The present invention relates to a cartridge, and an electrophotographic image forming apparatus employing a cartridge.
Here, an electrophotographic image forming apparatus is an apparatus for forming an image on a recording medium (for example, a recording paper, an OHP sheet, and the like) with the use of an electrophotographic image forming method. It includes an electrophotographic copying machine, an electrophotographic printer (a laser printer, an LED printer, and the like), a facsimile apparatus, a word processor, and the like.
A cartridge system has long been in use, according to which a developing member and a developer storage portion, for example, are integrated in the form of a cartridge which can be removably mountable in the main assembly of an image forming apparatus. Also according to a cartridge system, a developing member as a processing means can be easily maintained by a user him/herself, remarkably improving the operability of an image forming apparatus. Therefore, a cartridge system is widely used in the field of an electrophotographic image forming apparatus.
An electrophotographic color image forming apparatus employs a rotary device, which is disposed within the apparatus main assembly. Further, a structural arrangement has been known, which makes it possible to removably mount four development cartridges, in which four developers, different in color, are stored one for one, in this rotary device.
In the past, the following structural arrangement was devised to prevent a development cartridge from becoming dislodged from the rotary device when the rotary device is rotated.
For example, the end plates of the development cartridge are each provided with a projection, and the development cartridges are inserted into the apparatus main assembly so that these projections move along the corresponding guides on the rotary device side. Further, the end portion of each guide is provided with a spring enabled to catch the projection, so that the cartridge is held to the rotary device by the force generated by the resiliency of the spring. In the case of this structural arrangement, however, in order to ensure that a cartridge does not become dislodged from the rotary device due to the centrifugal force generated as the rotary device is rotated, the force generated by the resiliency of the spring must be substantial; in other words, the spring must be stiff enough to generate such a force. Providing the end portion of the guide with a spring stiff enough to generate such a force increases the load generated when a cartridge is mounted into, or dismounted from, the rotary device. Further, when mounting or dismounting a cartridge, the left and right springs are likely to become disengaged non-simultaneously from the cartridge, making it possible that the cartridge will become tilted and hang up in the rotary device. On the other hand, reducing the stiffness of the spring to reduce the cartridge retaining force of the spring makes it possible for a cartridge to fall out of the rotary device and damage the apparatus main assembly. Thus, the spring must be made neither too stiff nor too soft so that a proper amount of force is generated by the resiliency of the spring.
The primary object of the present invention is to provide a combination of a cartridge and an electrophotographic image forming apparatus, in which the cartridge can be more efficiently mounted into, or dismounted from, the main assembly of an image forming apparatus.
Another object of the present invention is to provide a combination of a cartridge and an electrophotographic image forming apparatus, in which the cartridge does not become unexpectedly dislodged from the main assembly of an image forming apparatus after the mounting of the cartridge into the apparatus main assembly.
Another object of the present invention is to provide a combination of a cartridge and an electrophotographic image forming apparatus, which ensures that the cartridge is placed in a predetermined position in the main assembly of an image forming apparatus as the cartridge is mounted into the image forming apparatus main assembly, and that cartridge remains in the predetermined position after the mounting.
Another object of the present invention is to provide a combination of a cartridge and an electrophotographic image forming apparatus, in which the cartridge does not become unexpectedly dislodged from a rotary device as the rotary device is rotated after the mounting of the cartridge into the rotary device, that is, a part of the image forming apparatus main assembly.
Another object of the present invention is to provide a combination of a cartridge and an electrophotographic image forming apparatus, in which as an operator releases his or her hand from the handgrip of the cartridge, which has been grasped by the operator in order to mount the cartridge into the main assembly of the image forming apparatus, the cartridge locking portion of the cartridge engages the cartridge locking portion of the main assembly of the image forming apparatus.
Another object of the present invention is to provide a combination of a cartridge and an electrophotographic image forming apparatus, in which as an operator grasps the handgrip of the cartridge in order to dismount the cartridge from the main assembly of the image forming apparatus, the cartridge locking portion of the cartridge disengages from the cartridge locking portion of the main assembly of the image forming apparatus.
Another object of the present invention is to provide a combination of a cartridge and an electrophotographic image forming apparatus, in which the mounting or dismounting of the cartridge is instinctively understandable to an operator, and the cartridge is smoothly mountable into, or dismountable from, the main assembly of the image forming apparatus.
These and other objects, features, and advantages of the present invention will become more apparent upon consideration of the following description of the preferred embodiments of the present invention, taken in conjunction with the accompanying drawings.
Hereinafter, the preferred embodiments of the present invention will be described with reference to a development cartridge as an example of a cartridge.
A development cartridge in accordance with the present invention, and an electrophotographic image forming apparatus compatible with such a development cartridge, will be described with reference to the appended drawings. In the following description of the preferred embodiments of the present invention, the front side is the upstream side in terms of the direction in which a recording medium is conveyed from the transfer station to the fixation station (right side in FIG. 1). The left or right side of the apparatus main assembly or cartridge is the left or right side as seen from the front side of the apparatus. Further, the lengthwise direction is the direction which is parallel to the surface of a recording medium, and perpendicular (virtually perpendicular) to the direction in which the recording medium is conveyed.
(General Structure of Image Forming Apparatus)
First, referring to
In the image forming apparatus shown in
Here, the recording medium P is a recording paper, an OHP sheet, and the like, for example. The developing member is not limited to the development roller; for example, it may be in the form of a belt.
Next, the image forming processes will be described in more detail.
The photoconductive drum 1 is rotated in the direction (counterclockwise) of the arrow mark in
The exposing process is carried out as follows: the exposing means 3 exposes the peripheral surface of the photoconductive drum 1 to an optical image in accordance with the image formation data read from an external apparatus or the like, by projecting the optical image onto the photoconductive drum 1. It comprises a laser diode, a polygon mirror, a scanner motor, a focusing lens, and a deflection mirror.
As image signals are given to the exposing means 3 from an external device or the like, the laser diode emits light in accordance with the image signals, and the light is projected as the optical image toward the polygon mirror which is being rotated at a high speed by the motor. The optical image is deflected by the polygon mirror, passed through the focusing lens, deflected by the deflection mirror, and selectively exposes the peripheral surface of the photoconductive drum 1. As a result, an electrostatic latent image is formed on the photoconductive drum 1. Upon formation of the electrostatic latent image, the rotary device 4 is rotated so that the development cartridge 40, and more specifically, the cartridge 40Y for developing the yellow component of the intended image, is moved to the development position. Then, a predetermined bias voltage is applied to the cartridge 40Y. As a result, yellow toner is adhered to the electrostatic image; and the electrostatic latent image is developed. Thereafter, a bias voltage, the polarity of which is opposite to that of the toner, is applied to the primary transfer roller 5j for the transfer belt 5a. As a result, the yellow toner image on the photoconductive drum 1 is transferred (primary transfer) onto the transfer belt 5a.
As the above described primary transfer of the yellow toner image is completed, the rotary device 4 is rotated again, moving the next cartridge 40 into the position in which the cartridge 40 opposes the photoconductive drum 1. The above-described process is also repeated for the magenta, cyan, and black color components. As a result, four color developer images, different in color, are placed in layers on the transfer belt 5a. Meanwhile, the secondary transfer roller 11 remains in out of contact with the intermediary transfer belt 5a, and a cleaning charge roller 5f as a cleaning unit is kept at a location at which it does not contact the transfer belt 5a.
Incidentally, the magenta development cartridge 40M has a development roller 305, and a developer storage portion 302 which contains developer of magenta color. Similarly, the cyan development cartridge 40C has a development roller 305, and a developer storage portion 302 which contains developer of cyan color, and the yellow development cartridge 40Y has a development roller 305, and a developer storage portion 302 which contains developer of yellow color. Further, the black cartridge 40Bk has a development roller 305, and a developer storage portion 302 which contains developer of black color.
After the formation of the four color developer images, different in color, on the transfer belt 5a, the transfer roller 11 is pressed against the transfer belt 5a as shown in FIG. 1. Further, in synchronism with the pressing of the transfer roller 11 against the transfer belt 5a, a recording medium P, which has been kept on standby at a registration roller pair 7, is released to be sent into the nip portion between the transfer belt 5a and transfer roller 11. To the transfer roller 11, a bias voltage, the polarity of which is opposite to that of the developer, is being applied, and the developer images on the transfer belt 5a are transferred (secondary transfer) all at once onto the surface of the recording medium P as the recording medium P is conveyed into the aforementioned nip portion. After the transfer of the developer images, the recording medium P is conveyed by a conveyer belt unit 12 to the fixing device 8, in which the developer images are fixed. Thereafter, the recording medium P is conveyed along the guide 15 by a roller pair 13, and is discharged into a delivery tray 10.
Meanwhile, after the completion of the secondary transfer, the cleaning charge roller 5f is pressed against the transfer belt 5a, and a predetermined bias voltage is applied to the cleaning charge roller 5f, removing residual electrical charge from the surface of the transfer belt 5a, and the developer particles (secondary residual developer particles) remaining on the transfer belt 5a. After the removal of electrical charge, the residual developer particles are electrostatically transferred back onto the photoconductive drum 1 from the transfer belt 5a, in the primary transfer nip portion; in other words, the surface of the transfer belt 5a is cleaned. After being transferred back onto the photoconductive drum 1, the secondary transfer residual developer particles are removed (recovered) by the cleaning blade 6 for cleaning the photoconductive drum 1. The recovered transfer residual developer particles are collected in the removed developer box 216 (FIG. 8).
(Structural Arrangement for Mounting or Dismounting Development Cartridge)
The development cartridge 40 (40Bk, 40M, 40C and 40Y), which contains color developer (black, magenta, cyan and yellow, respectively) is mounted into a predetermined position in the rotary device. Here, the method for positioning the cartridge 40 relative to the rotary device 4 will be described in detail with reference to
Referring to
In comparison, each of the left and right ends of the cartridge 40 is provided with: a guiding rib 354 for guiding the cartridge 40 when the cartridge 40 is mounted or dismounted; an arcuate positioning portion 352 (which hereinafter will be referred to as a first projection 352) for positioning the cartridge 40 relative to the apparatus main assembly A, as the cartridge 40 is mounted into the apparatus main assembly A; and a second arcuate projection 353 for stopping the rotation of the cartridge 40. Thus, the cartridge 40 is positioned relative to the apparatus main assembly A by the coordination of the first and second projections 352 and 353.
The cartridge 40 is provided with a retractable locking portion 380a (which hereinafter will be referred to as movable locking portion 380a), which protrudes in the lengthwise direction of the cartridge 40, more specifically, from the end surface of the projection 352. This locking portion 380a is attached to the end of a releasing member 380 (which hereinafter may be referred to as sliding member 380). To describe this feature in more detail with reference to
As the sliding member 380 is slid, the locking portion 380a (380a1, 380a2) projects or retracts from the end surface (end surface of cartridge frame 40c) of the projection 352. Further, the cartridge 40 is provided with a handgrip portion 381 (which hereinafter will be referred to as a handgrip 381), which is located at the approximate center of the top surface of the cartridge 40. This handgrip 381 is always kept pressured by the resiliency of a torsion coil spring 382 in the direction to open upward (direction indicated by arrow mark X in FIG. 12). The sliding member 380 is in the form of a rod, which slides in the guiding groove 40a in the back side of the cartridge 40. The handgrip 381 is a part of the releasing member 380.
The guiding groove 40a is provided with a stepped portion 40b, whereas the sliding member 380 is provided with a stepped portion 380d. The stepped portions 40b and 380d limit the moving range of the sliding member 380 (380f, 380g); the contact between the stepped portions 40b and 380d stops the outward sliding of the sliding member 380, preventing the sliding member 380 (380f, 380g) from slipping out of the groove 40a (FIG. 11). Incidentally,
The handgrip 381 has left and right portions, that is, a first handgrip portion 381a and a second handgrip portion 381b (which hereinafter will be referred to as handgrip portions 381a and 381b, respectively). The pair of handgrip portions 381a and 381b are connected to the above described sliding members 380. Thus, as an operator performs the operation for releasing or locking the cartridge 40, that is, as an operator grasps or releases the handgrip 381, the sliding member 380 slides.
More specifically, the handgrip portions 381a and 381b are each provided with an elongated hole 381e, which is in their side walls. On the other hand, the sliding member 380 is provided with a projection 380c, which is at the lengthwise end opposite to the projection 380a. The projection 380c is in the elongated hole 381e (FIG. 11). With the provision of the above described structural arrangement, as the handgrip 381 is gripped or released, the sliding member 380 slides.
In other words, the handgrip 381 has a portion 381a rotatable about a shaft 381f, and a portion 381b rotatable about a shaft 381g. The portion 381a has a gear portion 381d1, and portion 381b has a gear portion 381d2. The gear portions 381d1 and 381d2 are in meshing engagement with each other. The handgrip portion 381a is provided with an elongated hole 381e1, and the first sliding portion 380f is provided with a projection 380c1, which is fitted in the elongated hole 381e1. Similarly, the handgrip portion 381b is provided with an elongated hole 381e2, and the second sliding portion 380g is provided with a projection 380c2, which is fitted in the elongated hole 381e2. Further, between the handgrip portions 381a and 381b, a torsion coil spring 382 is disposed, with its resiliency keeping the handgrip portions 381a and 381b pressured in the direction to move them away from each other, that is, the direction indicated by arrow marks X in FIG. 12. Thus, normally, the locking portions 380a (380a1, 380a2) at the ends of the sliding portions 380f and 380g, one for one, remain protruding from the cartridge frame 40c of the cartridge 40. However, as an operator grasps the handgrip 381 in a manner to press the handgrip portions 381a and 381b (FIG. 10), the handgrip portions 381a and 381b rotate in the direction (indicated by arrow marks Y in
In the normal state, the handgrip 381 is under the pressure generated by the resiliency of the torsion coil spring 382, remaining therefore open. Thus, the locking portions 380a (380a1, 380a2) of the sliding members 380 (380f, 380g) remain protruding from the end surfaces of the projections 352, that is, the end surfaces of the cartridge frame 40c. As an operator grasps the handgrip 381, the hinge closes, causing the projections 380a to retract completely into the projection 352.
In order to prevent the cartridge 40 from slipping out of the hand of an operator when the operator is carrying the cartridge 40 by grasping the handgrip 381, the handgrip 381 is provided with a plurality of slip prevention ribs 381c, which are 0.5 mm high and are on the surfaces on which the hand is placed. Further, the handgrip 381 is configured so that, with the handgrip portions 381a and 381b being in the main structure of the handgrip 381, that is, with the handgrip 381 being in the closed state, the surfaces on which the hand is placed, will be inward of the main structure.
Referring to
When inserting the cartridge 40 into the rotary device 4, first, an operator is to grasp the handgrip 381, and insert the cartridge 40, with the guiding ribs 354 on both lengthwise end surfaces, one for one, fitted in the guiding groove 50c of the flanges 50, one for one. Then, as the projection 352 on each of the lengthwise surfaces of the cartridge 40 comes into contact with the first cartridge catching portion 50a on the side surface of the flange 50, the operator is to remove the hand that is grasping the handgrip 381, from the handgrip 381, allowing the projection 380a to project beyond the end surface of the projection 352, and latch into the hole 50d in the lengthwise end surface of the first cartridge catching portion 50a (FIG. 4).
The axial line of the projection 352 coincides with that of the projection 380a, making it possible for the cartridge 40 to pivot about the projection 352. Further, in the guiding groove 50c, a spring 53 is disposed, which is for keeping the cartridge 40 pressured in the counterclockwise direction of the drawing after the mounting of the cartridge 40 into the rotary device 4. Therefore, the second projection 353 is kept in contact with the cartridge catching portion 50b (rotary flange) by the resiliency of the spring 53. As a result, the cartridge 40 is kept accurately positioned relative to the apparatus main assembly A (rotary device 4); therefore, it is ensured that the cartridge 40 remains in the normal position relative to the flange 50, making it possible to form images with no irregularities.
On the other hand, when removing the cartridge 40 from the main assembly A (rotary device 4), the operator is to grasp the handgrip 381 as shown in
With the provision of the above described structural arrangement, the cartridge 40 can be unlocked from the apparatus main assembly A (rotary device 4) by the simple grasping of the handgrip 381 by the operator, improving the efficiency with which the cartridge 40 can be mounted or dismounted. Further, the provision of the above described structural arrangement eliminates the need for providing the apparatus main assembly A with springs or the like dedicated for preventing the dislodgment of the cartridge 40, virtually eliminating the load generated when the cartridge 40 is removed from the apparatus main assembly A. Further, the structural arrangement is simple, being therefore unlikely to fail, and also, making it possible to reduce the manufacturing cost.
Further, the handgrip 381 is located at the approximate center of the top surface of the cartridge 40 in terms of the lengthwise direction, reducing the load generated when the cartridge 40 is carried by the operator, as well as keeping the cartridge better balanced when the cartridge 40 is mounted or dismounted. Therefore, the operator can smoothly mount or dismount the cartridge 40 using only one hand.
(Mechanical Structure for Driving Development Cartridge)
Next, referring to
In this embodiment, the cartridge 40 is orbitally moved through a predetermined angle by the rotation of the flanges 50, causing the gear 307 of the cartridges 40 to mesh with the gear 55. However, there is a possibility that when the cartridges 40 are orbitally moved by the rotation of the flanges 50, the tips of the teeth of the gears 55 will collide with those of the gear 307, and prevent the gears 55 and 307 from becoming properly meshed. The gears must be enabled to mesh with each other in such a case. Therefore, in this embodiment, a structural arrangement is provided so that after the initial engagement between the two gears 55 and 307, the cartridge 40 reversely pivots once about the axial line of the cartridge catching portion 50a to ensure that the two gears 55 and 307 properly mesh with each other. To describe this arrangement more specifically, if the gears 55 and 307 collide with each other by the tips of their teeth, the impact from the collision causes the cartridge 40 to slightly oscillate in the radius direction of the rotary device 4. This oscillation of the cartridge 40 eliminates the positional relationship between the gears 55 and 307 which caused the collision. Thereafter, the cartridge 40 comes under the force generated by the resiliency of the springs 53 attached to the rotary device 4, being, therefore, moved into the predetermined position.
Further, should the gear 55 fail to completely disengage from the gear 307 when the cartridge 40 is to be orbitally moved out of the predetermined position so that the next cartridge 40 can be moved into the predetermined position, after the completion of the driving of the first cartridge 40, the meshing between the gears 55 and 307 is cleanly stopped by the above described oscillating mechanism.
As the driving force is transmitted to the gear 307 from the gear 55, the cartridge 40 is subjected to a force F which acts in the direction indicated by an arrow mark in FIG. 6. This force F causes the cartridge 40 to rotate about the axial line of the cartridge catching portion 50a in the counterclockwise direction of the drawing, generating a rotational moment therein. This rotational moment presses the projection 353 upon the catching portion 50b, and keeps the projection 353 pressed upon the catching portion 50b; in other words, the rotational moment prevents the cartridge 40 from moving out of the predetermined position in the flange 50. Incidentally, this force F resulting from the transmission of the driving force from the gear 55 to the gear 307 belongs to a closed system confined within the rotary device, affecting very little the pressure applied to the photoconductive drum 1 by the cartridge 40.
(Structure for Keeping Development Cartridge Pressed Upon Photoconductive Drum)
In this embodiment, four color development cartridges 40 are held in the rotary device 4. The cartridge 40 in the development position is kept pressed upon the photoconductive drum 1 in the following manner. As described above, the flanges 50 are rotationally supported by the side plates 54, and each side plate 54 is attached by its top portion to a pivotal shaft 60 attached to a side plate, on the corresponding side, of the apparatus main assembly A; in other words, each side plate 54 is pivotally supported by the corresponding side plate of the apparatus main assembly A. Thus, the cartridge 40, the flanges 50, and the side plates 54 pivot together; the rotary device 4 pivots while holding the four cartridges 40, causing one of the cartridge 40 to be pressed upon the photoconductive drum 1 or moving it away from the photoconductive drum 1. This pivoting of the rotary 4 for pressing the cartridge 40 upon the photoconductive drum 1 or moving it away from the photoconductive drum 1 is caused by pushing up the rotary device to stay fixed to the side plate 54 by the rotation of a cam (unillustrated).
(Controlling of Rotary Rotation)
Referring to
In this embodiment, control is executed so that the amount of the angle through which the rotary device rotates is detected with reference to the moment the flag 57 shields the photo-interrupter 58; the rotary device is rotated through the predetermined angle from the moment the flag 57 shields the photo-interrupter. The rotational angle of the rotary device is controlled based on the revolution detected by the encoder 62.
(Structure of Development Cartridge)
Next, referring to
The cartridge 40 can be roughly divided into a developer storage portion 302 and a development portion. The developer storage portion 302 is filled with a developer t of a predetermined color. As a stirring means 303 is rotated, a predetermined amount of the developer in the developer storage portion 302 is conveyed to the development portion 301. In the development portion, as a spongy developer supply roller is rotated, the developer is supplied to the peripheral surface of the development roller 305, and the thickness of the developer layer on the development roller 305 is reduced to a predetermined one by a development blade 332, while the developer particles are rubbed against the development blade 332 and development roller 305, being thereby electrically charged. The thin layer of the developer on the development roller 305 is conveyed by the rotation of the development roller 305 to the development portion, in which a predetermined development bias is applied to develop the electrostatic latent image on the photoconductive drum 1. In the development portion, the development roller 305 and developer supply roller are disposed.
The residual developer particles, that is, the developer particles that did not contribute to the development of the latent image on the photoconductive drum 1, and remained on the peripheral surface of the development roller 305, are scraped away by the developer supply roller, while a fresh supply of developer is supplied to the peripheral surface of the development roller 305 by the developer supply roller for the development of the latent image continually formed on the photoconductive drum 1.
(Structure of Process Cartridge 5)
In this embodiment, the photoconductive drum 1, the intermediary transfer belt 5a, and a removed developer box 216 together make up the process cartridge 5 of an integral type.
Next, referring to
In the above described first embodiment, the handgrip portion 381a (381b) and sliding portion 380f (380g) were discrete, and were connected to each other. However, that structural arrangement is not intended to limit the scope of the present invention. For example, the handgrip portion 381a (381b) and sliding portion 381f (381g) may be formed as integral parts of a single component, as shown in FIG. 13.
In the drawing, the handgrip-shaped portion 380b is an integral part of the sliding member 380a. Further, the left and right sliding members 380f and 380g are kept pressured by a compression spring 383 in the direction to project outward of the cartridge 40 in terms of the lengthwise direction. Therefore, normally, the projections 380a1 and 380a2, or the outward end portions of the sliding members 380f and 380g, respectively, are always projecting, and as an operator grasps the handgrip-shaped portion 380b (380a), both projections 380a1 and 380a2 are retracted into the frame 40c, allowing the cartridge 40 to be mounted into, or dismounted from, the apparatus main assembly 100a.
As far as the relationship between the cartridge 40 and flanges 50 during the mounting or dismounting of the cartridge 40 is concerned, the second embodiment is the same as the first embodiment. However, the component count in this embodiment is smaller than that in the first embodiment, making it possible to reduce the development cartridge manufacturing cost.
Next, referring to
In the first and second embodiments, the structure in which the locking portions 380a, as a means for preventing the movement of the development cartridge 40, projecting from the lengthwise ends of the development cartridge 40 were put through the holes 50d of the rotary device 4, one for one, was shown. However, that structural arrangement is not intended to limited the scope of the present invention. For example, referring to
Thus, as the handgrip 381 is grasped, the hooks 390, one at each lengthwise end, rotate in the direction indicated by an arrow mark T, unlatching themselves from the center shaft 451, and therefore, allowing the cartridge 40 to be removed from the apparatus main assembly A.
In other words, in this embodiment, the hooks 390 (first and second hook 390a and 390b) constitute the locking portions of the cartridge side, and the center shaft 451 constitutes the locking portion of the main assembly side. Further, the rotational shafts 391 (first and second rotational shafts 391a and 391b) constitute the releasing members.
The above described embodiments may be summarized as follows.
The cartridge 40 removably mountable in the main assembly A of an electrophotographic image forming apparatus comprises: the developing member (305) for developing the electrostatic latent image formed on the electrophotographic photoconductive member (1); a developer storage portion (302) for storing the developer t used by the developing member (305a) for developing the electrostatic latent image; locking portions (380a (
Here, the releasing member is provided with a handgrip (381), which is to be grasped when mounting or dismounting the cartridge 40, into or from, the apparatus main assembly (A), and the locking portions (380a, 390) can be disengaged from the locking portions (50d, 451) on the apparatus main assembly side, by grasping the handgrip (381).
Further, the handgrip (381) is pivotable about the shafts 381f and 381g, and the pivoting of the handgrip (381) about the shafts 381f and 381g causes the releasing member 380 to slide, causing thereby the locking portions (380a1, 380a2) provided at the lengthwise portion of the releasing member (380), to be disengaged from the locking portion (50d) of the apparatus main assembly (A).
Further, the locking portion (380a, (380a1, 380a2)) is located at the lengthwise end of the releasing member (380 (380f, 380g)), and is caused to project from, or retract into, the frame 40c of the cartridge 40, by the movement of the releasing member (380 (380f, 380g)).
The locking portions (380a, (380a1, 380a2)) project from, or retract into, the ends of the frame (40c), one for one, in terms of the lengthwise direction of the developing member (305).
The axial line of the locking portion (380a, (380a1, 380a2)) approximately coincides with that of the cartridge positioning portion (352) for positioning the cartridge 40 relative to the apparatus main assembly (A) when mounting the cartridge (40) into the apparatus main assembly (A).
The handgrip (381) comprises: the first handgrip portion (381a) which rotates about the first shaft (381f); the second handgrip portion (381b) which rotates about the second shaft (381g); the first gear (381d1) attached to the first handgrip portion (381a); the second gear (381d2) which is attached to the second handgrip portion (381b), and meshed with the first gear (381d1); and an elastic member (torsion coil spring 382) positioned between the first handgrip portion (381a) and the second handgrip portion (381b) so that the force generated by the elasticity of the elastic member acts in the direction to keep the first handgrip portion (381a) and the second handgrip portion (381b) pressured in the direction to move away from each other.
The releasing member (380) has the first releasing member (380f) and the second releasing member (380g). The locking portion (380a) has the first locking portion (380a1) and the second locking portion (380a2). One of the lengthwise ends of the first releasing portion (380f) has the first locking portion (380a1), and the other is connected to the first handgrip portion (381a). With the provision of the above structural arrangement, the first releasing portion (380f) is caused to move, by the movement of the first handgrip portion (381a), causing its first locking portion (380a1) to project from, or retract into, the frame 40c. Further, one of the lengthwise ends of the second releasing portion (380g) has the second locking portion (380a2), and the other is connected to the second handgrip portion (381b). With the provision of this structural arrangement, the second releasing portion (380f) is caused to move, by the movement of the second handgrip portion (381a), causing its second locking portion (380a2) to project from, or retract into, the frame (40c). Here, in terms of the lengthwise direction, the first releasing portion (380f) is at one end of the frame 40c, which is on one side of the handgrip (381), whereas the second releasing portion (380g) is at the other end of the frame (40c), which is on the other side of the handgrip (381).
The handgrip (381) and releasing member (380) are on the outward surface of the frame (40c), and more specifically, are on the outward surface of the developer storage portion (302).
The rotary device 4 holds four development cartridges 40: a black development cartridge (40Bk), the developer storage portion 302 of which contains black developer; a yellow development cartridge (40Y), the developer storage portion 302 of which contains yellow developer; a magenta development cartridge (40M), the developer storage portion 302 of which contains magenta developer; and a cyan development cartridge (40C), the developer storage portion 302 of which contains cyan developer. The cartridge 40 is removably mounted in the rotary device 4 of the apparatus main assembly A, which rotates, holding the black development cartridge 40Bk, the yellow development cartridge 40Y, the magenta development cartridge 40M, and the cyan development cartridge 40C. The locking portions (380a, 390) disengageably engage with the locking portions (50d, 451) of the rotary device 4.
The cartridge 40 is a process cartridge comprising the electrophotographic photoconductive member 1.
In the preceding embodiments, the present invention was described with reference to a development cartridge. However, these descriptions were not intended to limit the scope of the present invention. For example, a charging unit cartridge, a cleaning unit cartridge, and the like, may be listed, in addition to a process cartridge, as a cartridge to which the present invention is applicable. Here, the selection of the development cartridge structure does not need to be limited to those in the preceding embodiments, that is, the structures in which the developing member, and the developer storage portion in which the developer used by the developing member for developing an electrostatic latent image is stored, are integrated into a cartridge removably mountable in the apparatus main assembly. For example, the development cartridge does not need to have the developer storage portion, or may have a single or plurality of members other than the above listed ones. Further, a process cartridge is a cartridge in which the electrophotographic photoconductive member and the developing member are integrally disposed, and which is removably mountable in the apparatus main assembly, or a cartridge in which at least one of the charging member and the cleaning member is integrally disposed in addition to the electrophotographic photoconductive member and developing member, and which is removably mountable in the apparatus main assembly.
As described above, according to the present invention, a cartridge could be prevented from unexpectedly dislodging from the apparatus main assembly.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth, and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2001-339244 | Nov 2001 | JP | national |
This application is a divisional of U.S. application Ser. No. 10/179,847, filed Jun. 26, 2002, now U.S. Pat. No. 6,834,173, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4743938 | Ohno | May 1988 | A |
5021825 | Niki | Jun 1991 | A |
5066976 | Kanagawa et al. | Nov 1991 | A |
5331390 | Kimura et al. | Jul 1994 | A |
5418601 | Fujisawa et al. | May 1995 | A |
5729796 | Miura et al. | Mar 1998 | A |
5734949 | Goto et al. | Mar 1998 | A |
5768658 | Watanabe et al. | Jun 1998 | A |
5794103 | Oh | Aug 1998 | A |
5815644 | Nishiuwatoko et al. | Sep 1998 | A |
5870655 | Nishiuwatoko et al. | Feb 1999 | A |
5893006 | Kanno et al. | Apr 1999 | A |
5926666 | Miura et al. | Jul 1999 | A |
5937240 | Kanno et al. | Aug 1999 | A |
5940657 | Yokomori et al. | Aug 1999 | A |
5950049 | Yokomori et al. | Sep 1999 | A |
6070029 | Nishiuwatoko et al. | May 2000 | A |
6072969 | Yokomori et al. | Jun 2000 | A |
6104895 | Yokomori et al. | Aug 2000 | A |
6115571 | Kobayashi | Sep 2000 | A |
6141508 | Sasaki et al. | Oct 2000 | A |
6345164 | Yokomori et al. | Feb 2002 | B1 |
6381430 | Yokomori et al. | Apr 2002 | B1 |
6418296 | Aizawa et al. | Jul 2002 | B1 |
6535705 | Asakura et al. | Mar 2003 | B2 |
20020110386 | Kanno et al. | Aug 2002 | A1 |
Number | Date | Country |
---|---|---|
62-127850 | Jun 1987 | JP |
03-116323 | Dec 1991 | JP |
3-269440 | Dec 1991 | JP |
7-295381 | Nov 1995 | JP |
8-328448 | Dec 1996 | JP |
11-73018 | Mar 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20050008395 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10179847 | Jun 2002 | US |
Child | 10914198 | US |