1. Field of the Invention
The present invention relates to carrying assemblies for securing or carrying portable electronic devices. More particularly, the present invention relates to a carrying assembly operable to quickly and easily release an electronic device from the carrying assembly and to adjustably position the device in a preferred position.
2. Description of Prior Art
Portable electronic devices are well-known in the art, examples of which include mobile telephones, pagers, personal digital assistants (“PDAs”), global positioning system (“GPS”) receiver units, etc. One problem presented with carrying such an electronic device is securement of and accessibility to the electronic device. A user of the electronic device desires to carry the electronic device in such a manner to prevent dropping, misplacing, or damaging the electronic device, while at the same time maintaining quick access to the electronic device.
Prior art carrying assemblies use holders that may be clipped to the user's clothing, such as the user's belt or a waist of the user's pants. Unfortunately, these devices are often cumbersome and do not allow quick access to the electronic device. For example, some carrying assemblies are not easily removable from the belt or pants. Also, when the user sits, the electronic device often pushes into the user's torso. Furthermore, the carrying assembly and the electronic device are often obstructed from reach, such as when a safety belt is used in an automobile.
Accordingly, there is a need for a carrying assembly for an electronic device that overcomes the limitations of the prior art. Specifically, there is a need for a carrying assembly that offers reliable securement of the electronic device while allowing the user to quickly and easily remove the electronic device from the carrying assembly.
Furthermore, there is a need for a carrying assembly that is adjustable so that the user may rotate the electronic device to a comfortable position once the device is in the carrying assembly and clipped to the user's clothing.
There is yet a further need for a carrying assembly that allows the user immediate access to the electronic device, such as when the user is reading navigational information from a GPS unit.
A carrying assembly of the present invention overcomes the above-identified problems and provides a distinct advance in the art of carrying assemblies for electronic devices. More particularly, a first preferred embodiment of the present invention provides a carrying assembly that includes a rear panel, a spring component, a retainer button, and a base for securely clipping the assembly and the device to a user's clothing, such as the user's belt or a waist of the user's pants. The carrying assembly also includes a plurality of serrated teeth provided on a locking button and the retainer button for rotational adjustment of the electronic device by the user so that the user may rotate the assembly to a comfortable position. Furthermore, the carrying assembly provides for receipt of the locking button in a U-shaped flange of the base for quick and easy removal of the electronic device from the carrying assembly. Specifically, the locking button allows the user to remove the electronic device in one step using only one hand and without depressing a release button. Additionally, the carrying assembly of the first preferred embodiment is made of only four parts, thus permitting simpler and less expensive construction.
In a second preferred embodiment, the carrying assembly includes a lanyard so that it may be worn around a user's neck and so that the user may immediately access the electronic device with minimal effort. Additionally, the carrying assembly of the second preferred embodiment is operable to allow the user to quickly and easily remove the electronic device from the carrying assembly in one step and with only one hand.
Preferred embodiments of the present invention are described in detail below with reference to the attached drawing figures, wherein:
Turning now to the drawings, and particularly
The rear panel 14 is generally rectangular in shape and has opposed planar rear and front faces 22 and 24, respectively, a first and a second side wall 26 and 28, respectively, a bottom wall 30, and a top wall 32. The rear face 22 preferably includes a trough-like shallow indentation 34 for receipt of the user's fingers in placement or removal of the carrying assembly 10. The first side wall 26 is preferably provided with a first inwardly-projecting flange portion (not shown) shorter in length than a length of the first side wall 26. Similarly, the second side wall 28 is preferably provided with a second inwardly-projecting flange portion 36 shorter in length than a length of the second side wall 28.
The bottom wall 30 preferably extends beyond each side wall 26,28 so as to facilitate placement and securement of the carrying assembly 10 on the user's clothing. Each side wall 26,28 extends a length of the rear panel 14 to form a recess 38 in the top wall 32, the purpose of which is described below. The front face 24 preferably includes a ramped boss (not shown) for securement of the rear panel 14 with the spring component 16, as described below. The rear panel 14 is preferably made of PC/ABS, but could be made of any other suitable material, such as nylon, aluminum, or mild steel.
The spring component 16 is substantially U-shaped in cross-section and is preferably made of steel, but other suitable materials may be used, such as rigid plastic. The spring component 16 includes a rear wall 40 and a front wall 42, and the rear wall 40 includes a first generally circularly-shaped opening 44. The front wall 42 of the spring component 16 includes a second generally circularly-shaped opening (not shown) for securement of the base 20 with the spring component 16, as described below. The front wall 42 also includes an integral sloped leaf spring 46 for providing tension once pressure is applied to the retainer button 18, as described below.
As illustrated in
The spring component 16 is secured to the rear panel 14 by sliding the spring component 16 through the recess 38 formed in the top wall 32 of the rear panel 14 and under the first flange portion (not shown), under the second flange portion 36, and over the ramped boss (not shown). The ramped boss (not shown) is then fitted through the first circular opening 44.
Turning again to
The font plate 52 of the retainer button 18, as illustrated in
The serrated teeth 62 preferably lie in a substantially semi-circular shape or approximately 180 span, as illustrated in
The base 20 has opposed rear and front faces 68 and 70, respectively, a rear wall 72, a front wall 74, a substantially U-shaped bottom portion 76, and a top portion 78. The rear face 68 is provided with a snapping projection 80, the purpose of which is described below. A plurality of parallel, spaced-apart indentations 82 is provided on the front face 70 of the top portion 78, the purpose of which is described below. The rear wall 72 preferably substantially surrounds the U-shaped bottom portion 76 of the rear face 68. Similarly, the front wall 74 preferably substantially surrounds the U-shaped bottom portion 76 of the front face 70. The front wall 74 is preferably provided with a U-shaped flange 84 for receipt of a locking button 86, as described below. The base 20 is secured to the spring component 16 via the snapping projection 80, which is fitted through the second circular opening (not shown) in the spring component 16. The base 20 is preferably made of PC/ABS, but other suitable materials may be used, such as nylon, aluminum, or mild steel.
An opening 88 is preferably provided in the U-shaped bottom portion 76 for receipt of the retainer button 18. The opening 88 is preferably substantially the same shape and area of the front plate 52 of the retainer button 18. The retainer button 18 may be fitted through the opening 88 such that the front plate 52 protrudes beyond the front face 70 of the base 20. The angled face 66 of the retainer button 18 is then exposed such that the locking button 86 may more easily overcome the retainer portion 60 and marry or lock with the serrated teeth 62 of the retainer button 18, as described below.
The locking button 86 is preferably secured to the electronic device 12 using any suitable means, such as permanent adhesive or at least one screw, or the electronic device 12 may be manufactured with the locking button 86 attached. The locking button 86 is preferably substantially circular in shape, but the locking button 86 may be differently shaped, such as U-shaped or oval shaped. An underside 90 of the locking button 86 (see
As noted above, the base 20 includes parallel indentations 82, which provide a guide on which the locking button 86 may travel for easier placement of the locking button 86 in the U-shaped flange 84. The locking button 86 is preferably of a diameter that the locking button 86 may easily slide within the U-shaped flange 84, yet may also not be of such a small diameter that the locking button 86 is not secured within the U-shaped flange 84. The locking button 86 is preferably made of PC/ABS or other suitable materials, such as nylon, aluminum, or mild steel.
In operation, the user of the carrying assembly 10 inserts the locking button 86, with electronic device 12 attached, into the U-shaped flange 84 of the base 20. The user applies pressure to the locking button 86 so that the locking button 86 slides up and over the angled face 66 of the retainer button 18 and then over the upwardly-projecting retainer portion 60. The locking button 86 is capable of sliding over the retainer portion 60 due to the tension in the leaf spring 46. When pressure is indirectly applied to the retainer portion 60, the retainer portion 60 is downwardly displaced since the leaf spring 46 is adapted to be downwardly displaced, as illustrated in
The carrying assembly 10 is also adjustable since the electronic device 12 may be rotated to a horizontal position, a vertical position, or any position in between, as illustrated in
Turning now to
The base 114 is generally oval in shape and has a front face 122, a rear face 124, a generally U-shaped bottom portion 126, a top portion 128, a first side 130, a second side 132, a front wall 134, and a rear wall 136, as illustrated in
A first tubular side ring 148 and a second tubular side ring 150 are secured on the first and the second sides 130,132 of the base 114, respectively, such that the side rings 148,150 are generally opposite each other. A tubular end ring 152 is positioned on the U-shaped bottom portion 126 of the base 114. The first and the second tubular side rings 148,150 are fully enclosed, whereby the first tubular side ring 148 has a first opening 154 and the second tubular side ring 150 has a second opening 156. A cord 158 may be ran through the first and the second openings 154,156 as illustrated in
The rear face 124 of the base 114 is provided with a circular projection 164 approximately mid-length of the base 114 for securing the catch 116 to the base 114, as described below. The rear face 124 of the base 114 is also provided with a generally rectangularly-shaped cavity 166 near the top portion 128 of the base 114. A first generally U-shaped projection 168 partially surrounds the rectangular cavity 166, the purpose of which is described below. The base 114 is also provided with a first generally rectangularly-shaped opening 170 near the U-shaped bottom portion 126, the purpose of which is also described below.
The catch 116 has a front face 172, a rear face 174, a bottom end 176, a top end 178, a first side 180, and a second side 182. The front face 172 is provided with a retainer portion 184 near the bottom end 176. The retainer portion 184 preferably includes at least one angled face 186 of approximately 30°, the purpose of which is described below. The rear face 174 is provided with a second generally U-shaped projection 188 near the bottom end 176 and generally opposite the retainer portion 184. A longitudinally-projecting piece 190 is centrally positioned within the second U-shaped projection 188. A first boss 192 and a second boss 194 are provided on a first outer face 196 and a second outer face 198, respectively, of the second U-shaped projection 188. A first generally circularly-shaped opening 200 is provided near the top end 178 of the catch 116 for insertion of the circular projection 164 provided on the base 114. A first claw-shaped clamping arm 202 is provided on the first side 180 of the catch 116, and a second claw-shaped clamping arm 204 is provided on the second side 182 of the catch 116.
The catch 116 is secured to the base 114 by “snapping” the circular projection 164 into the first circular opening 200 of the catch 116. The catch 116 is positioned so that the retainer portion 184 fits through the first rectangular opening 170 of the base 114 and protrudes beyond the front face 122 of the base 114.
The actuator 118 has a bottom end 206, a semi-circularly-shaped top end 208, a front face 210, a rear face 212, a first side 214, and a second side 216. Once the carrying assembly 110 is assembled, the bottom end 206 is positioned near the U-shaped bottom portion 126 of the base 114. The semi-circular top end 208 includes a rigid grasping component 218 having equally-spaced parallel indentations 220 provided thereon to facilitate grasping of the actuator 118. The grasping component 218 is formed in a semi-circular shape so that the user of the carrying assembly 110 may grasp the actuator 118 with his or her fingers and compress horizontally, as described below.
The actuator 118 includes a generally rectangularly-shaped recess 222 within which a second generally rectangularly-shaped opening 224 is located near the semi-circular top end 208 for positioning of a coil spring 226. To further facilitate positioning of the coil spring 226, a pair of shoulder tabs 228 is located on an underside 230 of the recess 222 near the top end 208. Positioned within the second rectangular opening 224 and generally opposite the pair of shoulder tabs 228 is a semi-circularly-shaped boss 232. Upon assembly of the carrying assembly 110, the coil spring 226 is fitted within the rectangular cavity 166 and the first U-shaped projection 168 of the base 114. The first U-shaped projection 168 then fits within the second rectangular opening 224 of the actuator 118, such that the coil spring 226 is positioned around the semi-circular boss 232 and supported by the shoulder tabs 228.
The bottom end 206 of the actuator 118 includes an elongated U-shaped slit 234 having a first side 236 and a second side 238. A first rail 240 is provided on the first side 236, and a second rail 242 is provided on the second side 238. Each rail 240,242 is angled preferably approximately 30° from the front face 210 of the actuator 118, such that the rails 240,242 project outwardly from the front face 210 of the actuator 118.
The first side 214 of the actuator 118 is provided with a first rectangularly-shaped projection 244 and a second rectangularly-shaped projection 246. Similarly, the second side 216 of the actuator 118 is provided with a third rectangularly-shaped projection 248 and a fourth rectangularly-shaped projection 250, such that the first and the second rectangular projections 244,246 are generally opposite the third and the fourth rectangular projections 248,250. Once the carrying assembly 110 is assembled, the first and the second rectangular projections 244,246 substantially abut the first and the second flange portions 140,142, respectively, on the base 114. Similarly, the third and the fourth rectangular projections 248,250 substantially abut the third and the fourth flange portions 144,146, respectively, on the base 114. The second U-shaped projection 188 on the catch 116 is then fitted within the elongated U-shaped slit 234 of the actuator 118. The first grasping arm 202 grasps the first rail 240, and the second grasping arm 204 grasps the second rail 242. Upon movement of the actuator 118 horizontally towards the U-shaped bottom portion 126 of the base 114, the first and the second bosses 192,194 ride under and along the first and the second rails 240,242, respectively, as illustrated in FIGS. 7 and 10–13. This in turn downwardly displaces the second U-shaped projection 188 and corresponding retainer portion 184.
The rear panel 120 is preferably generally oval in shape and similar to the shape of the base 114. The rear panel 120 is substantially flat with no protrusions and is designed to fit within the rear wall 136 of the base 114. The rear panel 120 includes a first side 252, a second side 254, and an integral leaf spring 256. The first side 252 is preferably provided with a first horizontal notch 258 and a second horizontal notch 260. Similarly, the second side 254 is provided with a third horizontal notch 262 and a fourth horizontal notch 264. Once the carrying assembly 110 is assembled, the first and the second horizontal notches 258,260 align with the first and the second flange portions 140,142, respectively, and the third and the fourth horizontal notches 262,264 align with the third and the fourth flange portions 144,146, respectively.
The leaf spring 256 includes a second circular opening 266, whereby the longitudinally-projecting piece 190 of the catch 116 is fitted through the second circular opening 266 for securement of the rear panel 120 with the catch 116. In operation, the leaf spring 256 provides tension for displacement of the retainer portion 184, as described below.
Similar to the first preferred embodiment, a locking button 268 is secured to the electronic device 112 using permanent adhesive or at least one screw. The locking button 268 is preferably circular in shape, but may be differently shaped, such as U-shaped or oval. Similar to the first preferred embodiment, the locking button 268 preferably includes a hollowed portion 270, whereby the retainer portion 184 is fitted within the hollowed portion 270 upon securement of the locking button 268 in the U-shaped flange 138 of the base 114, as illustrated in
In operation, the user of the carrying assembly 110, similar to the first preferred embodiment, inserts the locking button 268, with electronic device 112 attached, into the U-shaped flange 138 of the base 114, as illustrated in
To remove the electronic device 112 from the carrying assembly 110, the user must slide the locking button 268 out from the U-shaped flange 138. To accomplish this, the user depresses the actuator 118 by grasping and applying pressure to the grasping component 218. This in turn compresses the coil spring 226 and actuates the rails 240,242 horizontally towards the U-shaped bottom portion 126 of the base 114, as illustrated in
From the preceding description, it can be seen that the carrying assemblies 10,110 for an electronic device 12,112 of the present invention allow for easier access, insertion, removal, and positioning of the electronic device 12,112. Additionally, since the present invention has fewer components than prior art devices, the present invention may be more economically produced so that its cost does not detract from the overall price of carrying assemblies 10,110 for electronic devices 12,112, thereby rendering the user less willing to purchase such a carrying assembly 10,110. Although the invention has been described with reference to the preferred embodiments illustrated in the attached drawings, equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims. For example, the carrying assemblies 10,110 of the first and the second preferred embodiments may be sized to accommodate specific electronic devices 12,112. Additionally, the carrying assembly 10 of the first preferred embodiment, although designed to be clipped to a waist of the user's pants or skirt, may be clipped to any other suitable article, such as a briefcase or a purse. The rear panel 14 of the first preferred embodiment may also be provided with either repositionable or permanent adhesive for placement of the carrying assembly 10 and corresponding electronic device 12 on a surface, such as a dashboard of an automobile.
Number | Name | Date | Kind |
---|---|---|---|
3261519 | Horne | Jul 1966 | A |
5201858 | Otrusina | Apr 1993 | A |
5347693 | Otrusina | Sep 1994 | A |
5452497 | Peng | Sep 1995 | A |
5535928 | Herring | Jul 1996 | A |
5653336 | Buonaiuto et al. | Aug 1997 | A |
5668869 | Zinno | Sep 1997 | A |
5730342 | Tien | Mar 1998 | A |
5768371 | Snyder | Jun 1998 | A |
5806146 | Chen | Sep 1998 | A |
5850954 | Dong-Joo | Dec 1998 | A |
5988577 | Phillips et al. | Nov 1999 | A |
5996184 | Mah et al. | Dec 1999 | A |
6006969 | Kim | Dec 1999 | A |
6098858 | Laugesen | Aug 2000 | A |
6161741 | French | Dec 2000 | A |
6182878 | Racca | Feb 2001 | B1 |
6206257 | Peele et al. | Mar 2001 | B1 |
6283348 | Wang | Sep 2001 | B1 |
6357641 | Cheng | Mar 2002 | B1 |
6367672 | Lind | Apr 2002 | B1 |
6454146 | Alis | Sep 2002 | B2 |
6752299 | Shetler et al. | Jun 2004 | B2 |