The present invention relates to a recycling system, and more particularly to a recycling system designed according to the procedures in which a carrier gas passes through a reactor, such as a fluidized bed reactor, so as to recycle gas generated in the reaction.
While the highly advanced technologies bring a lot of conveniences to human, they also cause many serious damages to people's living environment. Therefore, it has become a focus among all countries in the world to develop a reasonable way of waste disposal. To comply with the increasingly strict demands for environment protection, different waste decomposition processes are developed. Among others, the so-called fluidized bed reactor has drawn the world's attention.
Please refer to
The conventional fluidized bed reactor shown in
It is therefore an important issue to improve the above described conventional fluidized bed reactor.
U.S. Pat. No. 5,728,271 granted to Resource Transformations International Ltd. as well as the research on Hamburg Pyrolysis Plant conducted by Kaminsky et al. in the Hamburg University, Germany are relevant to the waste disposal using the fluidized bed reactor. However, in these two cases, there is only a simple description about the recycling of combustible gas for use as fluidizing gas without details about an operable system therefor. As a matter of fact, to recycle the reaction-generated gas in the fluidized bed, many other factors, such as the maintaining of stable pressure in the system, the expelling of ultra reaction-generated gas, the control of transferred gas, the preheating of gas, etc., must be taken into consideration at the same time.
A primary object of the present invention is to provide a carrier gas recycling system to realize the recycling of reaction-generated gas for use as a carrier gas in a reaction system.
Another object of the present invention is to provide a carrier gas recycling system that enables elimination of cost for applied carrier gas and upgrades the purity of gas generated in the reaction to largely increase the utility value of the reaction-generated gas.
To achieve the above and other objects, the carrier gas recycling system according to the present invention includes an oil-water separation chamber to separate and purify the carrier gas, and a liquid-sealed constant pressure tank to reduce carrier gas pressure fluctuation and expel extra reaction-generated gas. The system also controls the carrier gas flow by controlling the rotating speed of a blower for transferring the carrier gas, and utilizes a heat supply device used in the reaction process to preheat the carrier gas.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
Please refer to
As shown in
After receipt of the reaction-generated gas, the constant pressure tank 40 on the one hand maintains a constant pressure in the system balancing with the external atmosphere, and on the other hand outputs the reaction-generated gas for burning (that is, waste gas burning). When the transfer device 50 receives the reaction-generated gas, it recycles and feeds the reaction-generated gas back to the reactor 10, so that a reaction-generated gas circulation loop is formed. The reaction-generated gas is preheated by the pre-heater 70 before being sent into the reactor 10. The preheated reaction-generated gas substitutes for the carrier gas and is cyclically supplied to the reactor 10. The transfer device 50 is also connected to the backup carrier gas tank 80, in which an amount of carrier gas is stored. Before the system has generated any gas, or before the system is actuated, the carrier gas in the backup carrier gas tank 80 is output to maintain system operation.
The transfer device 50 may be a non-explosive or a non-explosion-proof compressor, or a blower for transferring the reaction-generated gas. When the transfer device 50 is a compressor, a buffer tank 60 and a pressure regulating valve 61 must follow the compressor 50, so that the reaction-generated gas from the transfer device 50 is buffered and stored in the buffer tank 60, and regulated by the pressure regulating valve 61 to a predetermined output flow before being fed back for use by the reactor 10. On the other hand, when the transfer device 50 is a blower, the blower may be directly adjusted to a predetermined rotating speed to achieve the purpose of regulating the output flow. The pre-heater 70 preheats the carrier gas in a non-direct contact manner, so that the carrier gas is recycled. When the pre-heater 70 has a preheating temperature that is too high, the temperature is regulated by increasing the gas flow. To maintain a fixed input flow to the reactor 10, any extra gas is properly cooled and recycled back to the transfer device 50. For this purpose, a pressure regulator 71 and a flow regulator 72 are provided following the pre-heater 70. When the transferred carrier gas is increased, the pressure regulator 71 regulates the pressure generated by the carrier gas; and the flow regulator 72 serves to send the extra carrier gas back to the transfer device 50.
The operation of the condensation tank 20 included in the carrier gas recycling system of the present invention is now described in details with reference to
The condensation tank 20 is internally divided into a separation chamber and a storage chamber located below the separation chamber. A photo-sensor 24 and an external pump 25 cooperate with the condensation tank 20 to form a photo-sensing level controlling system. The mixture produced by the reactor 10 and sent to the condensation tank 20 reaches the separation chamber first, at where water and oil in the mixture are separated. Since oil has a specific of gravity lower than water, water in the mixture naturally sink to a lower portion of the separation chamber while oil in the mixture floats on the water surface. When the mixture is continuously sent into the separation chamber, the oil floating on the water would finally flow over the separation chamber into the storage chamber while the water is retained in the separation chamber. The condensation tank 20 is therefore an effective oil-water separating system.
The mixture is continuously sent to the separation chamber during the reaction. At this point, the photo-sensor 24 functions to detect the water level in the separation chamber, so as to prevent the water from flowing over the separation chamber into the storage chamber. When the water level in the separation chamber reaches a high level H preset by the photo-sensor 24, as shown in
The carrier gas recycling system of the present invention is superior to the prior art for the following the features:
The present invention has been described with a preferred embodiment thereof and it is understood that many changes and modifications in the described embodiment can be carried out without departing from the scope and the spirit of the invention that is intended to be limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
94221416 U | Dec 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4983278 | Cha et al. | Jan 1991 | A |
5325797 | Mei et al. | Jul 1994 | A |
5502872 | Chae et al. | Apr 1996 | A |
5728271 | Piskorz et al. | Mar 1998 | A |
5880480 | Ellinger et al. | Mar 1999 | A |
Number | Date | Country | |
---|---|---|---|
20070134137 A1 | Jun 2007 | US |