1. Field of the Invention
The present invention relates generally to ink-jet printing and, more specifically to an ink-jet pen carriage assembly having a torsional deflection control pen latching subsystem for increasing stiffness and maintaining accurate pen-to-paper alignment.
2. Description of Related Art
The art of ink-jet technology is relatively well developed. Commercial products such as computer printers, graphics plotters, copiers, and facsimile machines employ ink-jet technology for producing hard copy. The basics of this technology are disclosed, for example, in various articles in the Hewlett-Packard Journal, Vol. 36, No. 5 (May 1985), Vol. 39, No. 4 (August 1988), Vol. 39, No. 5 (October 1988), Vol. 43, No. 4 (August 1992), Vol. 43, No. 6 (December 1992) and Vol. 45, No.1 (February 1994) editions. Inkjet devices are also described by W. J. Lloyd and H. T. Taub in Output Hardcopy [sic] Devices, chapter 13 (Ed. R. C. Durbeck and S. Sherr, Academic Press, San Diego, 1988).
For convenience of describing the inkjet technology and the present invention, all types of print media are referred to simply as “paper,” all compositions of colorants are referred to simply as “ink,” ink-jet writing instruments are referred to as “pens” or “cartridges,” and all types of hard copy apparatus are referred to simply as a “printer.” No limitation on the scope of invention is intended nor should any be implied.
In essence, the ink-jet printing process involves digitized dot-matrix manipulation of drops of ink ejected from an ink-jet printhead onto an adjacent paper. The printhead generally consists of drop generator mechanisms and a number of columns of ink drop firing nozzles. Each column or selected subset (referred to in the art as a “primitive”) of nozzles selectively fires ink droplets (typically each being only a few picoliters in liquid volume) that are used to create a predetermined print matrix of dots on the adjacently positioned paper as the pen is scanned across the media. A given nozzle of the printhead is used to address a given matrix column print position on the paper (referred to as a picture element, or “pixel”). Horizontal positions, matrix pixel rows, on the paper are addressed by repeatedly firing a given nozzle at matrix row print positions as the pen is scanned. Thus, a single sweep scan of the pen across the paper can print a swath of tens of thousands of dots. The paper is stepped to permit a series of contiguous swaths. Complex digital dot matrix manipulation is used to form alphanumeric characters, graphical images, and even photographic reproductions from the ink drops.
In the state of the art, the nominal printhead-to-paper spacing is about one millimeter. Printer designers attempt to reduce pen-to-paper spacing as a means of improving print quality. However, carriage assembly torsional deflections can cause each printhead face, or “nozzle plate,” to be off-kilter, limiting the attempt to narrow the gap between the printhead and the paper. As illustrated in
Moreover, the problem becomes more complex when more pens are added to the printer design to accommodate higher print quality demands such as for very high resolution photographic reproductions where the ink-jet print is indistinguishable from a photolab darkroom developer process photograph, or multi-printhead, staggered, printhead array carriages for improving throughput. The larger the pen carriage, the greater the problem.
Most attempts to solve the problem focus on creating a more stable base platform for the hard copy apparatus as a whole. Such solutions often result in the use of heavier, more expensive, manufacturing materials or designs having a larger work space footprint.
Moreover, manufacturing tolerances allowed in springs, pen body datums, and the like parts of the assembly, can result in variations in torsional deflections in the carriage from assembly-to-assembly. Thus, another solution is required.
Other methods and apparatus are designed to stabilize the printhead alignment focus on the pen-to-bay interface mechanisms; see e.g., U.S. patent application Ser. No. 08/878,489 by common assignee Williams, et al. for an INKJET PEN ALIGNMENT MECHANISM AND METHOD, or U.S. patent application Ser. No. 09/431,712 by common assignor Williams, et al. for a DATUM STRUCTURE FOR COMPACT PRINT CARTRIDGE, or U.S. patent application Ser. No. 09/431,711 by Heiles et al. for a UNITARY LATCHING DEVICE FOR SECURE POSITIONING OF PRINT CARTRIDGE(S) DURING PRINTING, PRIMING AND REPLENISHMENT (each assigned to the common assignee herein and incorporated herein by reference).
Therefore, there is a need for simplified mechanisms to reduce torsional deflections in ink-jet printhead carriage assemblies.
In its basic aspects, the present invention provides an ink-jet writing instrument carriage assembly for an ink-jet printer having a printing axis, a print media transport axis, and an ink drop firing axis, including: a carriage; a movable pen latch; a pen latch handle associated with the pen latch; and a biased handle retainer associated with the carriage, wherein the carriage and pen latch are each provided with complementary interfit devices such that when the movable pen latch is in a closed position with the retainer interlocked with the handle, the carriage and latch are held by the interfit devices with zero clearance interfit in at least one the axis such that torsional deflections of the carriage are thereby reduced.
In another basic aspect, the present invention provides an ink-jet writing instrument carriage assembly, including: a carriage for mounting at least one ink-jet printhead and for scanning across print medium positioned adjacently thereto such that the printhead is positioned with an ink drop nozzle side aligned for depositing ink drops on the print medium and a holddown side aligned for receiving a latching force; movable pen latch mechanisms for accessing the printhead mounted in the carriage when the latch mechanism is in an open position and for providing a force against a holddown side of the printhead when in a closed position; fixedly mounted to the carriage, latch retainer mechanisms for receiving the pen latch mechanisms via complementary interfit devices of each; mounted on the pen latch mechanisms, latch handle mechanisms for securing the pen latch mechanisms against the carriage and forcing a interfit between the complementary interfit device; and mounted on the carriage, biased handle retainer mechanisms for holding the latch handle mechanisms in the closed position, wherein the carriage and pen latch mechanisms complementary interfit devices provide pen pitch, pen roll and pen yaw counterforces when the pen latch mechanisms is in the closed position.
In another basic aspect, the present invention provides a method for reducing torsional deflections in an ink-jet writing-instrument carriage. The method includes the steps of: providing the carriage and writing-instrument latch with geometrically configured complementary interfit surfaces; and positioning the writing-instrument latch on the carriage against a bias such that when the writing-instrument latch is closed, counterforces to carriage torsional deflections which would affect the printhead-to-paper orientation and distance are established by the complementary interfit surfaces.
In another basic aspect, the present invention provides an ink-jet hard copy apparatus having a plurality of inkjet writing-instruments for ejecting droplets of ink in a printing zone of the apparatus, the apparatus being defined by a scanning axis, a print media transport axis, and an ink drop firing axis, wherein the axes are mutually orthogonal, including: a writing-instrument carriage, mounted in the apparatus for selectively scanning the printing zone along parallel to the scanning axis, the carriage including a plurality of bays for locating the writing-instruments with respect to the printing zone; a movable writing-instrument latch having an open position for accessing the bays and a closed position for securing the writing-instruments in the bays; a writing-instrument latch handle associated with the writing-instrument latch; and a biased handle retainer associated with the carriage, wherein the carriage and writing-instrument latch are each provided with complementary interfit devices such that when the movable writing-instrument latch is in the closed position with the retainer interlocked with the handle, the carriage and latch are held by the interfit devices with zero clearance interfit in at least one the axis such that torsional deflections of the carriage are thereby reduced.
Some of the advantage of the present invention are:
it reduces torsional deflections of a scanning ink-jet printhead carriage without resorting to heavier, more expensive manufacturing materials;
it is adaptable to a variety of implementations, including smaller footprint hard copy apparatus designs;
it provides a low cost manufacturing solution;
it provides a scalable design; and
it can reduce torsional deflections of the assembly by approximately an order of magnitude.
The foregoing summary and list of advantages is not intended by the inventors to be an inclusive list of all the aspects, objects, advantages and features of the present invention nor should any limitation on the scope of the invention be implied therefrom. This Summary is provided in accordance with the mandate of 37 C.F.R. 1.73 and M.P.E.P. 608.01(d) merely to apprise the public, and more especially those interested in the particular art to which the invention relates, of the nature of the invention in order to be of assistance in aiding ready understanding of the patent in future searches. Other objects, features and advantages of the present invention will become apparent upon consideration of the following explanation and the accompanying drawings, in which like reference designations represent like features throughout the drawings.
The drawings referred to in this specification should be understood as not being drawn to scale except if specifically noted.
Reference is made now in detail to a specific embodiment of the present invention, which illustrates the best mode presently contemplated by the inventors for practicing the invention.
In this embodiment, there are five basic components of the carriage assembly 200:
However, the interface between the pen latch 204 and the pen carriage 202 uses specific features of the present invention to reduce substantially the torsional deflections of the carriage. Laboratory experimentation has shown that application of the present invention can result in a tenfold reduction of torsional deflections of a carriage assembly.
The pen carriage 202 is shown in
The latch retainer 206 is fixedly mounted to the carriage 202 in a conventional manner, such as with fasteners (not shown) via capture holes 304 through mounting posts 306. In this embodiment, the latch retainer 206 is shown to be located approximately mid-carriage, in the upstream (i.e., toward the input paper supply) paper transit path y-axis direction of the pen bays 302, and generally lying in an x-axis plane (i.e., relatively rearward with respect to the hard copy apparatus as depicted in FIG. 1). The retainer 206 is provided with four (relative left side and right side) wedge controls 311, 312, 313, 314. The left side outboard wedge control 311 is seen in more detail in FIG. 4 and
The outboard tongues 611, 613 are each provided with a latch pivot 615 (
Looking again to
As shown in
where it is known from mechanics of solids that “MRR” a the residual moment born by a body—in this case the carriage torsional twist, can be expressed as:
MR=JGθ÷L (Equation 2),
where J=section modulus, G=torsional modulus, θ=angular twist, and L is the distance from the latch rotational axis to the bail attachment point. Thus, if the section modulus J can be increased, angular twist θ can be decreased.
The torsional deflection restraining affects of the present invention, accomplishing the requisite decrease in angular twist θ, can now be recognized. The latch 204 is assumed for the purpose of the following discussion to be closed as shown in
α<tan−1μ (Equation 3),
where μ is the coefficient of friction for the materials employed, to avoid sliding motion along face 612′ due to applied forces, arrow “Fx,” during translation of the carriage in the x-axis. In the present embodiment, α≈8°. A range of five to fifteen degrees is preferred but, in general, the wedge control surface angles should be chosen for a specific design to be self-locking. Note that the top surface 612″ does not contact the inner upper surface 312″ of inboard wedge control 312, nor does the inboard side wall 612′″ of the tongue 612. The arrow labeled “FLatch” represents the sum of the forces created when the latch 204 is secured to the carriage 202 via the handle 208 and bail 210.
As such, theta-y and theta-z carriage deflections are directly opposed by the constraining force. Similarly, the conical faces 811, 822 on the descending wall 502 mating with the front wedge controls 801, 802 cause a constraining forces parallel to the paper transport y-axis toward the relative front of the carriage. This sets up theta-y and theta-z deflection opposition. Thus, employing the present invention, carriage twist and deformations are substantially reduced. In other words, the carriage-latch assembly torsional stiffness has be substantially increased. As a result, pen printhead pitch, θx, printhead roll, θy, and printhead yaw, θz, are all provided for with counter-forces automatically employed when the pen latch 204 is shut and locked using the bail 210 and latch handle 208, positioned as shown in
Thus, print quality is more free of artifacts. Therefore, the present invention provides a carriage for an ink-jet printer constrains torsional deflections by providing carriage to pen latch interface features having a zero clearance interfit such that when opened, the pen latch allows individual pens to be accessed and when closed the pen latch reduces the carriage torsional deflections and increasing the torsional stiffness of the assembly by providing biasing forces at each the interface feature. Stated more generally, by providing the carriage and pen latch with geometrically configured complementary interfit surfaces wherein when the pen latch is closed, counterforces to carriage torsional deflections which would affect the printhead-to-paper orientation are established.
The foregoing description of the preferred embodiment of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form or to exemplary embodiments disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. For example, other geometric specific shapes and orientations for the wedge control constructs can be designed for a specific carriage. The invention is not limited to scanning carriages; page-wide and page-size ink-jet printhead carriages are adaptable to the present invention. Moreover, while no pen bay side bias elements, such as springs, have been shown, it will be recognized by those skilled in the art, that they can be employed as needed. Similarly, any process steps described might be interchangeable with other steps in order to achieve the same result. The embodiment was chosen and described in order to best explain the principles of the invention and its best mode practical application, thereby to enable others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use or implementation contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents. Reference to an element in the singular is not intended to mean “one and only ones” unless explicitly so stated, but rather means “one or more.” Moreover, no element, component, nor method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the following claims. No claim element herein is to be construed under the provisions of 35 U.S.C. Sec. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for . . . . ”
This applicantion is a continuation of U.S. application Ser. No. 09/804,161, entitled “Method For Reducing Torsional Deflections” filed on Mar. 12, 2001, now U.S. Pat. No. 6,378,987.
Number | Name | Date | Kind |
---|---|---|---|
5250957 | Onozato | Oct 1993 | A |
5798777 | Yoshimura et al. | Aug 1998 | A |
5805181 | Tanaka et al. | Sep 1998 | A |
6270184 | Igarashi et al. | Aug 2001 | B1 |
6378987 | Balakrishnan et al. | Apr 2002 | B2 |
Number | Date | Country | |
---|---|---|---|
20020154192 A1 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09804161 | Mar 2001 | US |
Child | 10077458 | US |