This invention relates to safety razors for wet shaving and, more specifically, to powered wet shaving systems with disposable blade cartridges.
Some wet shaving razors have been provided with battery-powered devices such as motors for vibrating a shaving cartridge. One such vibrating wet shaving razor is that sold by The Gillette Company under the trade name the Gillette Fusion™ razor. This razor features a battery disposed in a chamber within its handle, and a motor coupled to the distal tip, on which is mounted a replaceable cartridge, and electronic controls for razor operation.
Some wet shaving razors attempt to track blade wear and indicate when the cartridge should be replaced. In the course of shaving hundreds of hairs on a daily basis, the blades of a shaving cartridge inevitably grow duller. This dullness is difficult to detect by visual inspection. In too many cases, by the time a user realizes that a blade is too dull to use, he has already begun what will be an unpleasant shaving experience.
Some wet shaving razors have mechanical shave counters for manual counting of each shave. Other wet shaving razors have electronic shave counters that track shaving action (e.g., exposing the razor to moisture, contacting skin with blades, moving or applying forces on the blades or cartridge, gripping the handle, activating a vibration source) as a proxy for blade wear. Some electronic shave counters count discrete shaving uses (e.g., activation of a vibration source) while others count time that the razor is active (e.g., vibrating) or the time that the razor spends shaving (e.g., detecting skin contact or cartridge movement). Some wet shaving razors estimate a remaining cartridge life based on the tracked shaving use.
Some wet shaving razors have an indicator to inform a user that the cartridge should be replaced. Some indicators are numeric displays, either mechanical or electronic, showing a count of accumulated shaving uses. The user must learn by experience what number of shaves to expect from a cartridge and must remember to change the cartridge at that number of shaves. Some indicators abruptly inform the user that the cartridge should be replaced, such as by changing vibration (e.g., changing vibration frequency, vibrating in a pattern), emitting an audible sound, or activating a light source, without a warning that the suggested replacement is approaching.
One wet shaving razor includes an indicator having a series of seven LEDs. When the razor senses that a cartridge has been attached, the entire series is lit to indicate the cartridge has all of a predetermined initial shaving time remaining As the razor is used, the initial shaving time is counted down and LEDs are extinguished in proportional sharp steps. When all the LEDs are extinguished, no shaving time remains and the cartridge should be replaced. Indicators with more LEDs tend to consume more power and cost more than indicators with fewer LEDs.
Mixing colors of light, also called additive color mixing, is known. Some applications of additive color mixing, such as signs, ornamental displays, and decorative lighting, for example, mix light of two or more LEDs to create light colors different than either LED.
Using materials that change electrical properties in response to a change in applied forces in switches are known.
A need exists to overcome the shortcomings aforementioned.
In one aspect, the invention features a safety razor having a handle and a cartridge selectively detachable from the handle. The cartridge has at least one blade with a sharp cutting edge and an expected shaving utility. A connecting structure is coupled to the handle and attaches or detaches the cartridge from the handle in response to an action performed by a user. A detector within the handle has an actuator coupled to the connecting structure and a sensor for generating a signal, wherein the actuator applies an action on the sensor during the action and the sensor generates the signal in response to the action.
Certain implementations of the invention may include one or more of the following features. The sensor may be conductive, capacitive, magnetic, resistive, proximity, pressure sensitive, chemical, inductive, electrical, mechanical, electromechanical, electromagnetic, and combinations thereof. The sensor is convertible between a first level and second level in response to the action.
The sensor has a resistive member comprising a polymer and particles of metal or semi-conducting material. The resistive member has a first level of conductance when quiescent and a second level of conductance when the action is applied by the actuator. The sensor has first and second electrodes each electrically coupled to the resistive member. The resistive member is configured to electrically couple the first and second electrodes when having the second level of conductance and to electrically uncouple the first and second electrodes when having the first level of conductance. The sensor includes a pressure sensitive resistor for generating the signal in proportion to the pressure applied by the actuator.
The razor has an electrical arrangement for detecting and tracking utility of the razor and determining a remaining shaving utility of the cartridge based on an expected utility and a tracked utility. The electrical arrangement receives the signal and resets the tracked utility when the signal exceeds a threshold value. The sensor includes a microswitch. The connecting structure has a button and the action includes pushing the button through a detachment stroke. The actuator includes a beam member projecting from the button transversely to an axis of the of the detachment stroke.
The razor has an electrical arrangement for detecting and tracking utility of the razor, determining a remaining shaving utility based on the beginning shaving utility and the tracked utility, and resetting the tracked utility in response to the signal. Resetting the tracked utility includes attaching or detaching the cartridge with the connecting structure. The electrical arrangement has an input source.
The input source detects user activation of an electrical device. The electrical arrangement detects the blade unit contacting a shaving surface. The electrical arrangement tracks a number of contacts between the cartridge and the shaving surface. The electrical arrangement tracks an accumulating time period that the cartridge contacts the shaving surface.
The electrical arrangement detects pivotal displacement of the cartridge from a rest position. The electrical arrangement tracks a number of pivotal displacements from the rest position. The electrical arrangement tracks an accumulating time period of pivotal displacement from the rest position. The electrical arrangement detects force acting on the cartridge. The electrical arrangement compares the detected force to a threshold value and tracks a number of occurrences that the detected force exceeds the threshold value. The electrical arrangement compares the detected force to a threshold value and tracks an accumulating time period that the detected force exceeds the threshold value. The electrical arrangement is reset by attaching/detaching the cartridge to/from the connecting structure or by continually depressing the power switch for at least 1 second.
Other features and advantages of the invention will be apparent from the description and drawings, and from the claims.
Razor Structure
Referring to
The grip tube 14 includes an actuator button 22 that may be pressed by the user to actuate the battery-powered functionality of the razor via an electronic switch 29. In some examples, the grip tube may also include a transparent window 24 to allow the user to view a light 31 or display or other visual indicator, e.g., an LED or LCD, which provides a visual indication to the user of battery status and/or other information. As described so far, razor handle 10 is known and described in further detail in U.S. application Ser. No. 11/220,015, filed on Apr. 10, 2005, published as U.S. Pat. App. Pub. No. 2007/0050981. The razor may be powered by various energy sources, including but not limited to, radiant, kinetic, potential, thermal, magnetic, gravitational, sound energy, light energy, electromagnetic, chemical, and combinations thereof.
Referring to
Indicator 26 further includes a light mixing member 36 enclosing LEDs 32 and 34. When both LEDs 32 and 34 emit lights of different colors to indicate the remaining shaving utility of cartridge 18, member 36 mixes the two colors and appears to signal one color, as described in more detail below. In an example, light mixing member 36 is transparent neck portion 38 extending around the circumference of grip tube 14 and completely enclosing end 20. In other examples, light mixing member 36 could be any portion of handle 10 or cartridge 18 configured to mix light from LEDs 32 and 34 such as a window, lens, light pipe, or some combination thereof, in neck portion 38, grip tube 14, or cartridge 18. Neck portion 38 preferably is molded from a clear Zylar acrylic co-polymer, available from Nova Chemicals Corp., Moon Township, Pa., but could be formed from any suitable clear or translucent material.
Razor head 12 includes a release mechanism 19 including button 50 having a base member 52 with forwardly projecting pusher arms 56 for releasing cartridge 18 from connecting structure 17. A gripping member 54 is disposed on the base member 52 for pushing engagement when releasing cartridge 18. As described so far, cartridge release mechanism is known and described in further detail in U.S. Pat. No. 7,197,825.
Cartridge Detachment Sensor
In some examples, the razor head 12 includes a sensor 60 electrically coupled to controller 40 through lines 62 for sensing when the cartridge 18 is attached to or detached from razor head 12. Referring to
Referring to
In other examples, resistive member 70 may be formed from a pressure sensitive polymer having conductive (e.g., carbon) or semi-conductive (e.g., silicon) particles dispersed therein. Generally, a pressure sensitive polymer would electrically couple electrodes 66a and 66b and has a base resistance while in a quiescent state and increase or decrease resistance as a function of pressure applied thereto. In other examples, the resistive member 70 is made of a polymer, metallic particles, a semi-conductive material, combinations thereof, or other materials suitable for the intended purpose.
Referring to
Referring to
In one example, sensor 60 may be a pressure sensitive resistor 90 electrically coupled to controller 40 by lines 92 that changes resistance in proportion to the force applied to active portion 94 disposed under the gripping portion 54. A suitable pressure sensitive resistor 90 is an Interlink FSR400 force sensitive resistor, available from Interlink Electronics, Inc., of Camarillo, Calif. In another example, sensor 60 may include a QTC resistive member and electrodes similar to those described above.
In other examples, the sensor may be of the type selected from conductive, capacitive, magnetic, resistive, proximity, pressure sensitive, chemical, inductive, electrical, mechanical, electromechanical, electromagnetic, and combinations thereof. Other sensors suitable for the intended purpose could likewise be used. In some examples, the sensor is convertible between a first level and second level in response to the action being applied. The sensor can be converted from the second level to the first level in response to the action being removed.
Cartridge Life Indication
New shaving cartridges have a finite quantity of expected life, use, or utility (“expected utility”), including, but not limited to, blade sharpness, lubrication, cleanliness, or other deteriorating qualities. Blades eventually dull and shaving performance deteriorates to a point at which a cartridge should be replaced. While the expected utility may vary from user to user for a number of reasons, assumptions may be made about the expected utility after which a cartridge should be replaced and consumer testing may provide data for maximizing expected utility across a broad range of users. Even if an individual user has a different expected utility than what is assumed, knowing the difference between the expected utility and that user's actual use (i.e., “remaining shaving utility”) may guide the user in deciding when to replace a cartridge.
Referring to
Controller 40 receives input from input source 102 when a user is shaving. In some examples, the input may be activating electrical device 28 by actuating switch 22. In other examples, the input could be the time that electrical device 28 is active. In still other examples, the input could be instances of time spent with contact between a user's skin and cartridge 18. One method of detecting skin contact is detailed in U.S. application Ser. No. 11/799,843. In still other examples, the input could be instances of or accumulated time of detected movement between the cartridge 18 and handle 10 or detected gripping of handle 10 by a user. In still other examples, one or more of the above inputs could be combined to determine when a user is shaving and cartridge 18 is being used.
Shave detector 104 determines whether the input from input source 102 should be counted and filters out inadvertent input. In one example, shave detector 104 times how long electrical device 28 remains active. After a period of time, such as 15 seconds, for example, it is likely that shaving is occurring and shave detector 104 allows the input from source 102 to be counted. In some examples, controller 40 includes a lockout timer 106 that counts down a period of time during which shaving input is not counted. For example, a user may momentarily switch off electrical device 28 during use or switch 22 may be inadvertently pressed while razor 1 is being stored between uses. Treating these inputs as separate and distinct “shaves” that reduce the remaining shaving utility of a cartridge would make system 100 less precise. In one example, lockout timer 106 disregards input from shave detector 104 for four hours after electrical device 28 is activated.
Shave counter 108 receives and tracks the shaving input received from shave detector 104, storing the accumulated shaving input (i.e., actual utility) in memory 110 while sensor 60 remains in a “cartridge attached” state. Shave counter 108 compares the tracked shaving input against an expected shaving utility, stored in memory 110, for example, and determines the remaining shaving utility of cartridge 18. In one example, counter 108 compares the number of electrical device 28 activations, filtered by shave detector 104 and lockout timer 106, as described above, and compares that to an expected number of activations. In some examples, the expected number of activations is greater than about 8, between about 8 and about 20, and about 14.
Controller 40 clears the accumulated shaving input from shave counter 108 and memory 110 when sensor 60 is in a “cartridge detached” state. In some examples, the cartridge detached state may be closing of a circuit, such as by closing microswitch 76 or reed switch 84 or by applying pressure to a resistive member 70 formed of QTC. In other examples, the cartridge detached state may be the opening of a circuit, such as by opening microswitch 76 or reed switch 84. In still other examples, the cartridge detached state may be a voltage across a resistive member 70 formed from a pressure sensitive polymer or across a pressure sensitive resistor 90 that exceeds a threshold value. In another example, the cartridge detached state may be achieved by continually depressing the power switch for at least 1 second.
Although the expected shaving utility may be programmed in controller 40 during manufacture, it need not be a fixed value. In some examples, system 100 could be configured to permit a user to adjust the expected shaving utility. In other examples, system 100 could automatically adjust the expected shaving utility based on a user's history of utility per cartridge. For example, shave counter 108 could remember the number of counted electrical device 28 activations for the prior five cartridges and adjust the expected shaving utility of the next cartridge to the average utility of the prior five.
Referring to
By mixing two lights of contrasting color and variable brightness, system 100 is able to communicate a wide and gradual range of colored output light 113 representing remaining cartridge life to a user with few light elements and low power consumption. In some examples, the color of LED 32 represents remaining shaving utility, with the full brightness representing full remaining shaving utility (i.e., expected utility). The color of LED 34 represents the absence of remaining shaving utility, with the full brightness representing no remaining shaving utility and that the cartridge should be replaced. For example, sending signal 114 to a blue LED 32 (i.e., producing a bright blue light) and signal 116 to a white LED 34 (i.e., producing a pale white light) results in color mixing member 36 emitting a relatively deep blue output light 113, indicating more remaining shaving utility. Sending signal 118 to a blue LED 32 (i.e., producing a pale blue light) and signal 120 to a white LED 34 (i.e., producing a bright while light) results in member 36 emitting a relatively pale blue output light 113, indicating less remaining shaving utility. The two lights may be mixed so that output light 113 maintains steady brightness or varies in brightness over the range of colored light output. The two lights may be changed proportionally to the remaining shaving utility or non-proportionally (e.g., exponentially). Each light may be changed dependently or independently of the other. In other examples, light sources other than LEDs could be used. In still other examples, more than two light sources could be used. Additive light mixing of three primary colors could be used to generate the entire range of visible colors, for example.
Referring to
Referring to
While in running mode, if switch 22 is actuated at step 220, razor 1 enters power down mode at step 222, in which the motor (224) and LEDs 32 and 34 (226, 228) are stopped, and then enters sleep mode at step 230. While in sleep mode, switch 22 and sensor 60 are monitored (232, 234). If cartridge 18 is detached, pulse width modulation for blue LED 32 is set to 100% at step 236 and modulation for white LED 34 is set to 0% modulation at step 238. If switch 22 is actuated during sleep mode at step 232, razor 1 re-enters power up mode at step 202.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application is a divisional application of U.S. Ser. No. 12/208,544, filed Sep. 11, 2008, now U.S. Pat. No. 8,230,600 which claims priority under 35 U.S.C. §119(e) from U.S. Provisional Patent Application Ser. No. 60/994,075, filed Sep. 17, 2007.
Number | Name | Date | Kind |
---|---|---|---|
3229659 | Sciascia | Jan 1966 | A |
4380121 | Naimer et al. | Apr 1983 | A |
4924995 | Adrian et al. | May 1990 | A |
5299354 | Metcalf et al. | Apr 1994 | A |
5347715 | Friedland | Sep 1994 | A |
5600888 | Becker | Feb 1997 | A |
5671535 | Van Der Borst et al. | Sep 1997 | A |
5794342 | Davey | Aug 1998 | A |
5920988 | Momose | Jul 1999 | A |
5970831 | Mattinger et al. | Oct 1999 | A |
6009623 | Orloff | Jan 2000 | A |
6176166 | Mattinger et al. | Jan 2001 | B1 |
6275137 | Doppalapudi et al. | Aug 2001 | B1 |
6460251 | Orloff | Oct 2002 | B1 |
6520695 | Castellarin et al. | Feb 2003 | B2 |
6708408 | Orloff | Mar 2004 | B2 |
6944952 | Tseng | Sep 2005 | B1 |
7069658 | Tseng | Jul 2006 | B2 |
7100283 | Grdodian et al. | Sep 2006 | B1 |
7145432 | Lussey et al. | Dec 2006 | B2 |
7367126 | Freund et al. | May 2008 | B2 |
7596866 | Saker et al. | Oct 2009 | B2 |
7703333 | Hayakawa et al. | Apr 2010 | B2 |
7788810 | Noble | Sep 2010 | B2 |
20020189102 | Orloff | Dec 2002 | A1 |
20030037447 | Gruber et al. | Feb 2003 | A1 |
20040140045 | Burgess et al. | Jul 2004 | A1 |
20050110766 | Kent et al. | May 2005 | A1 |
20050122065 | Young | Jun 2005 | A1 |
20060022614 | Young | Feb 2006 | A1 |
20060026841 | Freund | Feb 2006 | A1 |
20060032053 | Saker et al. | Feb 2006 | A1 |
20060032054 | Simms et al. | Feb 2006 | A1 |
20060032055 | Simms et al. | Feb 2006 | A1 |
20060066085 | DuRocher | Mar 2006 | A1 |
20060139025 | Jeffers | Jun 2006 | A1 |
20080052911 | Kohler | Mar 2008 | A1 |
20080052912 | Barry et al. | Mar 2008 | A1 |
20080172878 | Luxton | Jul 2008 | A1 |
20080172880 | Freund et al. | Jul 2008 | A1 |
20080189953 | Jessemey et al. | Aug 2008 | A1 |
20080196258 | Kraus | Aug 2008 | A1 |
20090000124 | Micinilio et al. | Jan 2009 | A1 |
20090000126 | Kraus | Jan 2009 | A1 |
20090007433 | Hawes et al. | Jan 2009 | A1 |
20090071010 | Hart | Mar 2009 | A1 |
20090119923 | Hart et al. | May 2009 | A1 |
20090172948 | Kitamura | Jul 2009 | A1 |
20100031510 | Gester et al. | Feb 2010 | A1 |
20100037463 | Maichel et al. | Feb 2010 | A1 |
20100064520 | Park et al. | Mar 2010 | A1 |
20100095530 | De Klerk et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 9833193 | Jul 1998 | WO |
WO 9938173 | Jul 1999 | WO |
WO 0079546 | Dec 2000 | WO |
WO 2005029514 | Mar 2005 | WO |
WO 2006064111 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20120266465 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
60994075 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12208544 | Sep 2008 | US |
Child | 13536088 | US |