The present invention generally relates to systems and methods for ejecting an inkjet printhead from an inkjet printer.
Known pagewide imaging devices, e.g., printers, include a printhead in the form of a removable cartridge made up of lengthy arrays of ejection nozzles. On occasion, the printhead requires maintenance or replacement. In a particular known design, a user must rotate a release lever to disengage fluidic connections between the printhead cartridge and the ink supply. Once complete, users grip the cartridge tightly and pull it to a side to rotate it free of electrical connections made by numerous spring-loaded contacts. Users then lift the cartridge containing the head by pulling with sufficient force to un-snap it from the printer. Unfortunately, these steps are difficult to perform, particularly since they are not intuitive. They remain difficult to perform even after users become acquainted with the process because such pagewide printers use “clunky” interfaces between mechanical structures.
To re-load the cartridge, users must perform the foregoing process in reverse. First, the cartridge must be lowered into the printer and sufficient force must be applied to snap the cartridge back into its initial position. Second, users must rotate the cartridge onto its datums and back into contact with the numerous electrical contacts. The force that must be applied is rather high and many users, thinking that application of such force might cause breakage of the device, do not apply enough force to put the cartridge into a proper position. After completing these steps, users next return the lever to its closed position which re-engages the fluidic connection to the head.
Overall, the conventional method of removal and replacement of printhead cartridges requires too many steps to be conveniently committed to memory. Since the process is not required regularly during the life of the printer, even users who can commit the process to memory often forget the steps before needing to remove and replace another cartridge. In general, the actions involved in the process remain exceptionally difficult for even the most experienced of users.
A printer according to an exemplary embodiment of the present invention comprises: an ink supply; a printhead cartridge; at least one fluid connection between the printhead cartridge and the ink supply, the printhead cartridge having a first configuration in which the fluid connection is coupled and the printhead cartridge is in electrical contact with other components of the printer and a second configuration in which the fluid connection is decoupled and the printhead cartridge is out of electrical contact with the other components of the printer; a cover latch having an open configuration in which at least a portion of the printhead cartridge is exposed and a closed configuration in which the printhead cartridge is covered by the cover latch; and at least one moveable ejector arm that is mechanically linked to the cover latch so that the at least one ejector arm engages the printhead cartridge and forces the printhead cartridge towards the second configuration as the cover latch is moved towards the open configuration.
In at least one embodiment, the printhead cartridge comprises a pagewidth printhead.
In at least one embodiment, the at least one moveable ejector arm is mechanically linked to the cover latch by a cam mechanism.
In at least one embodiment, the at least one ejector arm is moveable in a direction perpendicular to a longitudinal axis of the printhead cartridge.
In at least one embodiment, the printer further comprises a cartridge holder comprising a slanted wall that the printhead cartridge rests against in the second configuration.
In at least one embodiment, the at least one ejector arm comprises a downward extending projection that engages with a top portion of the printhead cartridge as the cover latch is moved towards the open configuration to tilt the printhead cartridge towards the second configuration.
In at least one embodiment, the at least one moveable ejector arm comprises two ejector arms, one on each side of the printer.
Other features and advantages of embodiments of the invention will become readily apparent from the following detailed description, the accompanying drawings and the appended claims.
The features and advantages of exemplary embodiments of the present invention will be more fully understood with reference to the following, detailed description when taken in conjunction with the accompanying figures, wherein:
The latch cover 40 of the printer 42 is lifted to allow the cartridge 38 to be installed. An actuator arm 56 is fixed relative to the latch cover 40 and rotates therewith about a hinge 50. The distal end of the actuator arm 56 is hinged to the input arm 20. When the latch is raised for cartridge installation or removal, the input arm 20 is likewise raised, which retracts the compression member 18 away from the first conduit 12. With the input arm in the raised and retracted position, the compression lever 22 is disengaged from the back of the second conduit 14. The annular seal is not compressed in the disengaged position so as not to interfere with the sliding fit with the first conduit 12.
Referring to
When the compression member 18 is at its point of maximum travel towards the cartridge 38, the compression lever 22 engages the second conduit 14. The compression lever 22 is dimensioned to hold the second conduit 14 stationary relative to the first conduit 12 as the input arm 20 continues to rotate and draw the compression member 18 back to compress the seal and establish the fluid seal.
Closing movement of the cover latch 110 results in rotation of the cam mechanism 116 in the direction of arrow 117 away from contact with the back wall 157 of the ejector arm 150 and into contact with a front wall 158 of the ejector arm 150, thereby forcing the ejector arm 150 in the direction of arrow 156. Once the cover latch 110 is fully closed, the ejector arms 150 is disposed in its original position, allowing for the cartridge 120 to be titled back in the direction of arrow 124 into contact with the electrical connections and for coupling of the fluid connections 140. Alternatively, clearance may be maintained between cam mechanism 116 and front wall 158 even when the cover latch 110 is in the closed position, so that the ejector arm 150 is moved back to its original configuration by contact between the finger 154 and printhead cartridge 120 as the printhead cartridge 120 is titled back.
While particular embodiments of the invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications may be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | |
---|---|---|---|
61700919 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14427985 | Mar 2015 | US |
Child | 14876420 | US | |
Parent | PCT/IB2013/002780 | Sep 2013 | US |
Child | 14427985 | US |