Cartridge and method for the preparation of beverages

Abstract
A cartridge for use in a beverage preparation machine, the cartridge containing one or more beverage ingredients and being formed from substantially air- and water-impermeable materials, the cartridge comprising an inlet for the introduction of an aqueous medium into the cartridge and an outlet for discharge of a beverage produced from the one or more beverage ingredients.
Description
BACKGROUND

The present invention relates to a cartridge and method for the preparation of beverages and, in particular, using sealed cartridges which are formed from substantially air- and water-impermeable materials and which contain one or more ingredients for the preparation of beverages.


It has previously been proposed to seal beverage preparation ingredients in individual air-impermeable packages. For example, cartridges or capsules containing compacted ground coffee are known for use in certain coffee preparation machines which are generally termed “espresso” machines. In the production of coffee using these preparation machines the coffee cartridge is placed in a brewing chamber and hot water is passed though the cartridge at relatively high pressures, thereby extracting the aromatic coffee constituents from the ground coffee to produce the coffee beverage. Typically, such machines operate at a pressure of greater than 6×105 Pa. The preparation machines of the type described have to date been relatively expensive since components of the machine, such as the water pumps and seals, must be able to withstand the high pressures.


In WO 01/58786 there is described a cartridge for the preparation of beverages which operates at a pressure generally in the range 0.7 to 2.0×105 Pa. However, the cartridge is designed for use in a beverage preparation machine for the commercial or industrial market and is relatively expensive. Hence, there remains a requirement for a cartridge for the preparation of beverages wherein the cartridges and beverage preparation machine are suitable, in particular, for the domestic market in terms of cost, performance and reliability.


It is known to provide dairy-based beverage ingredients in cartridges in the form of a powder or other dehydrated form. However, consumers consistently indicate that the use of such powdered dairy-based products adversely affects the taste, colour and texture of the final beverage. In addition, powdered dairy products cannot be used to produce an authentic looking frothy milk-based foam as desired by consumers for cappuccino-style beverages. A number of beverage preparation machines provide a steam wand or similar for frothing of a quantity of milk. However, the addition of the steam wand increases the cost of the machine and requires a means for generating steam. Operation of the steam wand must be done manually and requires experience to be successful. In addition, since steam is being used there is the potential for the consumer to be burnt by either the steam or hot components of the machine. Further, the consumer must keep a supply of milk available separate from the machine.


SUMMARY

The cartridge of the present invention contains one or more beverage ingredients suitable for the formation of a beverage product. The liquid beverage product may be, for example, one of coffee, tea, chocolate or a dairy-based beverage including milk.


It will be understood that by the term “cartridge” as used herein is meant any package, container, sachet or receptacle which contains one or more beverage ingredients in the manner described. The cartridge may be rigid, semi-rigid or flexible.


Advantageously, the liquid beverage ingredient provides a superior beverage in look, taste and mouth feel compared to a beverage prepared from a powdered product. The liquid beverage may also be foamed by the beverage preparation machine to produce a cappuccino-style froth. The cartridge containing the liquid beverage ingredient may be used in the same beverage preparation machine as cartridges containing solid or soluble beverage ingredients. No separate wand or steam supply is required to effect the foaming.


Accordingly, in one aspect the present invention provides a cartridge for use in a beverage preparation machine, the cartridge containing one or more beverage ingredients and being formed from substantially air- and water-impermeable materials, wherein the one or more beverage ingredients is a liquid chocolate ingredient.


The cartridge may comprise an inlet for the introduction of an aqueous medium into the cartridge and an outlet for discharge of a beverage produced from the liquid chocolate ingredient.


Preferably, the liquid chocolate ingredient is concentrated. The use of concentrated liquids allows for larger volumes of beverage to be dispensed. The liquid chocolate ingredient may contain greater than 40% total solids. The liquid chocolate ingredient may contain between 70 and 95% total solids.


The liquid chocolate ingredient may contain about 90% total solids.


The liquid chocolate ingredient may be in the form of a gel.


The liquid chocolate ingredient may have a viscosity of between 70 and 3900 mPa at ambient temperature. The viscosity may be between 1700 and 3900 mPa at ambient temperature.


Typically, the liquid chocolate ingredient contains cocoa solids. The liquid chocolate ingredient may contain between 50 and 80% total cocoa solids. The liquid chocolate ingredient may contain between 60 and 70% total cocoa solids.


This aspect of the present invention also provides a method of dispensing a beverage from a cartridge containing one or more liquid chocolate ingredients during an operating cycle, comprising the steps of passing an aqueous medium through the cartridge to form a beverage by dilution of said one or more chocolate ingredients, and dispensing the beverage into a receptacle, wherein the one or more liquid chocolate ingredients is diluted by a ratio of between 2 to 1 and 10 to 1.


The method may further comprise the step of passing the beverage through means to produce foaming of the beverage, wherein the level of foaming-is greater than 70%. The level of foaming is measured as the ratio of the volume of foam produced to the volume of the original liquid beverage ingredient. Foaming is particularly advantageous for dispensing beverages such as cappuccinos and milk shakes.


Another aspect of the present invention provides a cartridge for use in a beverage preparation machine, the cartridge containing one or more beverage ingredients and being formed from substantially air- and water-impermeable materials, wherein the one or more beverage ingredients is a liquid milk ingredient.


The cartridge may comprise an inlet for the introduction of an aqueous medium into the cartridge and an outlet for discharge of a beverage produced from the liquid milk ingredient.


The liquid milk ingredient may be concentrated. The use of concentrated liquids allows for larger volumes of beverage to be dispensed. The liquid milk ingredient may contain between 25 and 40% total solids. The liquid milk ingredient may contain 30% total solids.


The liquid milk ingredient may have a viscosity of between 70 and 3900 mPa at ambient temperature.


The liquid milk ingredient may contain between 0.1 and 12% fat.


This aspect of the present invention also provides a method of dispensing a beverage from a cartridge containing one or more liquid milk ingredients during an operating cycle, comprising the steps of passing an aqueous medium through the cartridge to form a beverage by dilution of said one or more liquid ingredients, and dispensing the beverage into a receptacle, wherein the one or more liquid milk ingredients is diluted by a ratio of between 1 to 1 and 6 to 1.


The one or more liquid milk ingredients may be diluted by a ratio of around 3 to 1.


The method may further comprise the step of passing the beverage through means to produce foaming of the beverage, wherein the level of foaming is greater than 40%.


Another aspect of the present invention provides a cartridge for use in a beverage preparation machine, the cartridge containing one or more beverage ingredients and being formed from substantially air- and water-impermeable materials, wherein the one or more beverage ingredients is a liquid coffee ingredient.


The cartridge may comprise an inlet for the introduction of an aqueous medium into the cartridge and an outlet for discharge of a beverage produced from the liquid coffee ingredient.


The liquid coffee ingredient may be concentrated. The use of concentrated liquids allows for larger volumes of beverage to be dispensed. The liquid coffee may contain between 40 and 70% total solids. The liquid coffee may contain between 55 and 67% total solids.


The liquid coffee ingredient may contain sodium bicarbonate. The coffee ingredient may contain between 0.1 and 2.0% by weight sodium bicarbonate. The cartridge may contain between 0.5 and 1.0% by weight sodium bicarbonate.


The liquid coffee ingredient may have a viscosity of between 70 and 3900 mPa at ambient temperature. The viscosity may be between 70 and 2000 mPa at ambient temperature.


This aspect of the present invention also provides a method of dispensing a beverage from a cartridge containing one or more liquid coffee ingredients during an operating cycle, comprising the steps of passing an aqueous medium through the cartridge to form a beverage by dilution of said one or more liquid coffee ingredients, and dispensing the beverage into a receptacle, wherein the one or more liquid coffee ingredients is diluted by a ratio of between 10 to 1 and 100 to 1.


The one or more liquid coffee ingredients may be diluted by a ratio of between 20 to 1 and 70 to 1.


The method may further comprise the step of passing the beverage through means to produce foaming of the beverage, wherein the level of foaming is greater than 70%.


Another aspect of the present invention provides a cartridge for use in a beverage preparation machine, the cartridge containing one or more beverage ingredients and being formed from substantially air- and water-impermeable materials, wherein the one or more beverage ingredients is any of a soup, fruit juice, flavoured milk, carbonated beverage, sauce or dessert.


The cartridge may comprises an inlet for the introduction of an aqueous medium into the cartridge and an outlet for discharge of a beverage produced from the one or more beverage ingredients.


For all aspects of the present invention, the cartridge may comprise an outer member and an inner member conjoined on assembly with the outer member. A snap-fit arrangement may be provided to conjoin the outer member and the inner member on assembly of the cartridge.


The cartridge may further comprise means for producing a jet of the beverage, wherein said means for producing the jet of the beverage comprises an aperture in the beverage flow path.


The cartridge may further comprise at least one inlet for air and means for generating a pressure reduction of the jet of beverage, whereby, in use, air from the at least one air inlet is incorporated into the beverage as a plurality of small bubbles.


The present invention also describes a beverage as produced by any of the above mentioned methods.


In the following description the terms “upper” and “lower” and equivalents will be used to describe the relational positioning of features of the invention. The terms “upper” and “lower” and equivalents should be understood to refer to the cartridge (or other components) in its normal orientation for insertion into a beverage preparation machine and subsequent dispensing as shown, for example, in FIG. 4. In particular, “upper” and “lower” refer, respectively, to relative positions nearer or further from a top surface 11 of the cartridge. In addition, the terms “inner” and “outer” and equivalents will be used to describe the relational positioning of features of the invention. The terms “inner” and “outer” and equivalents should be understood to refer to relative positions in the cartridge (or other components) being, respectively, nearer or further from a centre or major axis X of the cartridge 1 (or other component).


Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is cross-sectional drawing of an outer member of first and second embodiments of cartridge;



FIG. 2 is a cross-sectional drawing of a detail of the outer member of FIG. 1 showing an inwardly directed cylindrical extension;



FIG. 3 is a cross-sectional drawing of a detail of the outer member of FIG. 1 showing a slot;



FIG. 4 is a perspective view from above of the outer member of FIG. 1;



FIG. 5 is a perspective view from above of the outer member of FIG. 1 in an inverted orientation;



FIG. 6 is a plan view from above of the outer member of FIG. 1;



FIG. 7 is a cross-sectional drawing of an inner member of the first embodiment of cartridge;



FIG. 8 is a perspective view from above of the inner member of FIG. 7;



FIG. 9 is a perspective view from above of the inner member of FIG. 7 in an inverted orientation;



FIG. 10 is a plan view from above of the inner member of FIG. 7;



FIG. 11 is a cross-sectional drawing of the first embodiment of cartridge in an assembled condition;



FIG. 12 is a cross-sectional drawing of an inner member of the second embodiment of cartridge;



FIG. 13 is a cross-sectional drawing of a detail of the inner member of FIG. 12 showing an aperture;



FIG. 14 is a perspective view from above of the inner member of FIG. 12;



FIG. 15 is a perspective view from above of the inner member of FIG. 12 in an inverted orientation;



FIG. 16 is another cross-sectional drawing of the inner member of FIG. 12;



FIG. 17 is a cross-sectional drawing of another detail of the inner member of FIG. 12 showing an air inlet;



FIG. 18 is a cross-sectional drawing of the second embodiment of cartridge in an assembled condition;



FIG. 19 is cross-sectional drawing of an outer member of third and fourth embodiments of cartridge according to the present invention;



FIG. 20 is a cross-sectional drawing of a detail of the outer member of FIG. 19 showing an inwardly directed cylindrical extension;



FIG. 21 is a plan view from above of the outer member of FIG. 19;



FIG. 22 is a perspective view from above of the outer member of FIG. 19;



FIG. 23 is a perspective view from above of the outer member of FIG. 19 in an inverted orientation;



FIG. 24 is a cross-sectional drawing of an inner member of the third embodiment of cartridge;



FIG. 25 is a plan view from above of the inner member of FIG. 24;



FIG. 26 is a cross-sectional drawing of a detail of the inner member of FIG. 24 showing an in-turned upper rim;



FIG. 27 is a perspective view from above of the inner member of FIG. 24;



FIG. 28 is a perspective view from above of the inner member of FIG. 24 in an inverted orientation;



FIG. 29 is a cross-sectional drawing of the third embodiment of cartridge in an assembled condition;



FIG. 30 is a cross-sectional drawing of an inner member of the fourth embodiment of cartridge;



FIG. 31 is a plan view from above of the inner member of FIG. 30;



FIG. 32 is a perspective view from above of the inner member of FIG. 30;



FIG. 33 is a perspective view from above of the inner member of FIG. 30 in an inverted orientation;



FIG. 34 is a cross-sectional drawing of the fourth embodiment of cartridge in an assembled condition;



FIG. 35a is a graph of concentration vs. operating cycle time;



FIG. 35b is a graph of foamability vs. operating cycle time; and



FIG. 35c is a graph of temperature vs. operating cycle time.





DETAILED DESCRIPTION

As shown in FIG. 11, the cartridge 1 generally comprises an outer member 2, an inner member 3 and a laminate 5. The outer member 2, inner member 3 and laminate 5 are assembled to form the cartridge 1 which has an interior 120 for containing one or more beverage ingredients, an inlet 121, an outlet 122 and a beverage flow path linking the inlet 121 to the outlet 122 and which passes through the interior 120. The inlet 121 and outlet 122 are initially sealed by the laminate 5 and are opened in use by piercing or cutting of the laminate 5. The beverage flow path is defined by spatial inter-relationships between the outer member 2, inner member 3 and laminate 5 as discussed below. Other components may optionally be included in the cartridge 1, such as a filter 4, as will be described further below.


A first version of cartridge 1 which will be described for background purposes is shown in FIGS. 1 to 11. The first version of the cartridge 1 is particularly designed for use in dispensing filtered products such as roast and ground coffee or leaf tea. However, this version of the cartridge 1 and the other versions described below may be used with other products such as chocolate, coffee, tea, sweeteners, cordials, flavourings, alcoholic beverages, flavoured milk, fruit juices, squashes, sauces and desserts.


As can be seen from FIG. 5, the overall shape of the cartridge 1 is generally circular or disc-shaped with the diameter of the cartridge 1 being significantly greater than its height. A major axis X passes through the centre of the outer member as shown in FIG. 1. Typically the overall diameter of the outer member 2 is 74.5 mm±6 mm and the overall height is 16 mm±3 mm. Typically the volume of the cartridge 1 when assembled is 30.2 ml±20%.


The outer member 2 generally comprises a bowl-shaped shell 10 having a curved annular wall 13, a closed top 11 and an open bottom 12. The diameter of the outer member 2 is smaller at the top 11 compared to the diameter at the bottom 12, resulting from a flaring of the annular wall 13 as one traverses from the closed top 11 to the open bottom 12. The annular wall 13 and closed bottom 11 together define a receptacle having an interior 34.


A hollow inwardly directed cylindrical extension 18 is provided in the closed top 11 centred on the major axis X. As more clearly shown in FIG. 2, the cylindrical extension 18 comprises a stepped profile having first, second and third portions 19, 20 and 21. The first portion 19 is right circular cylindrical. The second portion 20 is frusto-conical in shape and is inwardly tapered. The third portion 21 is another right circular cylinder and is closed off by a lower face 31. The diameter of the first, second and third portion 19, 20 and 21 incrementally decreases such that the diameter of the cylindrical extension 18 decreases as one traverses from the top 11 to the closed lower face 31 of the cylindrical extension 18. A generally horizontal shoulder 32 is formed on the cylindrical extension 18 at the junction between the second and third portions 20 and 21.


An outwardly extending shoulder 33 is formed in the outer member 2 towards the bottom 12. The outwardly extending shoulder 33 forms a secondary wall 15 co-axial with the annular wall 13 so as to define an annular track forming a manifold 16 between the secondary wall 15 and the annular wall 13. The manifold 16 passes around the circumference of the outer member 2. A series of slots 17 are provided in the annular wall 13 level with the manifold 16 to provide gas and liquid communication between the manifold 16 and the interior 34 of the outer member 2. As shown in FIG. 3, the slots 17 comprise vertical slits in the annular wall 13. Between 20 and 40 slots are provided. In the embodiment shown thirty-seven slots 17 are provided generally equi-spaced around the circumference of the manifold 16. The slots 17 are preferably between 1.4 and 1.8 mm in length. Typically the length of each slot is 1.6 mm representing 10% of the overall height of the outer member 2. The width of each slot is between 0.25 and 0.35 mm. Typically, the width of each slot is 0.3 mm. The width of the slots 17 is sufficiently narrow to prevent the beverage ingredients passing therethrough into the manifold 16 either during storage or in use.


An inlet chamber 26 is formed in the outer member 2 at the periphery of the outer member 2. A cylindrical wall 27 is provided, as most clearly shown in FIG. 5, which defines the inlet chamber 26 within, and partitions the inlet chamber 26 from, the interior 34 of the outer member 2. The cylindrical wall 27 has a closed upper face 28 which is formed on a plane perpendicular to the major axis X and an open lower end 29 co-planar with the bottom 12 of the outer member 2. The inlet chamber 26 communicates with the manifold 16 via two slots 30 as shown in FIG. 1. Alternatively, between one and four slots may be used to communicate between the manifold 16 and the inlet chamber 26.


A lower end of the outwardly extending shoulder 33 is provided with an outwardly extending flange 35 which extends perpendicularly to the major axis X. Typically the flange 35 has a width of between 2 and 4 mm. A portion of the flange 35 is enlarged to form a handle 24 by which the outer member 2 may be held. The handle 24 is provided with an upturned rim 25 to improve grip.


The outer member 2 is formed as a single integral piece from high density polyethylene, polypropylene, polystyrene, polyester, or a laminate of two or more of these materials. A suitable polypropylene is the range of polymers available from DSM UK Limited (Redditch, United Kingdom). The outer member may be opaque, transparent or translucent. The manufacturing process may be injection moulding.


The inner member 3 as shown in FIGS. 7 to 10 comprises an annular frame 41 and a downwardly extending cylindrical funnel 40. A major axis X passes through the centre of the inner member 3 as shown in FIG. 7.


As best shown in FIG. 8, the annular frame 41 comprises an outer rim 51 and an inner hub 52 joined by ten equi-spaced radial spokes 53. The inner hub 52 is integral with and extends from the cylindrical funnel 40. Filtration apertures 55 are formed in the annular frame 41 between the radial spokes 53. A filter 4 is disposed on the annular frame 41 so as to cover the filtration apertures 55. The filter is preferably made from a material with a high wet strength, for example a non-woven fibre material of polyester. Other materials which may be used include a water-impermeable cellulosic material, such as a cellulosic material comprising woven paper fibres. The woven paper fibres may be admixed with fibres of polypropylene, polyvinyl chloride and/or polyethylene. The incorporation of these plastic materials into the cellulosic material renders the cellulosic material heat-sealable. The filter 4 may also be treated or coated with a material which is activated by heat and/or pressure so that it can be sealed to the annular frame 41 in this way.


As shown in the cross-sectional profile of FIG. 7, the inner hub 52 is located at a lower position than the outer rim 51, resulting in the annular frame 41 having a sloping lower profile.


The upper surface of each spoke 53 is provided with an upstanding web 54 which divides a void space above the annular frame 41 into a plurality of passages 57. Each passage 57 is bounded on either side by a web 54 and on a lower face by the filter 4. The passages 57 extend from the outer rim 51 downwardly towards, and open into, the cylindrical funnel 40 at openings 56 defined by the inner extremities of the webs 54.


The cylindrical funnel 40 comprises an outer tube 42 surrounding an inner discharge spout 43. The outer tube 42 forms the exterior of the cylindrical funnel 40. The discharge spout 43 is joined to the outer tube 42 at an upper end of the discharge spout 43 by means of an annular flange 47. The discharge spout 43 comprises an inlet 45 at an upper end which communicates with the openings 56 of the passages 57 and an outlet 44 at a lower end through which the prepared beverage is discharged into a cup or other receptacle. The discharge spout 43 comprises a frusto-conical portion 48 at an upper end and a cylindrical portion 58 at a lower end. The cylindrical portion 58 may have a slight taper such that it narrows towards the outlet 44. The frusto-conical portion 48 helps to channel beverage from the passages 57 down towards the outlet 44 without inducing turbulence to the beverage. An upper surface of the frusto-conical portion 48 is provided with four support webs 49 equi-spaced around the circumference of the cylindrical funnel 40. The support webs 49 define channels 50 therebetween. The upper edges of the support webs 49 are level with one another and perpendicular to the major axis X.


The inner member 3 may be formed as a single integral piece from polypropylene or a similar material as described above and by injection moulding in the same manner as the outer member 2.


Alternatively, the inner member 3 and/or the outer member 2 may be made from a biodegradable polymer. Examples of suitable materials include degradable polyethylene (for example, SPITEK supplied by Symphony Environmental, Borehamwood, United Kingdom), biodegradable polyester amide (for example, BAK 1095 supplied by Symphony Environmental), poly lactic acids (PLA supplied by Cargil, Minn., USA), starch-based polymers, cellulose derivatives and polypeptides.


The laminate 5 is formed from two layers, a first layer of aluminium and a second layer of cast polypropylene. The aluminium layer is between 0.02 and 0.07 mm in thickness. The cast polypropylene layer is between 0.025 and 0.065 mm in thickness. In one embodiment the aluminium layer is 0.06 mm and the polypropylene layer is 0.025 mm thick. This laminate is particularly advantageous as it has a high resistance to curling during assembly. As a result the laminate 5 may be pre-cut to the correct size and shape and subsequently transferred to the assembly station on the production line without undergoing distortion. Consequently, the laminate 5 is particularly well suited to welding. Other laminate materials may be used including PET/Aluminium/PP, PE/EVOH/PP, PET/metallized/PP and Aluminium/PP laminates. Roll laminate stock may be used instead of die cut stock.


The cartridge 1 may be closed by a rigid or semi-rigid lid instead of a flexible laminate.


Assembly of the cartridge 1 involves the following steps:


a) the inner member 3 is inserted into the outer member 2;


b) the filter 4 is cut to shape and placed onto the inner member 3 so to be received over the cylindrical funnel 40 and come to rest against the annular frame 41;


c) the inner member 3, outer member 2 and filter 4 are joined by ultrasonic welding;


d) the cartridge 1 is filled with one or more beverage ingredients;


e) the laminate 5 is affixed to the outer member 2.


These steps will be discussed in greater detail below.


The outer member 2 is orientated with the open bottom 12 directed upwards. The inner member 3 is then inserted into the outer member 2 with the outer rim 51 being received as a loose fit in an axial extension 14 at top 11 of the cartridge 1. The cylindrical extension 18 of the outer member 2 is at the same time received in the upper portion of the cylindrical funnel 40 of the inner member 3. The third portion 21 of the cylindrical extension 18 is seated inside the cylindrical funnel 40 with the closed lower face 31 of the cylindrical extension 18 bearing against the support webs 49 of the inner member 3. The filter 4 is then placed over the inner member 3 such that the filter material contacts the annular rim 51. An ultrasonic welding process is then used to join the filter 4 to the inner member 3 and at the same time, and in the same process step, the inner member 3 to the outer member 2. The inner member 3 and filter 4 are welded around the outer rim 51. The inner member 3 and outer member 2 are joined by means of weld lines around the outer rim 51 and also the upper edges of the webs 54.


As shown most clearly in FIG. 11, the outer member 2 and inner member 3 when joined together define a void space 130 in the interior 120 below the annular flange 41 and exterior the cylindrical funnel 40 which forms a filtration chamber. The filtration chamber 130 and passages 57 above the annular frame 41 are separated by the filter paper 4.


The filtration chamber 130 contains the one or more beverage ingredients 200. The one or more beverage ingredients are packed into the filtration chamber 130. For a filtered style beverage the ingredient is typically roast and ground coffee or leaf tea. The density of packing of the beverage ingredients in the filtration chamber 130 can be varied as desired. Typically, for a filtered coffee product the filtration chamber contains between 5.0 and 10.2 grams of roast and ground coffee in a filtration bed of thickness of typically 5 to 14 mm. Optionally, the interior 120 may contain one or more bodies, such as spheres, which are freely movable within the interior 120 to aid mixing by inducing turbulence and breaking down deposits of beverage ingredients during discharge of the beverage.


The laminate 5 is then affixed to the outer member 2 by forming a weld 126 around the periphery of the laminate 5 to join the laminate 5 to the lower surface of the outwardly extending flange 35. The weld 126 is extended to seal the laminate 5 against the lower edge of the cylindrical wall 27 of the inlet chamber 26. Further, a weld 125 is formed between the laminate 5 and the lower edge of the outer tube 42 of the cylindrical funnel 40. The laminate 5 forms the lower wall of the filtration chamber 130 and also seals the inlet chamber 26 and cylindrical funnel 40. However, a small gap 123 exists prior to dispensation between the laminate 5 and the lower edge of the discharge spout 43. A variety of welding methods may be used, such as heat and ultrasonic welding, depending on the material characteristics of the laminate 5.


Advantageously, the inner member 3 spans between the outer member 2 and the laminate 5. The inner member 3 is formed from a material of relative rigidity, such as polypropylene. As such, the inner member 3 forms a load-bearing member that acts to keep the laminate 5 and outer member 2 spaced apart when the cartridge 1 is compressed. It is preferred that the cartridge 1 is subjected to a compressive load of between 130 and 280 N in use. The compressive force acts to prevent the cartridge failing under internal pressurization and also serves to squeeze the inner member 3 and outer member 2 together. This ensures that the internal dimensions of passageways and apertures in the cartridge 1 are fixed and unable to change during pressurization of the cartridge 1.


To use the cartridge 1 it is first inserted into a beverage preparation machine and the inlet 121 and outlet 122 are opened by piercing members of the beverage preparation machine which perforate and fold back the laminate 5. An aqueous medium, typically water, under pressure enters the cartridge 1 through the inlet 121 into the inlet chamber 26 at a pressure of between 0.1-2.0 bar. From there the water is directed to flow through the slots 30 and round the manifold 16 and into the filtration chamber 130 of the cartridge 1 through the plurality of slots 17. The water is forced radially inwardly through the filtration chamber 130 and mixes with the beverage ingredients 200 contained therein. The water is at the same time forced upwardly through the beverage ingredients. The beverage formed by passage of the water through the beverage ingredients passes through the filter 4 and filtration apertures 55 into the passages 57 lying above the annular frame 41. The sealing of the filter 4 onto the spokes 53 and the welding of the rim 51 with the outer member 2 ensures that there are no short-circuits and all the beverage has to pass through the filter 4.


The beverage then flows downwardly along the radial passages 57 formed between the webs 54 and through the openings 56 and into the cylindrical funnel 40. The beverage passes along the channels 50 between the support webs 47 and down the discharge spout 43 to the outlet 44 where the beverage is discharged into a receptacle such as a cup.


Preferably, the beverage preparation machine comprises an air purge facility, wherein compressed air is forced through the cartridge 1 at the end of the operating cycle to flush out the remaining beverage into the receptacle.


A second version of cartridge 1 will now be described for background purposes with reference to FIGS. 12 to 18. The second version of the cartridge 1 is particularly designed for use in dispensing espresso-style products such as roast and ground coffee where it is desirable to produce a beverage having a froth of tiny bubbles known as a cream. Many of the features of the second version of the cartridge 1 are the same as in the first version and like numerals have been used to reference like features. In the following description the differences between the first and second versions will be discussed. Common features which function in the same manner will not be discussed in detail.


The outer member 2 is of the same construction as in the first version of cartridge 1 and as shown in FIGS. 1 to 6.


The annular frame 41 of the inner member 3 is the same as in the first version. Also, a filter 4 is disposed on the annular frame 41 so as to cover the filtration apertures 55. The outer tube 42 of the cylindrical funnel 40 is also as before. However, there are a number of differences in the construction of the inner member 2 of the second version compared to the first version. As shown in FIG. 16, the discharge spout 43 is provided with a partition 65 which extends part way up the discharge spout 43 from the outlet 44. The partition 65 helps to prevent the beverage spraying and/or splashing as it exits the discharge spout 43. The profile of the discharge spout 43 is also different and comprises a stepped profile with a distinct dog-leg 66 near an upper end of the tube 43.


A rim 67 is provided upstanding from the annular flange 47 joining the outer tube 42 to the discharge spout 43. The rim 67 surrounds the inlet 45 to the discharge spout 43 and defines an annular channel 69 between the rim 67 and the upper portion of the outer tube 42. The rim 67 is provided with an inwardly directed shoulder 68. At one point around the circumference of the rim 67 an aperture 70 is provided in the form of a slot which extends from an upper edge of rim 67 to a point marginally below the level of the shoulder 68 as most clearly shown in FIGS. 12 and 13. The slot has a width of 0.64 mm.


An air inlet 71 is provided in annular flange 47 circumferentially aligned with the aperture 70 as shown in FIGS. 16 and 17. The air inlet 71 comprises an aperture passing through the flange 47 so as to provide communication between a point above the flange 47 and the void space below the flange 47 between the outer tube 42 and discharge spout 43. Preferably, and as shown, the air inlet 71 comprises an upper frusto-conical portion 73 and a lower cylindrical portion 72. The air inlet 71 is typically formed by a mould tool such as a pin. The tapered profile of the air inlet 71 allows the mould tool to be more easily removed from the moulded component. The wall of the outer tube 42 in the vicinity of the air inlet 71 is shaped to form a chute 75 leading from the air inlet 71 to the inlet 45 of the discharge spout 43. As shown in FIG. 17, a canted shoulder 74 is formed between the air inlet 71 and the chute 75 to ensure that the jet of beverage issuing from the slot 70 does not immediately foul on the upper surface of the flange 47 in the immediate vicinity of the air inlet 71.


The assembly procedure for the second version of cartridge 1 is similar to the assembly of the first version. However, there are certain differences. As shown in FIG. 18, the third portion 21 of the cylindrical extension 18 is seated inside the support rim 67 rather than against support webs. The shoulder 32 of the cylindrical extension 18 between the second portion 20 and third portion 21 bears against the upper edge of the support rim 67 of the inner member 3. An interface zone 124 is thus formed between the inner member 3 and the outer member 2 comprising a face seal between the cylindrical extension 18 and the support rim 67 which extends around nearly the whole circumference of the cartridge 1. The seal between the cylindrical extension 18 and the support rim 67 is not fluid-tight though since the slot 70 in the support rim 67 extends through the support rim 67 and downwardly to a point marginally below the shoulder 68. Consequently the interface fit between the cylindrical extension 18 and the support rim 67 transforms the slot 70 into an aperture 128, as most clearly shown in FIG. 18, providing gas and liquid communication between the annular channel 69 and the discharge spout 43. The aperture is typically 0.64 mm wide by 0.69 mm long.


Operation of the second version of cartridge 1 to dispense a beverage is similar to the operation of the first version but with certain differences. Beverage in the radial passages 57 flows downwardly along the passages 57 formed between the webs 54 and through the openings 56 and into the annular channel 69 of the cylindrical funnel 40. From the annular channel 69 the beverage is forced under pressure through the aperture 128 by the back pressure of beverage collecting in the filtration chamber 130 and passages 57. The beverage is thus forced through aperture 128 as a jet and into an expansion chamber formed by the upper end of the discharge spout 43. As shown in FIG. 18, the jet of beverage passes directly over the air inlet 71. As the beverage enters the discharge spout 43 the pressure of the beverage jet drops. As a result air is entrained into the beverage stream in the form of a multitude of small air bubbles as the air is drawn up through the air inlet 71. The jet of beverage issuing from the aperture 128 is funneled downwards to the outlet 44 where the beverage is discharged into a receptacle such as a cup where the air bubbles form the desired cream. Thus, the aperture 128 and the air inlet 71 together form an educator which acts to entrain air into the beverage. Flow of beverage into the eductor should be kept as smooth as possible to reduce pressure losses. Advantageously, the walls of the eductor should be made concave to reduce losses due to ‘wall effect’ friction. The dimensional tolerance of the aperture 128 is small. Preferably the aperture size is fixed plus or minus 0.02 mm2. Hairs, fibrils or other surface irregularities can be provided within or at the exit of the eductor to increase the effective cross-sectional area which has been found to increase the degree of air entrainment.


A third version of cartridge 1 according to the present invention is shown in FIGS. 19 to 29. The third version of the cartridge 1 is particularly designed for use in dispensing soluble products which may be in powdered, liquid, syrup, gel or similar form. The soluble product is dissolved by or forms a suspension in, an aqueous medium such as water when the aqueous medium is passed, in use, through the cartridge 1. Examples of beverages include cocoa solids, coffee, milk, tea, soup or other rehydratable or aqueous-soluble products. Many of the features of the third version of the cartridge 1 are the same as in the previous versions and like numerals have been used to reference like features. In the following description the differences between the third and previous versions will be discussed. Common features which function in the same manner will not be discussed in detail.


Compared to the outer member 2 of the previous versions, the hollow inwardly directed cylindrical extension 18 of the outer member 2 of the third version has a larger overall diameter as shown in FIG. 20. In particular the diameter of the first portion 19 is typically between 16 and 18 mm compared to 13.2 mm for the outer member 2 of the previous versions. In addition, the first portion 19 is provided with a convex outer surface 19a, or bulge, as most clearly shown in FIG. 20, the function of which will be described below. The diameter of the third portions 21 of the cartridges 1 are however the same resulting in the area of the shoulder 32 being greater in this, the third version of the cartridge 1. Typically the volume of the cartridge 1 when assembled is 32.5 ml±20%.


The number and positioning of the slots in the lower end of the annular wall 13 is also different. Between 3 and 5 slots are provided. In the embodiment as shown in FIG. 23, four slots 36 are provided equi-spaced around the circumference of the manifold 16. The slots 36 are slightly wider than in the previous versions of the cartridge 1 being between 0.35 and 0.45 mm, preferably 0.4 mm wide.


In other respects the outer members 2 of the cartridges 1 are the same.


The construction of the cylindrical funnel 40 of the inner member 3 is the same as in the first version of cartridge 1 with an outer tube 42, discharge spout 45, annular flange 47 and support webs 49 being provided. The only difference is that the discharge spout 45 is shaped with an upper frusto-conical section 92 and a lower cylindrical section 93.


In contrast to the previous versions and as shown in FIGS. 24 to 28, the annular frame 41 is replaced by a skirt portion 80 which surrounds the cylindrical funnel 40 and is joined thereto by means of eight radial struts 87 which adjoin the cylindrical funnel 40 at or near the annular flange 47. A cylindrical extension 81 of the skirt portion 80 extends upwardly from the struts 87 to define a chamber 90 with an open upper face. An upper rim 91 of the cylindrical extension 81 has an in-turned profile as shown in FIG. 26. An annular wall 82 of the skirt portion 80 extends downwardly from the struts 87 to define an annular channel 86 between the skirt portion 80 and the outer tube 42.


The annular wall 82 comprises at a lower end an exterior flange 83 which lies perpendicular to the major axis X. A rim 84 depends downwardly from a lower surface of the flange 83 and contains five apertures 85 which are circumferentially equi-spaced around the rim 84. Thus, the rim 84 is provided with a castellated lower profile.


Apertures 89 are provided between the struts 87 allowing communication between the chamber 90 and the annular channel 86.


The assembly procedure for the third version of cartridge 1 is similar to the assembly of the first version but with certain differences. The outer member 2 and inner member 3 are push-fitted together as shown in FIG. 29 and retained by means of a snap-fit arrangement rather than welded together. On joining the two members the inwardly directed cylindrical extension 18 is received inside the upper cylindrical extension 81 of the skirt portion 80. The inner member 3 is retained in the outer member 2 by frictional interengagement of the convex outer surface 19a of the first portion 19 of the cylindrical extension 18 with the in-turned rim 91 of the upper cylindrical extension 81. With the inner member 3 located in the outer member 2 a mixing chamber 134 is defined located exterior to the skirt portion 80. The mixing chamber 134 contains the beverage ingredients 200 prior to dispensation. It should be noted that the four inlets 36 and the five apertures 85 are staggered circumferentially with respect to one another. The radial location of the two parts relative to each other need not be determined or fixed during assembly since the use of four inlets 36 and five apertures 85 ensures that misalignment occurs between the inlets and apertures whatever the relative rotational positioning of the components.


The one or more beverage ingredients are packed into the mixing chamber 134 of the cartridge. The density of packing of the beverage ingredients in the mixing chamber 134 can be varied as desired.


The laminate 5 is then affixed to the outer member 2 and inner member 3 in the same manner as described above in the previous versions.


In use, water enters the mixing chamber 134 through the four slots 36 in the same manner as previous versions of the cartridge. The water is forced radially inwardly through the mixing chamber and mixes with the beverage ingredients contained therein. The product is dissolved or mixed in the water and forms the beverage in the mixing chamber 134 and is then driven though the apertures 85 into the annular channel 86 by back pressure of beverage and water in the mixing chamber 134. The circumferential staggering of the four inlet slots 36 and the five apertures 85 ensures that jets of water are not able to pass radially directly from the inlet slots 36 to the apertures 85 without first circulating within the mixing chamber 134. In this way the degree and consistency of dissolution or mixing of the product is significantly increased. The beverage is forced upwardly in the annular channel 86, through the apertures 89 between the struts 87 and into the chamber 90. The beverage passes from chamber 90 through the inlets 45 between the support webs 49 into the discharge spout 43 and towards the outlet 44 where the beverage is discharged into a receptacle such as a cup. The cartridge finds particular application with beverage ingredients in the form of viscous liquids or gels. In one application a liquid chocolate ingredient is contained in the cartridge 1 with a viscosity of between 1700 and 3900 mPa at ambient temperature and between 5000 and 10000 mPa at 0° C. and a refractive solids of 67 Brix±3. In another application liquid coffee is contained in the cartridge 1 with a viscosity of between 70 and 2000 mPa at ambient and between 80 and 5000 mPa at 0° C. where the coffee has a total solids level of between 40 and 70%. The liquid coffee ingredient may contain between 0.1 and 2.0% by weight sodium bicarbonate, preferably between 0.5 and 1.0% by weight. The sodium bicarbonate acts to maintain the pH level of the coffee at or below 4.8 enabling a shelf-life for coffee-filled cartridges of up to 12 months.


A fourth version of cartridge 1 embodying the present invention is shown in FIGS. 30 to 34. The fourth version of the cartridge 1 is particularly designed for use in dispensing liquid products such as concentrated liquid milk. Many of the features of the fourth version of the cartridge 1 are the same as in the previous versions and like numerals have been used to reference like features. In the following description the differences between the fourth and previous versions will be discussed. Common features which function in the same manner will not be discussed in detail.


The outer member 2 is the same as in the third version of cartridge 1 and as shown in FIGS. 19 to 23.


The cylindrical funnel 40 of the inner member 3 is similar to that shown in the second version of cartridge 1 but with certain differences. As shown in FIG. 30 the discharge spout 43 is shaped with an upper frusto-conical section 106 and a lower cylindrical section 107. Three axial ribs 105 are provided on the inner surface of the discharge spout 43 to direct the dispensed beverage downwards towards the outlet 44 and prevent the discharged beverage from spinning within the spout. Consequently, the ribs 105 act as baffles. As in the second version of cartridge 1, an air inlet 71 is provided through the annular flange 47. However, the chute 75 beneath the air inlet 71 is more elongated than in the second version.


A skirt portion 80 is provided similar to that shown in the third version of the cartridge 1 described above. Between 5 and 12 apertures 85 are provided in the rim 84. Typically ten apertures are provided rather than the five provided in the third version of cartridge 1.


An annular bowl 100 is provided extending from and integral with the flange 83 of the skirt portion 80. The annular bowl 100 comprises a flared body 101 with an open upper mouth 104 which is directed upwards. Four feed apertures 103 shown in FIGS. 30 and 31 are located in the body 101 at or near the lower end of the bowl 100 where it joins the skirt portion 80. Preferably, the feed apertures are equi-spaced around the circumference of the bowl 100.


The laminate 5 is of the type described above in the previous embodiments.


The assembly procedure for the fourth version of cartridge 1 is the same as that for the third version.


Operation of the fourth version of cartridge is similar to that of the third version. The water enters the cartridge 1 and the mixing chamber 134 in the same manner as before. There the water mixes with and dilutes the liquid product which is then forced out below the bowl 100 and through the apertures 85 towards the outlet 44 as described above. The proportion of the liquid product initially contained within the annular bowl 100 as shown in FIG. 34 is not subject to immediate dilution by the water entering the mixing chamber 134. Rather, the diluted liquid product in the lower part of the mixing chamber 134 will tend to exit through apertures 85 rather than be forced up and into the annular bowl 100 through upper mouth 104. Consequently, the liquid product in the annular bowl 100 will remain relatively concentrated during the initial stages of the operating cycle compared to the product in the lower part of the mixing chamber 134. The liquid product in the annular bowl 100 drips through the feed apertures 103 under gravity into the stream of product exiting the mixing chamber 134 through the apertures 85 and below the bowl 100. The annular bowl 100 acts to even out the concentration of the diluted liquid product entering the cylindrical funnel 40 by holding back a proportion of the concentrated liquid product and releasing it into the exiting liquid stream flow path steadily throughout the operating cycle as illustrated in FIG. 35a where the concentration of the milk measured as a percentage of the total solids present is shown during an operating cycle of approximately 15 seconds. Line a illustrates the concentration profile with the bowl 100 whilst line b illustrates a cartridge without the bowl 100. As can be seen the concentration profile with the cup 100 is more even during the operating cycle and there is no immediate large drop in concentration as occurs without the bowl 100. The initial concentration of the milk is typically 30-35% SS and at the end of the cycle 10% SS. This results in a dilution ratio of around 3 to 1, although dilution ratios of between 1 to 1 and 6 to 1 are possible with the present invention. For other liquid beverage ingredients the concentrations may vary. For example for liquid chocolate the initial concentration is approximately 67% SS and at the end of the cycle 12-15% SS. This results in a dilution ratio (ratio of aqueous medium to beverage ingredient in dispensed beverage) of around 5 to 1, although dilution ratios of between 2 to 1 and 10 to 1 are possible with the present invention. For liquid coffee the initial concentration is between 40-67% and the concentration at the end of dispense 1-2% SS. This results in a dilution ratio of between 20 to 1 and 70 to 1, although dilution ratios of between 10 to 1 and 100 to 1 are possible with the present invention.


From the annular channel 86 the beverage is forced under pressure through the aperture 128 by the back pressure of beverage collecting in the filtration chamber 134 and chamber 90. The beverage is thus forced through aperture 128 as a jet and into an expansion chamber formed by the upper end of the discharge spout 43. As shown in FIG. 34, the jet of beverage passes directly over the air inlet 71. As the beverage enters the discharge spout 43 the pressure of the beverage jet drops. As a result air is entrained into the beverage stream in the form of a multitude of small air bubbles as the air is drawn up through the air inlet 71. The jet of beverage issuing from the aperture 128 is funneled downwards to the outlet 44 where the beverage is discharged into a receptacle such as a cup where the air bubbles form the desired frothy appearance.


Advantageously, the inner member 3, outer member 2, laminate 5 and filter 4 can all be readily sterilized due to the components being separable and not individually comprising tortuous passageways or narrow crevices. Rather, it is only after conjoining the components, after sterilization, that the necessary passageways are formed. This is particularly important where the beverage ingredient is a dairy-based product such as liquid milk concentrate.


The fourth embodiment of beverage cartridge is particularly advantageous for dispensing a concentrated dairy-based liquid product such as liquid milk. Previously, powdered milk products have been provided in the form of sachets for adding to a pre-prepared beverage. However, for a cappuccino-style beverage it is necessary to foam the milk. This has been achieved previously by passing steam through a liquid milk product. However this necessitates the provision of a steam supply which increases the cost and complexity of the machine used to dispense the beverage. The use of steam also increases the risk of injury during operation of the cartridge. Accordingly the present invention provides for a beverage cartridge having a concentrated dairy-based liquid product therein. It has been found that by concentrating the milk product a greater amount of foam can be produced for a particular volume of milk when compared to fresh or UHT milk. This reduces the size required for the milk cartridge. Fresh semi-skimmed milk contains approximately 1.6% fat and 10% total solids. The concentrated liquid milk preparations of the present invention contain between 0.1 and 12% fat and 25 to 40% total solids. In a typical example, the preparation contains 4% fat and 30% total solids. The concentrated milk preparations are suitable for foaming using a low pressure preparation machine as will be described below. In particular, foaming of the milk is achieved at pressures below 2 bar, preferably approximately 1.5 bar using the cartridge of the fourth embodiment described above.


The foaming of the concentrated milk is particularly advantageous for beverages such as cappuccinos and milk shakes. Preferably the passing of the milk through the aperture 128 and over the air inlet 71 and the optional use of the bowl 100 enables foaming levels of greater than 40%, preferably greater than 70% for milk. For liquid chocolate foaming levels of greater than 70% are possible. For liquid coffee foaming levels of greater than 70% are possible. The foamability level is measured as the ratio of the volume of the foam produced to the volume of liquid beverage ingredient dispensed. For example, where 138.3 ml of beverage is dispensed, of which 58.3 ml is foam the foamability is measured as [58.3/(138.3−58.3)]*100=72.9%. The foamability of the milk (and other liquid ingredients) is enhanced by the provision of the bowl 100 as can be seen in FIG. 35b. The foamability of the milk dispensed with the bowl 100 present (line a) is greater than that of milk dispensed without the bowl present (line b). This is because the foamability of the milk is positively correlated to the concentration of the milk and as shown in FIG. 35a the bowl 100 maintains a higher concentration of the milk a larger part of the operating cycle. It is also known that foamability of the milk is positively correlated to temperature of the aqueous medium as shown in FIG. 35c. Thus the bowl 100 is advantageous since more of the milk remains in the cartridge until near the end of the operating cycle when the aqueous medium is at its hottest. This again improves foamability.


The cartridge of the fourth embodiment is also advantageous in dispensing liquid coffee products as described above.


It has been found that the embodiments of beverage cartridge of the present invention advantageously provide an improved consistency of the dispensed beverage when compared to prior art cartridges. Reference is made to Table 1 below which shows the results of brew yields for twenty samples each of cartridges A and B containing roast and ground coffee. Cartridge A is a beverage cartridge according to the first embodiment of the present invention. Cartridge B is a prior art beverage cartridge as described in the applicant's document WO 01/58786. The refractive index of the brewed beverage is measured in Brix units and converted to a percentage of soluble solids (% SS) using standard tables and formulae. In the examples below:

% SS=0.7774*(Brix value)+0.0569.
% Yield=(% SS*Brew Volume (g))/ (100*Coffee Weight (g))














TABLE 1






Brew






Sample
Volume (g)
Coffee Weight (g)
Brix
% SS (*)
% Yield















CARTRIDGE A












1
105.6
6.5
1.58
1.29
20.88


2
104.24
6.5
1.64
1.33
21.36


3
100.95
6.5
1.67
1.36
21.05


4
102.23
6.5
1.71
1.39
21.80


5
100.49
6.5
1.73
1.40
21.67


6
107.54
6.5
1.59
1.29
21.39


7
102.70
6.5
1.67
1.36
21.41


8
97.77
6.5
1.86
1.50
22.61


9
97.82
6.5
1.7
1.38
20.75


10
97.83
6.5
1.67
1.36
20.40


11
97.6
6.5
1.78
1.44
21.63


12
106.64
6.5
1.61
1.31
21.47


13
99.26
6.5
1.54
1.25
19.15


14
97.29
6.5
1.59
1.29
19.35


15
101.54
6.5
1.51
1.23
19.23


16
104.23
6.5
1.61
1.31
20.98


17
97.5
6.5
1.73
1.40
21.03


18
100.83
6.5
1.68
1.36
21.14


19
101.67
6.5
1.67
1.36
21.20


20
101.32
6.5
1.68
1.36
21.24






AVERAGE
20.99







CARTRIDGE B












1
100.65
6.5
1.87
1.511
23.39


2
95.85
6.5
1.86
1.503
22.16


3
98.4
6.5
1.8
1.456
22.04


4
92.43
6.5
2.3
1.845
26.23


5
100.26
6.5
1.72
1.394
21.50


6
98.05
6.5
2.05
1.651
24.90


7
99.49
6.5
1.96
1.581
24.19


8
95.62
6.5
2.3
1.845
27.14


9
94.28
6.5
2.17
1.744
25.29


10
96.13
6.5
1.72
1.394
20.62


11
96.86
6.5
1.81
1.464
21.82


12
94.03
6.5
2.2
1.767
25.56


13
96.28
6.5
1.78
1.441
21.34


14
95.85
6.5
1.95
1.573
23.19


15
95.36
6.5
1.88
1.518
22.28


16
92.73
6.5
1.89
1.526
21.77


17
88
6.5
1.59
1.293
17.50


18
93.5
6.5
2.08
1.674
24.08


19
100.88
6.5
1.75
1.417
22.00


20
84.77
6.5
2.37
1.899
24.77






AVERAGE
23.09









Performing a t-test statistical analysis on the above data gives the following results:









TABLE 2







t-Test: Two-Sample Assuming Equal Variances










% Yield (Cartridge A)
% Yield (Cartridge B)













Mean
20.99
23.09


Variance
0.77
5.04


Observations
20
20


Pooled Variance
2.90


Hypothesized Mean
0


Variance


df
38


t Stat
−3.90


P (T <= t) one-tail
0.000188


t Critical one-tail
1.686


P (T <= t) two-tail
0.000376


t Critical two-tail
2.0244


Standard Deviation
0.876
2.245









The analysis shows that the consistency of % yield, which equates to brew strength, for the cartridges of the present invention is significantly better (at a 95% confidence level) than the prior art cartridges, with a standard deviation of 0.88% compared to 2.24%. This means that beverages dispensed with the cartridges of the present invention have a more repeatable and uniform strength. This is preferred by consumers who like their drinks to taste the same time after time and do not want arbitrary changes in drink strength.


The materials of the cartridges described above may be provided with a barrier coating to improve their resistance to oxygen and/or moisture and/or other contaminant ingress. The barrier coating may also improve the resistance to leakage of the beverage ingredients from within the cartridges and/or reduce the degree of leaching of extractibles from the cartridge materials which might adversely affect the beverage ingredients. The barrier coating may be of a material selected from the group of PET, Polyamide, EVOH, PVDC or a metallized material. The barrier coating may be applied by a number of mechanisms including but not limited to vapour deposition, vacuum deposition, plasma coating, co-extrusion, in-mould labelling and two/multi-stage moulding.

Claims
  • 1. A beverage cartridge for use in a beverage preparation machine, the beverage cartridge containing at least one beverage ingredient, the beverage cartridge comprising: an outer member having an open end portion, a closed end portion opposite the open end portion, and an annular wall extending between the open end portion and the closed end portion, the outer member having an interior;a flange of the open end portion of the outer member;a lid welded to the flange of the open end portion of the outer member about a periphery of the lid;a filter in the interior of the outer member;an inner member in the interior of the outer member and having a first end and a second end opposite the first end, the filter being attached to the inner member;an annular rim of the inner member at the first end thereof;a hub of the inner member; anda plurality of elongate members of the inner member connecting the annular rim and the hub, the elongate members extending from the annular rim toward the second end of the inner member and each having at least a portion thereof extending radially intermediate the annular rim and the hub.
  • 2. The beverage cartridge of claim 1 wherein the hub includes an opening through which filtered beverage passes.
  • 3. The beverage cartridge of claim 1 wherein the inner member includes a major axis extending between the first and second ends and the elongate members extend along the major axis.
  • 4. The beverage cartridge of claim 3 wherein the closed end portion of the outer member includes a planar wall portion and the major axis of the inner member extends perpendicular to the planar wall portion.
  • 5. The beverage cartridge of claim 1 wherein the inner member includes a triangular web extending along each of the elongate members and having a corner of the triangular web at the annular rim.
  • 6. The beverage cartridge of claim 1 wherein the inner member includes a plurality of openings and each opening has a pair of the elongate members extending along opposite sides of the opening.
  • 7. The beverage cartridge of claim 1 wherein the filter is joined to the annular rim.
  • 8. The beverage cartridge of claim 1 wherein the lid is flexible.
  • 9. The beverage cartridge of claim 1 wherein the inner member is monolithic.
  • 10. The beverage cartridge of claim 1 wherein the outer member and the inner member are plastic.
  • 11. The beverage cartridge of claim 1 wherein the filter is attached directly to the inner member and is not attached directly to the outer member.
  • 12. The beverage cartridge of claim 1 wherein the filter is welded to the annular rim of the inner member.
  • 13. A beverage cartridge for use in a beverage preparation machine, the beverage cartridge containing at least one beverage ingredient, the beverage cartridge comprising: an outer member having an open end portion, a closed end portion opposite the open end portion, and an annular wall extending between the open end portion and the closed end portion, the outer member having an interior;a lid connected to the open end portion of the outer member;a filter in the interior of the outer member;an inner member in the interior of the outer member and having a first end and a second end opposite the first end, the filter being attached to the inner member;an annular rim of the inner member at the first end thereof;a hub of the inner member;a plurality of elongate members of the inner member connecting the annular rim and the hub, the elongate members extending from the annular rim toward the second end of the inner member and each having at least a portion thereof extending radially intermediate the annular rim and the hub; andwherein the elongate members have surfaces for contacting the filter, the surfaces being arranged to form a non-planar support for the filter.
  • 14. A beverage cartridge for use in a beverage preparation machine, the beverage cartridge containing at least one beverage ingredient, the beverage cartridge comprising: an outer member having an open end portion, a closed end portion opposite the open end portion, and an annular wall extending between the open end portion and the closed end portion, the outer member having an interior;a lid connected to the open end portion of the outer member;a filter in the interior of the outer member;an inner member in the interior of the outer member and having a first end and a second end opposite the first end, the filter being attached to the inner member;an annular rim of the inner member at the first end thereof;a hub of the inner member;a plurality of elongate members of the inner member connecting the annular rim and the hub, the elongate members extending from the annular rim toward the second end of the inner member and each having at least a portion thereof extending radially intermediate the annular rim and the hub;wherein the inner member includes a major axis extending between the first and second ends and the elongate members extends along the major axis; andwherein the elongate members position at least a portion of the filter to extend obliquely to the main axis.
  • 15. A beverage cartridge for use in a beverage preparation machine, the beverage cartridge containing at least one beverage ingredient, the beverage cartridge comprising: an outer member having an open end portion, a closed end portion opposite the open end portion, and an annular wall extending between the open end portion and the closed end portion, the outer member having an interior;a lid connected to the open end portion of the outer member;a filter in the interior of the outer member;an inner member in the interior of the outer member and having a first end and a second end opposite the first end, the filter being attached to the inner member;an annular rim of the inner member at the first end thereof;a hub of the inner member;a plurality of elongate members of the inner member connecting the annular rim and the hub, the elongate members extending from the annular rim toward the second end of the inner member and each having at least a portion thereof extending radially intermediate the annular rim and the hub; andwherein the closed end portion of the outer member includes a hollow, inwardly directed circular extension including an annular wall and a face closing off the annular wall.
  • 16. A beverage cartridge for use in a beverage preparation machine, the beverage cartridge containing at least one beverage ingredient, the beverage cartridge comprising: an outer member having an open end portion, a closed end portion opposite the open end portion, and an annular wall extending between the open end portion and the closed end portion, the outer member having an interior;a lid connected to the open end portion of the outer member;a filter in the interior of the outer member;an inner member in the interior of the outer member and having a first end and a second end opposite the first end, the filter being attached to the inner member;an annular rim of the inner member at the first end thereof;a hub of the inner member;a plurality of elongate members of the inner member connecting the annular rim and the hub, the elongate members extending from the annular rim toward the second end of the inner member and each having at least a portion thereof extending radially intermediate the annular rim and the hub; andwherein the elongate members each have a cross-section that varies between the annular rim and the hub.
  • 17. A beverage cartridge for use in a beverage preparation machine, the beverage cartridge containing at least one beverage ingredient, the beverage cartridge comprising: an outer member having an open end portion, a closed end portion opposite the open end portion, and an annular wall extending between the open end portion and the closed end portion, the outer member having an interior;a lid connected to the open end portion of the outer member;a filter in the interior of the outer member;an inner member in the interior of the outer member and having a first end and a second end opposite the first end, the filter being attached to the inner member;an annular rim of the inner member at the first end thereof;a hub of the inner member;a plurality of elongate members of the inner member connecting the annular rim and the hub, the elongate members extending from the annular rim toward the second end of the inner member and each having at least a portion thereof extending radially intermediate the annular rim and the hub; andwherein the outer member is monolithic.
  • 18. The beverage cartridge of claim 17 wherein the elongate members have surfaces for contacting the filter, the surfaces being arranged to form a non-planar support for the filter.
  • 19. The beverage cartridge of claim 17 wherein the closed end portion of the outer member includes a hollow, inwardly directed circular extension including an annular wall and a face closing off the annular wall.
  • 20. The beverage cartridge of claim 17 wherein the inner member includes a triangular web extending along each of the elongate members and having a corner of the triangular web at the annular rim.
  • 21. The beverage cartridge of claim 17 wherein the elongate members each have a cross-section that varies between the annular rim and the hub.
  • 22. The beverage cartridge of claim 17 wherein the inner member includes a plurality of openings and each opening has a pair of the elongate members extending along opposite sides of the opening.
Priority Claims (1)
Number Date Country Kind
0301702.7 Jan 2003 GB national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/165,108, filed Jan. 27, 2014, which is a continuation of U.S. patent application Ser. No. 13/690,905, filed Nov. 30, 2012, which issued as U.S. Pat. No. 8,852,659 on Oct. 7, 2014, which is a continuation of U.S. patent application Ser. No. 13/399,423, filed Feb. 17, 2012, which is a continuation of U.S. patent application Ser. No. 12/631,058, filed Dec. 4, 2009, which issued as U.S. Pat. No. 8,168,247 on May 1, 2012, which is a divisional of U.S. patent application Ser. No. 10/763,680, filed Jan. 23, 2004, which issued as U.S. Pat. No. 7,640,843 on Jan. 5, 2010, which claims the benefit of U.S. Provisional Patent Application No. 60/462,538, filed Apr. 11, 2003, and United Kingdom Patent Application No. GB 0301702.7, filed Jan. 24, 2003, which are all hereby incorporated herein by reference in their entireties.

US Referenced Citations (305)
Number Name Date Kind
240402 Gee Apr 1881 A
259074 Atwater Jun 1882 A
324049 Thew Aug 1885 A
370141 Hobbs Sep 1887 A
845968 Murray Mar 1907 A
938617 Thomaschewski Nov 1909 A
1168544 Newlin Jan 1916 A
1230091 Kitchen Jun 1917 A
1302483 Vierling Apr 1919 A
1311844 Wood Jul 1919 A
1576735 Fessenden Mar 1926 A
1887905 Schweigart Nov 1932 A
2589801 Grindrod Mar 1952 A
2778739 Rodth Jan 1957 A
2783704 Liebelt Mar 1957 A
2926594 Mueller Mar 1960 A
2968560 Goros Jan 1961 A
2997940 Dziedziula Aug 1961 A
3083101 Noury Mar 1963 A
3199682 Scholtz Aug 1965 A
3260190 Levinson Jul 1966 A
3292527 Stasse Dec 1966 A
3336857 Knodt et al. Aug 1967 A
3347151 Ronalds Oct 1967 A
3403617 Lampe Oct 1968 A
3462278 Mahon Aug 1969 A
3579351 Gast May 1971 A
3607297 Fasano Sep 1971 A
3615708 Abile-Gal Oct 1971 A
3628444 Mazza Dec 1971 A
3754463 Vernooy Aug 1973 A
3790029 Ward Feb 1974 A
3806607 Whelan Apr 1974 A
3821420 Arden Jun 1974 A
3823656 VanderVeken Jul 1974 A
3833740 Schmidt Sep 1974 A
3971305 Daswick Jul 1976 A
4136202 Favre Jan 1979 A
4204966 Morgan May 1980 A
D255529 Dziekonski Jun 1980 S
4253385 Illy Mar 1981 A
4254694 Illy Mar 1981 A
4321139 Auclair Mar 1982 A
4334640 van Overbruggen et al. Jun 1982 A
4353293 Illy Oct 1982 A
4382402 Alvarez May 1983 A
4417504 Yamamoto Nov 1983 A
4446158 English May 1984 A
4471689 Piana Sep 1984 A
4484515 Illy Nov 1984 A
4520716 Hayes Jun 1985 A
4551611 Longo Nov 1985 A
4555894 Illy Dec 1985 A
4562081 Buttermann, III Dec 1985 A
4581239 Woolman Apr 1986 A
4584101 Kataoka Apr 1986 A
4644855 Woolman Feb 1987 A
4653390 Hayes Mar 1987 A
4724752 Aliesch et al. Feb 1988 A
4738378 Oakley et al. Apr 1988 A
4744291 Wallin May 1988 A
4775048 Baecchi et al. Oct 1988 A
4787299 Levi Nov 1988 A
4806375 Favre Feb 1989 A
4818544 Seward Apr 1989 A
4838152 Kubicko Jun 1989 A
4846052 Favre et al. Jul 1989 A
4853234 Bentley et al. Aug 1989 A
4859337 Woltermann Aug 1989 A
4867993 Nordskog Sep 1989 A
4873915 Newman et al. Oct 1989 A
4875408 McGee Oct 1989 A
4876953 Imamura Oct 1989 A
4886674 Seward et al. Dec 1989 A
4889041 Mahlich Dec 1989 A
4909136 Newman Mar 1990 A
4917005 Knepler Apr 1990 A
4920870 Newman et al. May 1990 A
4921712 Malmquist May 1990 A
4925683 Fischbach May 1990 A
4948018 Tansley Aug 1990 A
4981588 Poulallion Jan 1991 A
4990352 Newman et al. Feb 1991 A
5005759 Bouche Apr 1991 A
5008013 Favre Apr 1991 A
5014611 Illy May 1991 A
5063836 Patel Nov 1991 A
5072660 Helbling Dec 1991 A
5082676 Love et al. Jan 1992 A
5104666 Sanvitale Apr 1992 A
5134924 Vicker Aug 1992 A
5150645 Schiettecatte Sep 1992 A
5178058 van Dort et al. Jan 1993 A
5183998 Hoffman Feb 1993 A
5186096 Willi Feb 1993 A
5197374 Fond Mar 1993 A
5237910 Chigira Aug 1993 A
5242702 Fond Sep 1993 A
5243164 Erickson et al. Sep 1993 A
5259295 Timm Nov 1993 A
5265520 Giuliano Nov 1993 A
5272960 Kinna Dec 1993 A
5285717 Knepler Feb 1994 A
5287797 Grykiewicz et al. Feb 1994 A
5303639 Bunn Apr 1994 A
5325765 Sylvan Jul 1994 A
5327815 Fond et al. Jul 1994 A
5343799 Fond Sep 1994 A
5347916 Fond et al. Sep 1994 A
5349897 King Sep 1994 A
5363745 Lin Nov 1994 A
5375508 Knepler Dec 1994 A
5398595 Fond et al. Mar 1995 A
5398596 Fond Mar 1995 A
5402707 Fond Apr 1995 A
5408917 Lussi Apr 1995 A
5424083 Lozito Jun 1995 A
5431276 Lialin Jul 1995 A
5440972 English Aug 1995 A
5455887 Dam Oct 1995 A
5463932 Olson Nov 1995 A
5472719 Favre Dec 1995 A
5479849 King Jan 1996 A
5531152 Gardosi Jul 1996 A
5531604 Huang Jul 1996 A
5549035 Wing-Chung Aug 1996 A
5603254 Fond et al. Feb 1997 A
5637335 Fond et al. Jun 1997 A
5638740 Cai Jun 1997 A
5638741 Cisaria Jun 1997 A
5639023 Hild Jun 1997 A
5649412 Binacchi Jul 1997 A
5649472 Fond et al. Jul 1997 A
5656316 Fond et al. Aug 1997 A
5704275 Warne Jan 1998 A
5738001 Liverani Apr 1998 A
5762987 Fond et al. Jun 1998 A
5773056 Hohenthal Jun 1998 A
5776527 Blanc Jul 1998 A
5794519 Fischer Aug 1998 A
5806408 DeBacker Sep 1998 A
5826492 Fond et al. Oct 1998 A
5840189 Sylvan Nov 1998 A
5858437 Anson Jan 1999 A
5862738 Warne Jan 1999 A
5895672 Cooper Apr 1999 A
5897899 Fond Apr 1999 A
5901635 Lucas May 1999 A
5913964 Melton Jun 1999 A
5921168 Nello Jul 1999 A
5937737 Karell Aug 1999 A
5948455 Schaeffer et al. Sep 1999 A
5952028 Lesser Sep 1999 A
5967021 Yung Oct 1999 A
5974950 King Nov 1999 A
5992298 Illy Nov 1999 A
5997936 Jimenez-Laguna Dec 1999 A
6000317 VanDerMeer Dec 1999 A
6006653 Sham Dec 1999 A
6007853 Lesser Dec 1999 A
6009792 Kraan Jan 2000 A
D419821 Powell et al. Feb 2000 S
6021705 Dijs Feb 2000 A
6025000 Fond et al. Feb 2000 A
6026732 Kollep Feb 2000 A
D423863 Lupi May 2000 S
6062127 Klosinski et al. May 2000 A
6068871 Fond et al. May 2000 A
6076450 DiGiorgio Jun 2000 A
6079315 Beaulieu et al. Jun 2000 A
6082245 Nicolai Jul 2000 A
6095031 Warne Aug 2000 A
6109168 Illy et al. Aug 2000 A
6117471 King Sep 2000 A
6139896 Daenzer-Alloncle Oct 2000 A
6142063 Beaulieu et al. Nov 2000 A
6170386 Paul Jan 2001 B1
6173117 Clubb Jan 2001 B1
6178874 Joergensen Jan 2001 B1
6182554 Beaulieu et al. Feb 2001 B1
6183800 vanStraten Feb 2001 B1
6186051 Aarts Feb 2001 B1
D443792 Peters Jun 2001 S
6240832 Schmed et al. Jun 2001 B1
6240833 Sham Jun 2001 B1
6245371 Gutwein et al. Jun 2001 B1
6279459 Mork Aug 2001 B1
6289948 Jeannin et al. Sep 2001 B1
D452107 Cahen Dec 2001 S
6347725 Yoakim et al. Feb 2002 B1
6350484 Ault Feb 2002 B1
6358545 Chandler et al. Mar 2002 B1
6405637 Cai Jun 2002 B1
D459628 Cahen Jul 2002 S
D460653 Cahen Jul 2002 S
D461358 Cahen Aug 2002 S
6440256 Gordon et al. Aug 2002 B1
6468576 Sher Oct 2002 B1
6499388 Schmed Dec 2002 B2
6536332 Schmed Mar 2003 B2
D475567 Hsu Jun 2003 S
6589577 Lazaris et al. Jul 2003 B2
6606938 Taylor Aug 2003 B2
6607762 Lazaris Aug 2003 B2
D479939 Au Sep 2003 S
6612224 Mercier et al. Sep 2003 B2
6644173 Lazaris et al. Nov 2003 B2
6645537 Sweeney et al. Nov 2003 B2
6655260 Lazaris et al. Dec 2003 B2
6658989 Sweeney et al. Dec 2003 B2
6698228 Kateman et al. Mar 2004 B2
6698333 Halliday et al. Mar 2004 B2
D489930 Tse May 2004 S
6740345 Cai May 2004 B2
6748850 Kraan Jun 2004 B1
6758130 Sargent et al. Jul 2004 B2
6763759 Denisart Jul 2004 B2
6786134 Green Sep 2004 B2
6792980 Cortese Sep 2004 B1
6799503 Kollep Oct 2004 B2
6805041 Colston Oct 2004 B2
6810788 Hale Nov 2004 B2
6810899 Franz Nov 2004 B2
6832542 Hu et al. Dec 2004 B2
6849285 Masek et al. Feb 2005 B2
6854378 Jarisch Feb 2005 B2
6941855 Denisart et al. Sep 2005 B2
7028604 Cortese Apr 2006 B2
D520185 Zeng et al. May 2006 S
7063238 Hale Jun 2006 B2
7097074 Halliday Aug 2006 B2
7213506 Halliday et al. May 2007 B2
7219598 Halliday et al. May 2007 B2
7231869 Halliday Jun 2007 B2
7243598 Halliday et al. Jul 2007 B2
7255039 Halliday et al. Aug 2007 B2
7287461 Halliday et al. Oct 2007 B2
7308851 Halliday et al. Dec 2007 B2
7316178 Halliday Jan 2008 B2
7322277 Halliday et al. Jan 2008 B2
7325479 Laigneau et al. Feb 2008 B2
7328651 Halliday et al. Feb 2008 B2
7335387 Hayes et al. Feb 2008 B2
7340990 Halliday Mar 2008 B2
7418899 Halliday et al. Sep 2008 B2
7444925 Mahlich Nov 2008 B2
7461587 Guerrero Dec 2008 B2
7490542 Macchi et al. Feb 2009 B2
7533603 Halliday et al. May 2009 B2
7533604 Halliday et al. May 2009 B2
7592027 Halliday Sep 2009 B2
7607385 Halliday Oct 2009 B2
7640843 Halliday et al. Jan 2010 B2
8168247 Halliday et al. May 2012 B2
8361527 Winkler et al. Jan 2013 B2
8852659 Halliday Oct 2014 B2
9451847 Halliday Sep 2016 B2
20010019735 Cirkel-Egner Sep 2001 A1
20010048957 Lazaris et al. Dec 2001 A1
20020002913 Mariller Jan 2002 A1
20020015768 Masek et al. Feb 2002 A1
20020023543 Schmed Feb 2002 A1
20020048621 Boyd et al. Apr 2002 A1
20020078831 Cai Jun 2002 A1
20020088807 Perkovic et al. Jul 2002 A1
20020096055 Heczko Jul 2002 A1
20020121197 Mercier et al. Sep 2002 A1
20020121198 Kollep et al. Sep 2002 A1
20020124736 Kollep Sep 2002 A1
20020129712 Westbrook et al. Sep 2002 A1
20020144603 Taylor Oct 2002 A1
20020144604 Winkler et al. Oct 2002 A1
20020148356 Lazaris et al. Oct 2002 A1
20020148357 Lazaris et al. Oct 2002 A1
20030005826 Sargent et al. Jan 2003 A1
20030039731 Dalton et al. Feb 2003 A1
20030056655 Kollep et al. Mar 2003 A1
20030066431 Fanzutti et al. Apr 2003 A1
20030145736 Green Aug 2003 A1
20030172813 Schifferle Sep 2003 A1
20030222089 Hale Dec 2003 A1
20040045443 Lazaris et al. Mar 2004 A1
20040182250 Halliday Sep 2004 A1
20040197444 Halliday Oct 2004 A1
20040228955 Denisart et al. Nov 2004 A1
20040237793 Zurcher Dec 2004 A1
20050051478 Karanikos et al. Mar 2005 A1
20050183578 Mandralis Aug 2005 A1
20050266122 Franceschi Dec 2005 A1
20050287251 Lazaris et al. Dec 2005 A1
20060065127 Dalton Mar 2006 A1
20060107841 Schifferle May 2006 A1
20060174769 Favre Aug 2006 A1
20060236871 Ternite et al. Oct 2006 A1
20070175334 Halliday Aug 2007 A1
20070240580 Lusareta Oct 2007 A1
20080014315 DeLease Jan 2008 A1
20080317931 Mandralis Dec 2008 A1
20090007793 Glucksman Jan 2009 A1
20090117249 Ozanne May 2009 A1
20100078446 Halliday Apr 2010 A1
20110000377 Favre Jan 2011 A1
20120058226 Winkler Mar 2012 A1
20120148721 Halliday Jun 2012 A1
20130164416 Halliday Jun 2013 A1
Foreign Referenced Citations (123)
Number Date Country
605293 Sep 1978 CH
2327264 Jan 1975 DE
4104695 Aug 1991 DE
20105161 Jun 2001 DE
0006175 Jan 1980 EP
0057671 Aug 1982 EP
0070403 Jan 1983 EP
0151252 Aug 1985 EP
0242556 Oct 1987 EP
0272922 Jun 1988 EP
0324072 Jul 1989 EP
0334571 Sep 1989 EP
0334572 Sep 1989 EP
0162417 Mar 1990 EP
0449533 Oct 1991 EP
0451980 Oct 1991 EP
0455337 Nov 1991 EP
0468080 Jan 1992 EP
0469162 Feb 1992 EP
0521188 Jan 1993 EP
0521510 Jan 1993 EP
0524464 Jan 1993 EP
0638486 Feb 1995 EP
0710462 May 1996 EP
0730425 Sep 1996 EP
0862882 Sep 1998 EP
06046156 Sep 1998 EP
0870457 Oct 1998 EP
0891734 Jan 1999 EP
0904718 Mar 1999 EP
0756844 May 1999 EP
1042978 Oct 2000 EP
1048220 Nov 2000 EP
1090574 Apr 2001 EP
1095605 May 2001 EP
1101430 May 2001 EP
1153561 Nov 2001 EP
0878158 Mar 2002 EP
1208782 May 2002 EP
1243210 Sep 2002 EP
1247480 Oct 2002 EP
1255685 Nov 2002 EP
0919171 Jan 2003 EP
1274332 Jan 2003 EP
1316283 Jun 2003 EP
144910 Jul 2004 EP
1440903 Jul 2004 EP
1440907 Jul 2004 EP
1440908 Jul 2004 EP
1529739 May 2005 EP
1541070 Nov 2006 EP
1774878 Apr 2007 EP
1795074 Jun 2007 EP
1367924 Jul 2007 EP
1982933 Oct 2008 EP
1537031 Aug 1968 FR
2322796 Apr 1977 FR
468248 Jul 1937 GB
828529 Feb 1960 GB
1215840 Dec 1970 GB
1402799 Aug 1975 GB
2306432 May 1997 GB
2374795 Oct 2002 GB
2374816 Oct 2002 GB
2374856 Oct 2002 GB
2397497 Jan 2003 GB
2379624 Mar 2003 GB
63092317 Apr 1988 JP
04236921 Aug 1992 JP
06000059 Jan 1994 JP
H06315437 Nov 1994 JP
H0737158 Feb 1995 JP
11196769 Jul 1999 JP
2000093309 Apr 2000 JP
2000355375 Dec 2000 JP
2001061663 Mar 2001 JP
1020020012291 Apr 2002 KR
1020835 Dec 2003 NL
2006141868 Jun 2008 RU
2403851 Nov 2010 RU
2010148745 Jun 2012 RU
2462976 Oct 2012 RU
8807472 Oct 1988 WO
9402059 Feb 1994 WO
9507648 Mar 1995 WO
9516377 Jun 1995 WO
9717006 May 1997 WO
9733813 Sep 1997 WO
9827854 Jul 1998 WO
0028868 May 2000 WO
0042891 Jul 2000 WO
0115582 Mar 2001 WO
0130218 May 2001 WO
0158786 Aug 2001 WO
0160219 Aug 2001 WO
0160220 Aug 2001 WO
0182760 Nov 2001 WO
0200031 Jan 2002 WO
0200073 Jan 2002 WO
0219875 Mar 2002 WO
0228241 Apr 2002 WO
0244956 Jun 2002 WO
02074143 Sep 2002 WO
02074661 Sep 2002 WO
02082962 Oct 2002 WO
02085170 Oct 2002 WO
02087400 Nov 2002 WO
02092439 Nov 2002 WO
03002423 Jan 2003 WO
03026470 Apr 2003 WO
03039309 May 2003 WO
03053200 Jul 2003 WO
03065859 Aug 2003 WO
03073896 Sep 2003 WO
2003059778 Jan 2004 WO
2004006740 Jan 2004 WO
2006021405 Mar 2006 WO
2006043106 Apr 2006 WO
2008057224 May 2008 WO
2008113779 Sep 2008 WO
2008136026 Nov 2008 WO
2009077488 Jun 2009 WO
2010013146 Feb 2010 WO
Non-Patent Literature Citations (10)
Entry
“More Solutions to Sticky Problems,” A Guide to Getting More Form Your Brookfield Viscometer, Brookfiled Engineering Laboratories, Inc., Stoughton, MA, date unknown, 28 pages.
“The Helipath Stand,” A Brookfield Viscometer Accessory, Brookfield Engineering Laboratories, Inc., Stoughton, MA, date unknown, 2 pages.
Codex Standard for Evaporated Milks, Codex Stan A-3.1971, Rev. Jan. 1999, 3 pages.
Gaggia, Company, [online], Apr. 2011 [retrieved on Apr. 28, 2011]. Retrieved from the Internet:<URL:http://www.gaggia.com/storia_espresso.asp.>.
Harold McGee, “On Food and Cooking,” The Science and Lore of the Kitchen, Harper Collins Publishers, London, 1991, p. 16, 3 pages.
Machine translation of KR-10-20020012291 to Kim Apr. 2002.
Scherz, Heimo et al., ‘Food Composition and Nutrition Tables,’ Stuttgart: Medpharm Scientific Publishers, 1994, Ed, 5, 5 pages.
Viscosity Information, OEC Fluid Handling Inc., [online] retrieved on Jan. 27, 2013. Retrieved from the Internet: URL: <http://www.oecfh.com/downloads/viscosity-information.pdf>.
Walstra, Pieter, “Dairy Chemistry and Physics,” 1984, 3 pages.
Russian Patent Office, Decision of Granting dated Feb. 13, 2017, from related Russian Patent Application No. 2012146680, 12 pages.
Related Publications (1)
Number Date Country
20160376093 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
60462538 Apr 2003 US
Divisions (1)
Number Date Country
Parent 10763680 Jan 2004 US
Child 12631058 US
Continuations (4)
Number Date Country
Parent 14165108 Jan 2014 US
Child 15245632 US
Parent 13690905 Nov 2012 US
Child 14165108 US
Parent 13399423 Feb 2012 US
Child 13690905 US
Parent 12631058 Dec 2009 US
Child 13399423 US