1992 | EP |
0410010 | Oct 1993 | EP |
0411105 | Jun 1995 | EP |
0845480 | Jun 1998 | EP |
0919209 | Jun 1999 | EP |
1287796 | Mar 2003 | EP |
1030697 | Aug 2003 | EP |
1344538 | Sep 2003 | EP |
1584338 | Oct 2005 | EP |
1482996 | Nov 2005 | EP |
02056882 | Mar 1981 | GB |
02128501 | May 1984 | GB |
02-184580 | Jul 1990 | JP |
04053843 | Feb 1992 | JP |
07247365 | Sep 1995 | JP |
11035732 | Feb 1999 | JP |
2005-199054 | Jul 2005 | JP |
2006-101893 | Apr 2006 | JP |
WO90007545 | Jul 1990 | WO |
WO90007575 | Jul 1990 | WO |
WO90010018 | Sep 1990 | WO |
WO93016664 | Sep 1992 | WO |
WO94001483 | Jan 1994 | WO |
WO95025183 | Sep 1995 | WO |
WO97006101 | Feb 1997 | WO |
WO97046178 | Dec 1997 | WO |
WO98002146 | Jan 1998 | WO |
WO98050017 | Nov 1998 | WO |
WO99025391 | May 1999 | WO |
WO99034845 | Jul 1999 | WO |
WO00030998 | Jun 2000 | WO |
WO00042991 | Jul 2000 | WO |
WO00062829 | Oct 2000 | WO |
WO00066191 | Nov 2000 | WO |
WO01002033 | Jan 2001 | WO |
WO01022902 | Apr 2001 | WO |
WO01059160 | Aug 2001 | WO |
WO01064030 | Sep 2001 | WO |
WO01070436 | Sep 2001 | WO |
WO01091822 | Dec 2001 | WO |
WO02009647 | Feb 2002 | WO |
WO02030480 | Apr 2002 | WO |
WO02064182 | Aug 2002 | WO |
WO03030787 | Apr 2003 | WO |
WO03092760 | Nov 2003 | WO |
WO04060554 | Jul 2004 | WO |
WO04101013 | Nov 2004 | WO |
WO05077013 | Aug 2005 | WO |
WO05077304 | Aug 2005 | WO |
WO05097006 | Oct 2005 | WO |
WO06018531 | Feb 2006 | WO |
WO06019634 | Feb 2006 | WO |
WO06030054 | Mar 2006 | WO |
WO06034365 | Mar 2006 | WO |
WO 2006060416 | Jun 2006 | WO |
WO 2012162552 | Nov 2012 | WO |
Entry |
---|
Andrade et al., “Water as a Biomaterial,” Trans. Am. Soc. Artif. Intern. Organs, 19:1 (1973). |
Ariga et al., “Immobilization of Microorganisms with PVA Hardened by Iterative Freezing and Thawing,” Journal of Fermentation Technology, 65(6): pp. 651-658 (1987). |
Boyan et al., “Effect of Titanium Surface Characteristics on Chondrocytes and Osteoblasts in Vitro,” Cells and Materials, vol. 5, No. 4, pp. 323-335 (1995). |
Boyan et al., “Osteoblast-Mediated Mineral Deposition in Culture is Dependent on Surface Microtopography,” Calcif. Tissue Int., 71:519-529 (2002). |
Bray et al., Poly(vinyl alcohol) Hydrogels for Synthetic Articular Cartilage Material, M. Biomed. Mater. Res., vol. 7, pp. 431-443. |
Brunette, “The Effects of Implant Surface Topography on the Behavior of Cells,” Int. J. Oral Maxillofac Implants, 3:231-240 (1988). |
Chen et al., “Boundary layer infusion of heparin prevents thrombosis and reduces neointimal hyperplasia in venous polytetrafluoroethylene grafts without system anticoagulation,” J. Vascular Surgery, 22:237-247 (1995). |
Chu et al., “Polyvinyl Alcohol Cryogel: An Ideal Phantom Material for MR Studies of Arterial Elasticity,” Magnetic Resonance in Medicine, v. 37, pp. 314-319 (1997). |
Hickey et al., “Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques,” Journal of Membrane Science, 107(3), pp. 229-237 (1995). |
Hoffman et al., “Interactions of Blood and Blood Components at Hydrogel Interfaces,” Ann. New York Acad. Sci., 283:372-382 (1977). |
Hunt, Knee Simulation, Creep, and Friction Tests of Poly(Vinyl Alcohol) Hydrogels Manufactured Using Injection Molding and Solution Casting, Thesis for M.S., University of Notre Dame (Jul. 2006). |
Katta et al., “Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement,” Journal of Biomedical Materials Research, vol. 83A, pp. 471-479 (2007). |
Kieswetter et al., “The Role of Implant Surface Characteristics in the Healing of Bone,” Crit. Rev. Oral Biol. Med., 7(4):329-345 (1996). |
Kieswetter et al., “Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells,” Journal of Biomedical Materials Research, vol. 32, pp. 55-63 (1996). |
Kobayashi et al., “Characterization of a polyvinyl alcohol-hydrogel artificial articular cartilage prepared by injection molding,” J. Biomater. Sci. Polymer Edn., 15(6): 741-751 (2003). |
Kobayashi et al., “Development of an artificial meniscus using polyvinyl alcohol-hydrogel for early return to, and continuance of, athletic life in sportspersons with severe meniscus injury. I: mechanical evaluation.” The Knee, 10 (2003); 47-51. |
Kohavi et al., “Markers of primary mineralization are correlated with bone-bonding ability of titanium or stainless steel in vivo,” Clin. Oral. Impl. Res., 6:1-13 (1995). |
Koutsopoulos et al., “Calcification of porcine and human cardiac valves: testing of various inhibitors for antimineralization,” J. Mater. Sci. Mater. Med., 9:421-424 (1998). |
Kwak, BK, et al., “Chitin-based Embolic Materials in the Renal Artery of Rabbits: Pathologic Evaluation of an Absorbable Particulate Agent”, Radiology, 236:151-158 (2005). |
Landolt et al., “Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments”, Elsevier Science Ltd., pp. 3185-3201 (2003). |
Lazzeri et al., “Physico-chemical and mechanical characterization of hydrogels of poly(vinyl alcohol) and hyaluronic acid,” J. Mater. Sci. in Med., 5:862-867 (1994). |
Liao et al., “Response of rat osteoblast-like cells to microstructured model surfaces in vitro,” Biomaterials, 24, pp. 649-654 (2003). |
Lozinsky et al., “Study of cryostructurization of polymer systems. VII. Structure formation under freezing of poly(vinyl alcohol) acqueous solutions,” Colloid & Polymer Science, vol. 264, pp. 19-24 (1986). |
Lozinsky et al., “Study of Cryostructuration of Polymer Systems. XII. Poly(vinyl alcohol) Cryogels: Influence of Low-Molecular Electrolytes,” Journal of Applied Polymer Science, vol. 61, pp. 1991-1998 (1996). |
Lozinsky et al., “Study of Cryostructuration of Polymer Systems. Xl. The Formation of PVA Cryogels by Freezing-Thawing the Polymer Aqueous Solutions Containing Additives of Some Polyols,” Journal of Applied Polymer Science, vol. 58, pp. 171-177 (1995). |
Lozinsky et al., “Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 2. Entrapped cells resemble porous fillers in their effects on the properties of PVA-cryogel carrier,” Enzyme and Microbial Technology, vol. 20, No. 3, pp. 182-190 (1997). |
Lozinsky et al., “Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments,” Enzyme and Microbial Technology, vol. 23, No. 3-4, pp. 227-242 (1998). |
Lusta et al., “Immobilization of fungus Aspergillus sp. by a novel cryogel technique for production of extracellular hydrolytic enzymes”, Process Biochemistry, vol. 35, pp. 1177-1182 (2000). |
Ma et al., “Friction Properties of novel PVP/PVA blend hydrogels as artificial cartilage,” Journal of Biomedical Materials Research, vol. 93A, pp. 1016-1019 (2010). |
Martin et al., “Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63),” Journal of Biomedical Materials Research, vol. 29, pp. 389-401 (1995). |
Nagura et al., “Structure of poly(vinyl alcohol) hydrogel prepared by repeated freezing and melting,” Polymer, 30:762-765 (1989). |
Nakashima et al., “Study on Wear Reduction Mechanisms of Artificial Cartilage by Synergistic Protein Boundary Film Formation,” Japan Soc'y of Mech. Eng'r Int'l J., Series C, vol. 48, No. 4, pp. 555-561 (2005). |
Oka et al., “Development of an Artificial Articular Cartilage”, Clinical Materials, vol. 6, pp. 361-381 (1990). |
Ong et al., “Osteoblast Responses to BMP-2-Treated Titanium in Vitro,” The International Journal of Oral & Maxillofacial Implants, vol. 12, No. 5, pp. 649-654 (1997). |
Peppas et al., “Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review,” Journal of Controlled Release, 16(3): 305-310 (1991). |
Peppas et al., “Structure of Hydrogels by Freezing-Thawing Cyclic Processing,” Bulletin of the American Physical Society, 36:582 (1991). |
Peppas et al., “Controlled release from poly(vinyl alcohol) gels prepared by freezing-thawing processes,” Journal of Controlled Release, vol. 18, pp. 95-100 (1992). |
Peppas et al., “Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery characteristics,” European Journal of Pharmaceutics and Biopharmaceutics, 43(1): 51-58 (1997). |
Ratner et al., Biomaterials Science an Introduction to Materials in Medicine, Academic Press, pp. 52, 53, & 62 (1996). |
Ricciardi et al., “Structure and Properties of Poly(vinyl alcohol) Hydrogels Obtained by Freeze/Thaw Techniques,” Macromol. Symp., 222: 49-63 (2005). |
Schwartz et al., “Underlying Mechanisms at the Bone-Biomaterial Interface,” Journal of Cellular Biochemistry, 56:340-347 (1994). |
Singh et al., “Polymeric Hydrogels: Preparation and Biomedical Applications,” J. Sci. Ind. Res., 39:162-171 (1980). |
Stauffer et al., “Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing,” Polymer 33(1818):3932-3936 (1992). |
Stewart et al., “Protein release from PVA gels prepared by freezing and thawing techniques,” Proc. Int. Symp. Controlled Release Bioact. Mater., 26th, 1004-1005 (1999). |
Szczesna-Antezak et al., “Bacillus subtilis cells immobilised in PVA-cryogels,” Biomolecular Engineering, vol. 17, pp. 55-63 (2001). |
The American Heritage® Science Dictionary [online], Houghton Mifflin Company, 2002 [retrieved on Jun. 3, 2008]. Retrieved from the internet: <URL: http://dictionary.reference.com/browse/pore>. |
Watase et al., “Rheological and DSC Changes in Poly(vinyl alcohol) Gels Induced by Immersion in Water,” Journal of Polymer Science, Polym. Phys. Ed, 23(9): 1803-1811 (1985). |
Watase et al., “Thermal and rheological properties of poly(vinyl alcohol) hydrogels prepared by repeated cycles of freezing and thawing,” Makromol. Chem., v. 189, pp. 871-880 (1988). |
Willcox et al., “Microstructure of Poly(vinyl alcohol) Hydrogels Produced by Freeze/Thaw Cycling,” Journal of Polymer Sciences: Part B: Polymer Physics, vol. 37, pp. 3438-3454 (1999). |
WordNet® 3.0 [online], Princeton University, 2006 [retrieved on Aug. 6, 2008]. Retrieved from the Internet: <URL: http://dictionary.reference.com/browse/mesh>. |
Yamaura et al., “Properties of Gels Obtained by Freezing/Thawing of Poly(vinyl Alcohol)/Water/Dimethyl Sulfoxide Solutions,” J. Appl. Polymer Sci., 37:2709-2718 (1989). |
Yokoyama et al., “Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting”, Colloid & Polymer Science, vol. 264, No. 7, pp. 595-601 (1986). |
Zheng-Qiu et al., “The development of artificial articular cartilage—PVA-hydrogel,” Bio-Medical Materials and Engineering, vol. 8, pp. 75-81 (1998). |
Extended European Search Report issued in connection with European Patent Application No. 19213121.7, dated Feb. 26, 2020, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20160287407 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62141186 | Mar 2015 | US |