The present invention relates in general to automated machines for filling and sealing containers with fluids, and, in particular, to automated machines for filling and sealing cartridges (containers) having multiple compartments.
Automated machines that dispense fluid into containers having only one compartment are known (e.g. machines for filling beverage cans or bottles). Because there is only one compartment per container, the container need not be in any specific alignment with the filling mechanism. Also, the container can store only one type of fluid because there is only one storage compartment in the container.
When filling containers having multiple compartments, it is necessary that the container and the filling mechanism be aligned in a particular way such that each compartment is filled. In addition, when dispensing different fluids in the multiple compartments, it is necessary that the container be correctly aligned so that the differing fluids enter the proper compartments.
It is also advantageous that the filling nozzles be inserted into the compartments during filling. If the nozzles are not inserted, it is possible that the fluid will splash during filling or that some fluid flow will be misdirected. At a minimum, splashing and misdirected flow result in product loss, soiled container exteriors and soiling of the machinery and work space. When the fluid is hazardous or corrosive, the results of splashing and misdirected flow can be much more severe. Additionally, when different fluids are dispensed in the compartments, it is important to prevent one fluid from contaminating another fluid.
Some fluid containers having a single compartment are sealed with, for example, a foil using a heating head. In the single compartment containers, only the circumference of the container is sealed. Sealers for single compartment containers generally use a convex heating head. Because of the construction of multiple compartment containers, additional surfaces (i.e., the tops of the surfaces that divide the container into multiple compartments) other than the circumference must be sealed. Thus, convex heating heads are undesirable because the surfaces interior to the circumference must be melted down before the circumferential surface is sealed.
It is an object of the present invention to provide an apparatus and method for filling cartridges having multiple compartments.
It is another object of the present invention to provide an apparatus and method for filling cartridges having multiple compartments wherein differing fluids may be dispensed in the multiple compartments.
It is a further object of the present invention to provide an apparatus and method for aligning cartridges with the filling mechanism.
It is yet another object of the present invention to provide an apparatus and method for filling cartridges having multiple compartments wherein the filling nozzles may be inserted into the compartments during the filling operation.
It is still a further object of the present invention to provide an apparatus and method for sealing cartridges having multiple compartments.
These and other objects of the invention are achieved by an apparatus for filling a cartridge having at least two compartments for storing fluid, comprising at least one reservoir of fluid; at least two metering pumps connected to the at least one reservoir of fluid; and at least two filling tubes connected to the at least two metering pumps, respectively; wherein each filling tube simultaneously fills one of the at least two compartments in the cartridge with the fluid.
Preferably, the cartridge is substantially cylindrical and defines an eccentric through hole therein, the apparatus further comprising a puck which defines a substantially cylindrical cavity and a pin eccentrically disposed in the substantially cylindrical cavity whereby the cartridge may be inserted in the cavity in the puck and aligned by insertion of the pin of the puck in the eccentric through hole of the cartridge.
Most preferably, the apparatus further comprises a plate; at least two nozzles connected to the at least two filling tubes, respectively; the at least two nozzles being mounted in the plate; and a reciprocating carrier connected to the plate such that the at least two nozzles can be inserted into and removed from the at least two compartments of the cartridge.
Another aspect of the invention is an apparatus for filling a cartridge having first, second, third and fourth compartments for storing fluid, comprising first, second, third and fourth reservoirs containing first, second, third and fourth fluids, respectively; first, second, third and fourth metering pumps connected to the first, second, third and fourth reservoirs, respectively; first, second, third and fourth filling tubes connected to the first, second, third and fourth metering pumps, respectively; wherein the first, second, third and fourth filling tubes simultaneously fill the first, second, third and fourth compartments in the cartridge with the first, second, third and fourth fluids, respectively.
Preferably, this aspect of the apparatus further comprises a plate; first, second, third and fourth nozzles connected to the first, second, third and fourth filling tubes, respectively; the first, second, third and fourth nozzles being mounted in the plate; and a reciprocating carrier connected to the plate such that the first, second, third and fourth nozzles can be inserted into and removed from the first, second, third and fourth compartments of the cartridge.
A further aspect of the invention is a method of filling a cartridge having at least two compartments for storing fluid, comprising placing the cartridge under at least two nozzles; inserting the at least two nozzles into the at least two compartments of the cartridge such that only one nozzle enters each compartment; filling the at least two compartments with fluid; and removing the at least two nozzles from the at least two compartments.
In a preferred embodiment, the method further comprises, before the placing step, the step of loading the cartridge in a puck and aligning the cartridge by inserting a pin of the puck in an eccentric through hole in the cartridge.
Still a further aspect of the invention is an apparatus for sealing a cartridge having at least two compartments wherein the cartridge is substantially cylindrical and defines an eccentric through hole therein, comprising a puck which includes a substantially cylindrical cavity and a pin eccentrically disposed in the substantially cylindrical cavity, whereby the cartridge may be inserted in the cavity in the puck and aligned by insertion of the pin in the eccentric through hole; a screw which engages the puck and thereby positions the cartridge for sealing; and a sealer for sealing the cartridge.
Preferably, the sealer has a flat heating head.
Another aspect of the invention is a method of sealing a cartridge having at least two compartments wherein the cartridge is substantially cylindrical and defines an eccentric through hole therein, comprising loading the cartridge in a puck and aligning the cartridge by inserting a pin of the puck in the eccentric through hole in the cartridge; engaging the puck with a screw to position the cartridge for sealing; and sealing the cartridge.
Further objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the following drawing.
a-5d schematically show various arrangements of an apparatus for filling one or more cartridges having multiple compartments.
a-6d schematically show various embodiments of an apparatus for filling cartridges having multiple compartments with two or more different fluids.
a is a sectional view of a puck taken along the line 8-8 of
b is the sectional view of
The present invention is an apparatus and method for filling and sealing cartridges (containers) such as the cartridges 10, 10′ and 10″ shown in
The cartridge 20 is preferably made by injection molding a plastic material (e.g., polyethylene, high density polyethylene, polypropylene, polyvinyl chloride, PETE, etc.).
The upper ends of the compartments 24a, 24b, 24c, 24d are sealed by a seal 18, as shown in
Of course, a multiple compartment cartridge may have other than four compartments.
FIGS. 5(a)-5(d) schematically show an apparatus for filling multiple compartment cartridges in accordance with the present invention. In
It should be understood that additional metering pumps and filling tubes may be used to simultaneously fill additional multiple compartment cartridges. The metering pumps may be, for example, positive displacement piston-type pumps.
If multiple reservoirs of fluid are used, then different fluids can be dispensed in the different compartments of a cartridge.
b shows an embodiment having three reservoirs R1, R2, R3. The three reservoirs R1, R2, R3 may each contain the same fluid, may each contain a different fluid or two reservoirs may contain the same fluid while the third reservoir contains a different fluid. The three reservoirs R1, R2, R3 are connected to three metering pumps P1, P2, P3, respectively. The three metering pumps P1, P2, P3 are connected to three filling tubes T1, T2, T3. The three filling tubes T1, T2, T3 simultaneously fill the first, second and third compartments 24a, 24b, 24c, respectively of the cartridge 10″ with fluid.
c shows an embodiment wherein four reservoirs R1-R4 are connected to four metering pumps P1-P4, respectively. The four metering pumps P1-P4 are connected to four filling tubes T1-T4, respectively. The fluid in each reservoir R1-R4 may be the same, or the fluid in each of the four reservoirs may be different, that is, there are four different fluids. Or, the fluids in R1 and R2 may be the same, and the fluids in R3 and R4 may be the same, but different from the fluid in R1 and R2. Also, three of the reservoirs may have the same fluid while the fourth reservoir has a different fluid. The four filling tubes T1-T4 simultaneously fill the four compartments 24a-d in the cartridge 10 with fluid.
d shows an embodiment of the filling apparatus having four reservoirs R1-R4 which may contain any combination of the same or different fluids. In the apparatus shown in
It should be understood that additional reservoirs with additional metering pumps and filling tubes may be used to simultaneously fill additional multiple compartment cartridges.
a-b show a puck 30 for use in the invention.
In general, pucks are known devices for conveying containers to be filled. However, in the present invention, the puck 30 includes a substantially cylindrical cavity 32 and a pin 34 which is eccentrically located in the cavity 32. When a cartridge such as cartridge 10, 10′, 10″ is loaded into the puck 30, the cartridge must be aligned so that the pin 34 penetrates the eccentric through hole 22 of the cartridge. Alignment of the cartridge in the puck 30 in this manner prevents the cartridge from rotating in the puck 30 and thereby assures proper alignment of the multiple compartments in the cartridge with the filling nozzles.
The slide rods 42 of the reciprocating carrier 40 reciprocate up and down, that is, in the direction shown by the arrow 60 in
In operation, a puck 30 containing a multiple compartment cartridge moves along the conveyor 202 of the assembly line 200 of
The bottom plate 50 and insert plate 64 serve a safety function. For example, as the top plate 38 and the bottom plate 50 are lowered, the insert plate 64 first contacts the cartridge to be filled. As the top plate 38 with attached nozzles 36 is further lowered, the rods 56 move upward through the bushings 54. Should any jamming of the rods 56 occur, that is, if the upward movement of the rods 56 is somehow restricted, then the insert plate 64 resting on the cartridge will break away from the bottom plate 50 and allow the bottom plate 50 to move freely downward by force of gravity. The bottom plate 50 can move downward because it is not resting on the cartridge, only the insert plate 64 rests on the cartridge. Thus, the removable insert plate 64 prevents damage to the filling mechanism due to jamming of the top plate 38 during its downward movement. The total range of motion for the top plate 38 is about 1 to 1.5 inches.
Insertion of the nozzles 36 in the cartridge during filling has several advantages. First, spill and splash of the fluid is minimized. Second, where different fluids are being filled in different compartments, inserting the nozzles into the respective compartments minimizes the possibility of one fluid being mixed with a different fluid.
The shaft coupling 92 connects the adjusting screw 72 to a connecting rod 94. The connecting rod 94 is supported by a bushing 99. The connecting rod 94 is connected via an air cylinder coupling 96 to an air cylinder 98. The air cylinder 98 provides the vertical reciprocating motion to the lift bracket 70.
As shown in
While the invention has been described with reference to certain preferred embodiments, numerous changes, alterations and modifications to the described embodiments are possible without departing from the spirit and scope of the invention, as defined in the appended claims and equivalents thereof.
Number | Date | Country | |
---|---|---|---|
Parent | 09094505 | Jun 1998 | US |
Child | 11514163 | Sep 2006 | US |