Example embodiments relate to electronic vaping or e-vaping devices.
E-vaping devices, also referred to herein as electronic vaping devices (EVDs) may be used by adult vapers for portable vaping. An e-vaping device may vaporize a pre-vapor formulation to form a vapor. The e-vaping device may include a reservoir that holds a pre-vapor formulation and a heater that vaporizes the pre-vapor formulation.
In some cases, an e-vaping device may include multiple pre-vapor formulations. However, in some cases the separate pre-vapor formulations may react with each other when held in a reservoir of an e-vaping device. Such reactions may result in the degradation of one or more of the pre-vapor formulations, formation of one or more reaction products, thereby reducing a shelf-life of a portion of the e-vaping device.
According to some example embodiments, a cartridge for an e-vaping device may include a housing, at least first and second reservoirs positioned within the housing, and at least first and second vaporizer assemblies positioned within the housing on opposite ends of the first and second reservoirs. The housing may include first and second ends. The first and second reservoirs may be positioned within the housing between the first and second ends. The first and second reservoirs may be configured to hold respective first and second pre-vapor formulations. The first and second vaporizer assemblies may be positioned within the housing on opposite ends of the first and second reservoirs. The first vaporizer assembly may be coupled to the first reservoir. The first vaporizer assembly may be configured to vaporize the first pre-vapor formulation to generate a first vapor closer to the first end than the second end. The second vaporizer assembly may be coupled to the second reservoir. The second vaporizer assembly may be configured to vaporize the second pre-vapor formulation to generate a second vapor closer to the second end than the first end.
In some example embodiments, the first vaporizer assembly may include a first dispensing interface configured to draw the first pre-vapor formulation from the first reservoir and a first heater coupled to the first dispensing interface. The first heater may be configured to vaporize the drawn first pre-vapor formulation. The second vaporizer assembly may include a second dispensing interface configured to draw the second pre-vapor formulation from the second reservoir and a second heater coupled to the second dispensing interface. The second heater may be configured to vaporize the drawn second pre-vapor formulation.
In some example embodiments, the first dispensing interface may include a porous material arranged in fluidic communication with the first heater.
In some example embodiments, the porous material may be a wick having an elongated form and arranged in fluidic communication with the first reservoir.
In some example embodiments, the wick may extend at least partially through the first heater.
In some example embodiments, the first and second vaporizer assemblies may be configured to generate the first and second vapors at different rates.
In some example embodiments, the first and second vaporizer assemblies may be configured to generate the first and second vapors at different times.
According to some example embodiments, an e-vaping device may include a cartridge and a power supply section. The cartridge may include a housing, at least first and second reservoirs positioned within the housing, and at least first and second vaporizer assemblies positioned within the housing on opposite ends of the first and second reservoirs. The housing may include first and second ends. The first and second reservoirs may be positioned within the housing between the first and second ends. The first and second reservoirs may be configured to hold respective first and second pre-vapor formulations. The first and second vaporizer assemblies may be positioned within the housing on opposite ends of the first and second reservoirs. The first vaporizer assembly may be coupled to the first reservoir. The first vaporizer assembly may be configured to vaporize the first pre-vapor formulation to generate a first vapor closer to the first end than the second end. The second vaporizer assembly may be coupled to the second reservoir. The second vaporizer assembly may be configured to vaporize the second pre-vapor formulation to generate a second vapor closer to the second end than the first end. The power supply section may be configured to selectively supply power to the first and second vaporizer assemblies.
In some example embodiments, the power supply section may further include control circuitry, the control circuitry being configured to independently control vapor generation by the first and second vaporizer assemblies.
In some example embodiments, the control circuitry may be configured to independently control vapor generation by the first and second vaporizer assemblies based on independently controlling power supplied to the first and second vaporizer assemblies.
In some example embodiments, the control circuitry may be further configured to cause the first and second vaporizer assemblies to generate the first vapor and the second vapor at different times, based on independently controlling the first and second vaporizer assemblies.
In some example embodiments, the control circuitry may be configured to activate a first heater included in the first vaporizer assembly, such that a viscosity of the second pre-vapor formulation is reduced, prior to controlling the second vaporizer assembly to vaporize the second pre-vapor formulation.
In some example embodiments, the first vaporizer assembly may include a first dispensing interface configured to draw the first pre-vapor formulation from the first reservoir and a first heater coupled to the first dispensing interface. The first heater may be configured to vaporize the drawn first pre-vapor formulation. The second vaporizer assembly may include a second dispensing interface configured to draw the second pre-vapor formulation from the second reservoir and a second heater coupled to the second dispensing interface. The second heater may be configured to vaporize the drawn second pre-vapor formulation.
In some example embodiments, the first dispensing interface may include a porous material, the porous material being arranged in fluidic communication with the first heater.
In some example embodiments, the porous material may be a wick having an elongated form and arranged in fluidic communication with the first reservoir.
In some example embodiments, the power supply section may include a rechargeable battery, the power supply section being removably coupled to the cartridge.
According to some example embodiments, a method may include configuring a cartridge to generate separate vapors at separate ends of an enclosure. The configuring may include positioning at least first and second reservoirs in a housing, such that the first and second reservoirs are positioned between first and second ends of the housing, the first and second reservoirs being configured to hold respective first and second pre-vapor formulations. The configuring may include coupling at least first and second vaporizer assemblies to opposite ends of the first and second reservoirs, such that the first vaporizer assembly is configured to vaporize the first pre-vapor formulation to generate a first vapor closer to the first end than the second end, and the second vaporizer assembly is configured to vaporize the second pre-vapor formulation to generate a second vapor closer to the second end than the first end.
In some example embodiments, the method may include coupling the cartridge to a power supply section, such that the power supply section is configured to selectively supply power to the first and second vaporizer assemblies.
In some example embodiments, the power supply section may include control circuitry, the control circuitry being configured to control power supplied from the power supply section, such that coupling the cartridge to the power supply section configures the control circuitry to independently control vapor generation by the first and second vaporizer assemblies.
In some example embodiments, the first vaporizer assembly may include a first dispensing interface configured to draw the first pre-vapor formulation from the first reservoir and a first heater coupled to the first dispensing interface. The first heater may be configured to vaporize the drawn first pre-vapor formulation. The second vaporizer assembly may include a second dispensing interface configured to draw the second pre-vapor formulation from the second reservoir and a second heater coupled to the second dispensing interface. The second heater may be configured to vaporize the drawn second pre-vapor formulation.
The various features and advantages of the non-limiting embodiments described herein become more apparent upon review of the detailed description in conjunction with the accompanying drawings. The accompanying drawings are merely provided for illustrative purposes and should not be interpreted to limit the scope of the claims. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted. For purposes of clarity, various dimensions of the drawings may have been exaggerated.
Some detailed example embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. Example embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only the example embodiments set forth herein.
Accordingly, while example embodiments are capable of various modifications and alternative forms, example embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit example embodiments to the particular forms disclosed, but to the contrary, example embodiments are to cover all modifications, equivalents, and alternatives falling within the scope of example embodiments. Like numbers refer to like elements throughout the description of the figures.
It should be understood that when an element or layer is referred to as being “on,” “connected to,” “coupled to,” or “covering” another element or layer, it may be directly on, connected to, coupled to, or covering the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to,” or “directly coupled to” another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout the specification. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It should be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, regions, layers and/or sections, these elements, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, region, layer, or section from another region, layer, or section. Thus, a first element, region, layer, or section discussed below could be termed a second element, region, layer, or section without departing from the teachings of example embodiments.
Spatially relative terms (e.g., “beneath,” “below,” “lower,” “above,” “upper,” and the like) may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It should be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” may encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing various example embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, and/or elements, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, and/or groups thereof.
Example embodiments are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of example embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It will be further understood that terms, including those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Referring to
In at least some example embodiments, the interfaces 74, 84 may be threaded connectors. However, it should be appreciated that each interface 74, 84 may be any type of connector, including a snug-fit, detent, clamp, bayonet, and/or clasp. One or more of the interfaces 74, 84 may include a cathode connector, anode connector, some combination thereof, etc. to electrically couple one or more elements of the cartridge 70 to one or more power supplies 12 in the power supply section 72 when the interfaces 74, 84 are coupled together. As shown in
As shown in
The cartridge 70 includes an outer housing 16 extending in a longitudinal direction and an inner tube (or chimney) 62 coaxially positioned within the outer housing 16. The power supply section 72 includes an outer housing 17 extending in a longitudinal direction. In some example embodiments, the outer housing 16 may be a single tube housing both the cartridge 70 and the power supply section 72 and the entire e-vaping device 60 may be disposable. The outer housings 16, 17 may each have a generally cylindrical cross-section. In some example embodiments, the outer housings 16, 17 may each have a generally and/or substantially triangular cross-section along one or more of the cartridge 70 and the power supply section 72. In some example embodiments, the outer housing 17 may have a greater circumference or dimensions at a tip end than a circumference or dimensions of the outer housing 16 at an outlet end of the e-vaping device 60.
At one end of the inner tube 62, a nose portion of a gasket (or seal) 15 is fitted into an end portion of the inner tube 62. An outer perimeter of the gasket 15 provides at least a partial seal with an interior surface of the outer housing 16. In some example embodiments, the gasket 15 includes conduits extending through the gasket 15 between the outer housing 16 and the inner tube 62. The exterior of the inner tube 62 and the outer housing 16 at least partially define an annular channel 61. One or more conduits through an annular portion of the gasket 18 may assure communication between the annular channel 61 and a space 65 defined between the gasket 15 and a connector element 91. The connector element 91 may be included in the interface 74.
In some example embodiments, a nose portion of another gasket 18 is fitted into another end portion of the inner tube 62. In some example embodiments, the gasket 18 includes conduits extending through the gasket 18 between the outer housing 16 and the inner tube 62. One or more conduits through an annular portion of the gasket 18 may assure communication between the annular channel 61 and an interior 67 of the outlet end insert 20.
In some example embodiments, at least one air inlet port 44 is formed in the outer housing 16, adjacent to the interface 74 to minimize the chance of an adult vaper's fingers occluding one of the ports and to control the resistance-to-draw (RTD) during vaping. In some example embodiments, the air inlet ports 44 may be machined into the outer housing 16 with precision tooling such that their diameters are closely controlled and replicated from one e-vaping device 60 to the next during manufacture.
In a further example embodiment, the air inlet ports 44 may be drilled with carbide drill bits or other high-precision tools and/or techniques. In yet a further example embodiment, the outer housing 16 may be formed of metal or metal alloys such that the size and shape of the air inlet ports 44 may not be altered during manufacturing operations, packaging, and/or vaping. Thus, the air inlet ports 44 may provide consistent RTD. In yet a further example embodiment, the air inlet ports 44 may be sized and configured such that the e-vaping device 60 has a RTD in the range of from about 60 mm H2O to about 150 mm H2O.
Referring to
As shown in
In the illustrated embodiment, the first and second reservoirs 22A, 22B extend in parallel longitudinally through the cartridge 70, but it will be understood that the disclosure is not limited thereto. For example, in some example embodiments, the first and second reservoirs 22A, 22B extend in parallel orthogonally to a longitudinal axis of the cartridge 70. In some example embodiments, the opposite ends of the respective first and second reservoirs 22A, 22B are aligned along a plane orthogonal to the longitudinal axis of the cartridge 70, but it will be understood that the disclosure is not limited thereto.
The cartridge 70 includes a set of at least first and second vaporizer assemblies 30A, 30B coupled to separate, respective reservoirs 22A, 22B. The first vaporizer assembly 30A is coupled to the first reservoir 22A. The second vaporizer assembly 30B is coupled to the second reservoir 22B. In some example embodiments, the e-vaping device 60 may include more than two vaporizer assemblies.
Referring to
The first and second vaporizer assemblies 30A, 30B are configured to form separate, respective first and second vapors. The first and second vaporizer assemblies 30A, 30B may draw separate pre-vapor formulations from the respective reservoirs 22A, 22B. The first and second vaporizer assemblies 30A, 30B may vaporize the respective drawn pre-vapor formulations to respectively form first and second vapors. First reservoir 22A and second reservoir 22B may hold different pre-vapor formulations, such that the first and second vapors are different respective vapors. The first and second vapors may be formed closer to respective opposite ends of the cartridge 70. Thus, separate vapors may be formed in spatially separated portions of the cartridge 70.
Referring to
Dispensing interface 31A is configured to draw at least one pre-vapor formulation from first reservoir 22A. First heater 34A is configured to heat the pre-vapor formulations drawn by the dispensing interface 31A to vaporize the pre-vapor formulations to form a first vapor.
Dispensing interface 31B is configured to draw at least one pre-vapor formulation from second reservoir 22B. Second heater 34B is configured to heat the pre-vapor formulations drawn by the dispensing interface 31B to vaporize the pre-vapor formulations to form a second vapor.
In some example embodiments, at least one of the dispensing interfaces 31A, 31B includes an absorbent material. The absorbent material may be arranged in fluidic communication with the respective heater 34A, 34B coupled to the given at least one dispensing interface 31A, 31B. The absorbent material may include a wick having an elongated form. The wick may be arranged in fluid communication with at least one of the reservoirs 22A, 22B.
In some example embodiments, at least one of the dispensing interfaces 31A, 31B includes a porous material. For example, at least one of the dispensing interfaces 31A, 31B may include at least one ceramic rod configured to direct pre-vapor formulation from at least one of the reservoirs 22A, 22B through an interior of the at least one ceramic rod. In another example, at least one of the dispensing interfaces 31A, 31B may include at least one wick material, that is configured to direct pre-vapor formulation through an interior of the at least one wick material. A wick material may be a flexible wick material.
In some example embodiments, at least one of the dispensing interfaces 31A, 31B includes a nonporous material. For example, at least one of the dispensing interfaces 31A, 31B may include at a channel apparatus that includes a conduit, where the channel apparatus is configured to direct a pre-vapor formulation from at least one of the reservoirs 22A, 22B through the conduit. In another example, at least one of the dispensing interfaces 31A, 31B may include a drip action apparatus. In another example, at least one of the dispensing interfaces 31A, 31B may include a valve configured to direct pre-vapor formulation from at least one of the reservoirs 22A, 22B based on actuation of the valve.
In some example embodiments, at least one of the dispensing interfaces 31A, 31B may include a trunk and one or more roots extending from the trunk. The one or more roots may be multiple roots separately coupled to separate reservoirs, such that the roots extend into the separate reservoirs. For example, as shown in
Referring to
In some example embodiments, one or more of the dispensing interfaces 31A, 31B may include one or more ceramic materials extending into a reservoir. In some example embodiments, one or more of the dispensing interfaces 31A, 31B may include a porous material extending into one or more reservoirs 22A, 22B.
Still referring to
During vaping, a pre-vapor formulation may be transferred from second reservoir 22B via capillary action of the dispensing interface 31B. The pre-vapor formulation may be drawn into the trunk 33B of the dispensing interface 31B. The second heater 34B may at least partially surround a portion of the trunk 33B such that when the second heater 34B is activated, one or more pre-vapor formulations drawn into the trunk 33B may be vaporized by the second heater 34B to form a vapor. In some example embodiments, including the example embodiment illustrated in
As mentioned above with reference to
In addition, as shown in
Because the first and second vapors may be separately, respectively formed closer to the first and second ends of the cartridge 70, the first and second vapors may be formed proximate to opposite ends of the reservoirs 22A, 22B. Therefore, the reservoirs 22A, 22B may be between the locations in the cartridge 70 at which the first and second vapors are formed. The first and second vapors may thus be formed in spatially separated locations in the cartridge 70.
Still referring to
The spatial separation between the locations at which the first and second vapors are formed may thus cause a temporal separation between the times at which the first and second vapors are drawn through at least one outlet port 21. In some example embodiments, drawing separate vapors through at least one outlet port 21 at different times can provide an enhanced sensory experience. In some example embodiments, the spatial separation of the vapor formation locations may enable temporal separation of the vapor provisions independently of complex circuitry, as the heaters 34A, 34B may be activated simultaneously and/or concurrently rather than according to a complex activation sequence.
Still referring to
Still referring to
In some example embodiments, one or more of the interfaces 74, 84 include one or more of a cathode connector element and an anode connector element. In the example embodiments illustrated in
If and/or when an element in the cartridge 70 is coupled to leads 26-1 and 26-2 or leads 26-3 and 26-4, an electrical circuit through the cartridge 70 and power supply section 72 may be established. The established electrical circuit may include at least the element in the cartridge 70, control circuitry 11, and the power supply 12. The electrical circuit may include lead 92, interfaces 74, 84, and at least one of leads 26-1, 26-2 and leads 26-3, 26-4.
In the example embodiments illustrated in
In the example embodiments illustrated in
The control circuitry 11, described further below, is configured to be coupled to the power supply 12, such that the control circuitry 11 may control the supply of electrical power from the power supply 12 to one or more elements of the cartridge 70. The control circuitry 11 may control the supply of electrical power to the element based on controlling the established electrical circuit. For example, the control circuitry 11 may selectively open or close the electrical circuit, adjustably control an electrical current through the circuit, etc.
Still referring to
In some example embodiments, the power supply 12 includes a battery arranged in the e-vaping device 60 such that the anode is downstream of the cathode. A connector element 91 contacts the downstream end of the battery. Each heater 34A, 34B is connected to the power supply 12 by respective sets of electrical leads 26-1, 26-2 and 26-3, 26-4, where leads 26-1 and 26-3 are coupled to the connector element 91 and leads 26-2 and 26-4 are coupled to interface 74.
The power supply 12 may be a Lithium-ion battery or one of its variants, for example a Lithium-ion polymer battery. Alternatively, the power supply 12 may be a nickel-metal hydride battery, a nickel cadmium battery, a lithium-manganese battery, a lithium-cobalt battery or a fuel cell. The e-vaping device 60 may be usable by an adult vaper until the energy in the power supply 12 is depleted or in the case of lithium polymer battery, a minimum voltage cut-off level is achieved.
Further, the power supply 12 may be rechargeable and may include circuitry configured to allow the battery to be chargeable by an external charging device. To recharge the e-vaping device 60, a Universal Serial Bus (USB) charger or other suitable charger assembly may be used.
Upon completing the connection between the cartridge 70 and the power supply section 72, the at least one power supply 12 may be electrically connected with the heaters 34A, 34B of the cartridge 70 upon actuation of the sensor 13. Air is drawn primarily into the cartridge 70 through one or more air inlet ports 44. The one or more air inlet ports 44 may be located along the outer housing 16, 17 of the first and second sections 70, 72 or at the coupled interfaces 74, 84.
The sensor 13 may be configured to sense an air pressure drop and initiate application of voltage from the power supply 12 to the heaters 34A, 34B. As shown in the example embodiment illustrated in
In addition, the at least one air inlet port 44a is located adjacent to the sensor 13, such that the sensor 13 may sense air flow indicative of vaper being drawn through the outlet end 20, and activate the power supply 12 and the heater activation light 48 to indicate that one or more of the heaters 34A, 34B is working.
Further, the control circuitry 11 may control the supply of electrical power to one or more of the heaters 34A, 34B responsive to the sensor 13. In one example embodiment, the control circuitry 11 may include a maximum, time-period limiter. In another example embodiment, the control circuitry 11 may include a manually operable switch for an adult vaper to initiate vaping. The time-period of the electric current supply to one or more of the heaters 34A, 34B may be pre-set (e.g., prior to controlling the supply of electrical power to one or more of the heaters 34A, 34B) depending on the amount of pre-vapor formulation desired to be vaporized. In some example embodiments, the control circuitry 11 may control the supply of electrical power to one or more of the heaters 34A, 34B as long as the sensor 13 detects a pressure drop.
To control the supply of electrical power to at least one of the heaters 34A, 34B, the control circuitry 11 may execute one or more instances of computer-executable code. The control circuitry 11 may include a processor and a memory. The memory may be a computer-readable storage medium storing computer-executable code.
The control circuitry 11 may include processing circuitry including, but not limited to, a processor, Central Processing Unit (CPU), a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable gate array (FPGA), a System-on-Chip (SoC), a programmable logic unit, a microprocessor, or any other device capable of responding to and executing instructions in a defined manner. In some example embodiments, the control circuitry 11 may be at least one of an application-specific integrated circuit (ASIC) and an ASIC chip.
The control circuitry 11 may be configured as a special purpose machine by executing computer-readable program code stored on a storage device. The program code may include program or computer-readable instructions, software elements, software modules, data files, data structures, and/or the like, capable of being implemented by one or more hardware devices, such as one or more of the control circuitry mentioned above. Examples of program code include both machine code produced by a compiler and higher level program code that is executed using an interpreter.
The control circuitry 11 may include one or more storage devices. The one or more storage devices may be tangible or non-transitory computer-readable storage media, such as random access memory (RAM), read only memory (ROM), a permanent mass storage device (such as a disk drive), solid state (e.g., NAND flash) device, and/or any other like data storage mechanism capable of storing and recording data. The one or more storage devices may be configured to store computer programs, program code, instructions, or some combination thereof, for one or more operating systems and/or for implementing the example embodiments described herein. The computer programs, program code, instructions, or some combination thereof, may also be loaded from a separate computer readable storage medium into the one or more storage devices and/or one or more computer processing devices using a drive mechanism. Such separate computer readable storage medium may include a USB flash drive, a memory stick, a Blu-ray/DVD/CD-ROM drive, a memory card, and/or other like computer readable storage media. The computer programs, program code, instructions, or some combination thereof, may be loaded into the one or more storage devices and/or the one or more computer processing devices from a remote data storage device via a network interface, rather than via a local computer readable storage medium. Additionally, the computer programs, program code, instructions, or some combination thereof, may be loaded into the one or more storage devices and/or the one or more processors from a remote computing system that is configured to transfer and/or distribute the computer programs, program code, instructions, or some combination thereof, over a network. The remote computing system may transfer and/or distribute the computer programs, program code, instructions, or some combination thereof, via a wired interface, an air interface, and/or any other like medium.
The control circuitry 11 may be a special purpose machine configured to execute the computer-executable code to control the supply of electrical power to one or more heaters 34A, 34B. In some example embodiments, an instance of computer-executable code, when executed by the control circuitry 11, causes the control circuitry to control the supply of electrical power to one or more heaters 34A, 34B according to an activation sequence. Controlling the supply of electrical power to one or more heaters 34A, 34B may be referred to herein interchangeably as activating the one or more heaters 34A, 34B.
Still referring to
In some example embodiments, the control circuitry 11 of the e-vaping device 60 is configured to independently control the separate heaters 34A, 34B to independently control formation of the first and second vapors. Such independent control may result in controlling the sensory experience provided to an adult vaper.
Still referring to
The control circuitry 11 may selectively control the supply of electrical power to heaters 34A, 34B so that the heaters 34A, 34B are activated during separate, at least partially overlapping time periods. The control circuitry 11 may selectively control the supply of electrical power to heaters 34A, 34B so that the heaters 34A, 34B are activated during separate, non-overlapping time periods. In some example embodiments, the control circuitry 11 may selectively control the supply of electrical power to heaters 34A, 34B so that the first and second vapors pass through the at least one outlet port 21 simultaneously and/or concurrently, thereby providing a combined vapor to an adult vaper.
The control circuitry 11 may selectively control the supply of electrical power to heaters 34A, 34B so that the first and second vapors are formed at different times. For example, the control circuitry 11 may control the supply of electrical power to second heater 34B to activate the second heater 34B a certain amount of time prior to supplying electrical power to first heater 34A to activate first heater 34A. The certain amount of time may be associated with a travel time of the second vapor to one or more portions of the interior 67 from the space 65 via channel 61, so that the control circuitry 11 activates the first heater 34A to form the first vapor at about the same time as the second vapor passes through at least a portion of the interior 67. As a result, the first vapor may be formed in the interior 67 simultaneously and/or concurrently with the second vapor at least partially passing through the interior 67. The first and second vapors may at least partially mix in the interior 67 to form a combined vapor. The combined vapor includes a mixture of the first and second vapors, where the first and second vapors are mixed based on the first and second vapors passing through the at least one outlet port 21 simultaneously and/or concurrently.
In some example embodiments, the control circuitry 11 is configured to independently control the respective rates at which separate vapors are formed in the cartridge 70. For example, the control circuitry 11 may be configured to adjust a voltage of electrical power supplied to one or more of heaters 34A, 34B, so that heaters 34A, 34B generate heat at different rates. The control circuitry 11 may be configured to adjust a voltage of power supplied to one or more of heaters 34A, 34B, so that second heater 34B forms the second vapor at a reduced rate of vapor formation, relative to a rate at which first heater 34A forms the first vapor.
Still referring to
Subsequent to heat being transferred to the first reservoir 22A, the control circuitry 11 may activate first heater 34A, and vapor formation by first heater 34A may be adjusted based on the changes in the properties of the first pre-vapor formulation. For example, the first pre-vapor formulation may be drawn through the dispensing interface 31A to the trunk 33A at a faster rate subsequent to the transfer of heat from second heater 34B to first reservoir 22A. In another example, the heated first pre-vapor formulation may be vaporized at a greater rate by first heater 34A based on the transfer of heat. Thus, the control circuitry 11 may control vapor formation by indirectly heating a pre-vapor formulation in a given one of reservoirs 22A, 22B via heat generated by at least one vaporizer assembly 30A, 30B coupled to a separate one of reservoirs 22A, 22B. Such control of vapor formation may control the content of vapors drawn through the at least one outlet port 21 during vaping, thereby enhancing the sensory experience provided by an e-vaping device 60 in which the vaporizer assemblies 30A, 30B and control circuitry 11 are included.
Still referring to
A pre-vapor formulation, as described herein, is a material or combination of materials that may be transformed into a vapor. For example, the pre-vapor formulation may be a liquid, solid and/or gel formulation including, but not limited to, water, beads, solvents, active ingredients, ethanol, plant extracts, natural or artificial flavors, and/or pre-vapor formulations such as glycerin and propylene glycol. Different pre-vapor formulations may include different elements. Different pre-vapor formulations may have different properties. For example, different pre-vapor formulations may have different viscosities when the different pre-vapor formulations are at a common temperature. The pre-vapor formulation may include those described in U.S. Patent Application Publication No. 2015/0020823 to Lipowicz et al. filed Jul. 16, 2014 and U.S. Patent Application Publication No. 2015/0313275 to Anderson et al. filed Jan. 21, 2015, the entire contents of each of which is incorporated herein by reference thereto.
The pre-vapor formulation may include nicotine or may exclude nicotine. The pre-vapor formulation may include one or more tobacco flavors. The pre-vapor formulation may include one or more flavors that are separate from one or more tobacco flavors.
In some example embodiments, a pre-vapor formulation that includes nicotine may also include one or more acids. The one or more acids may be at least one of pyruvic acid, formic acid, oxalic acid, glycolic acid, acetic acid, isovaleric acid, valeric acid, propionic acid, octanoic acid, lactic acid, levulinic acid, sorbic acid, malic acid, tartaric acid, succinic acid, citric acid, benzoic acid, oleic acid, aconitic acid, butyric acid, cinnamic acid, decanoic acid, 3,7-dimethyl-6-octenoic acid, 1-glutamic acid, heptanoic acid, hexanoic acid, 3-hexenoic acid, trans-2-hexenoic acid, isobutyric acid, lauric acid, 2-methylbutyric acid, 2-methylvaleric acid, myristic acid, nonanoic acid, palmitic acid, 4-penenoic acid, phenylacetic acid, 3-phenylpropionic acid, hydrochloric acid, phosphoric acid, sulfuric acid and combinations thereof.
At least one of the reservoirs 22A, 22B may include a pre-vapor formulation, and optionally a storage medium configured to store the pre-vapor formulation therein. The storage medium may include a winding of cotton gauze or other fibrous material about a portion of the cartridge 70.
The storage medium of one or more reservoirs 22A, 22B may be a fibrous material including at least one of cotton, polyethylene, polyester, rayon and combinations thereof. The fibers may have a diameter ranging in size from about 6 microns to about 15 microns (e.g., about 8 microns to about 12 microns or about 9 microns to about 11 microns). The storage medium may be a sintered, porous or foamed material. Also, the fibers may be sized to be irrespirable and may have a cross-section that has a Y-shape, cross shape, clover shape or any other suitable shape. In some example embodiments, one or more reservoirs 22A, 22B may include a filled tank lacking any storage medium and containing only pre-vapor formulation.
At least one of the reservoirs 22A, 22B may be sized and configured to hold enough pre-vapor formulation such that the e-vaping device 60 may be configured for vaping for at least about 200 seconds. The e-vaping device 60 may be configured to allow each vaping to last a maximum of about 5 seconds.
At least one of the dispensing interfaces 31A, 31B may include filaments (or threads) having a capacity to draw one or more pre-vapor formulations. For example, at least one of the dispensing interfaces 31A, 31B may be a bundle of glass (or ceramic) filaments, a bundle including a group of windings of glass filaments, etc., all of which arrangements may be capable of drawing pre-vapor formulation via capillary action by interstitial spacings between the filaments. The filaments may be generally aligned in a direction perpendicular (transverse) to the longitudinal direction of the e-vaping device 60. In some example embodiments, the wick may include one to eight filament strands, each strand comprising a plurality of glass filaments twisted together. The end portions of at least one of the dispensing interfaces 31A, 31B may be flexible and foldable into the confines of one or more reservoirs 22A, 22B. The filaments may have a cross-section that is generally cross-shaped, clover-shaped, Y-shaped, or in any other suitable shape. In some example embodiments, at least one of the dispensing interfaces 31A, 31B includes multiple separate wicks coupled together. The coupled portions of the wicks may establish a trunk of a dispensing interface, and the non-coupled portions of the wicks extending away from the trunk may be one or more roots of a dispensing interface.
A dispensing interface may include any suitable material or combination of materials, also referred to herein as wicking materials. Examples of suitable materials may be, but not limited to, glass, ceramic- or graphite-based materials. A dispensing interface may have any suitable capillarity drawing action to accommodate pre-vapor formulations having different physical properties such as density, viscosity, surface tension and vapor pressure.
In some example embodiments, at least one of the heaters 34A, 34B may include a wire coil that at least partially surrounds a trunk 33A, 33B of at least one dispensing interface 31A, 31B. The wire may be a metal wire and/or the wire coil may extend fully or partially along the length of the trunk 33A, 33B. A wire coil may further extend fully or partially around the circumference of the trunk 33A, 33B. In some example embodiments, a wire coil may or may not be in contact with a dispensing interface 31A, 31B to which the wire coil is coupled.
In the example embodiment illustrated in
At least one of the heaters 34A, 34B may be formed of any suitable electrically resistive materials. Examples of suitable electrically resistive materials may include, but not limited to, titanium, zirconium, tantalum and metals from the platinum group. Examples of suitable metal alloys include, but not limited to, stainless steel, nickel, cobalt, chromium, aluminum-titanium-zirconium, hafnium, niobium, molybdenum, tantalum, tungsten, tin, gallium, manganese and iron-containing alloys, and super-alloys based on nickel, iron, cobalt, stainless steel. For example, at least one of the heaters 34A, 34B may be formed of nickel aluminide, a material with a layer of alumina on the surface, iron aluminide and other composite materials, the electrically resistive material may optionally be embedded in, encapsulated or coated with an insulating material or vice-versa, depending on the kinetics of energy transfer and the external physicochemical properties required. At least one of the heaters 34A, 34B may include at least one material selected from the group including at least one of stainless steel, copper, copper alloys, nickel-chromium alloys, super alloys and combinations thereof. In some example embodiments, at least one of the heaters 34A, 34B may be formed of nickel-chromium alloys or iron-chromium alloys. In some example embodiments, at least one of the heaters 34A, 34B may be a ceramic heater having an electrically resistive layer on an outside surface thereof.
At least one of the heaters 34A, 34B may heat one or more pre-vapor formulations in at least one of the dispensing interfaces 31A, 31B by thermal conduction. Alternatively, heat from at least one of the heaters 34A, 34B may be conducted to the one or more pre-vapor formulations by a heat conductive element or the at least one of the heaters 34A, 34B may transfer heat to the incoming ambient air that is drawn through the e-vaping device 60 during vaping, which in turn heats the pre-vapor formulation by convection.
In some example embodiments, e-vaping device 60 includes more than two vaporizer assemblies, where the vaporizer assemblies are configured to separately form separate, respective vapors.
In some example embodiments, the cartridge 70 may be replaceable. In other words, once the pre-vapor formulation of the cartridge 70 is depleted, only the cartridge 70 may be replaced. An alternate arrangement may include an example embodiment where the entire e-vaping device 60 may be disposed once one or more of the reservoirs 22A, 22B are depleted.
In an example embodiment, the e-vaping device 60 may be about 80 mm to about 110 mm long and about 7 mm to about 8 mm in diameter. For example, in one example embodiment, the e-vaping device may be about 84 mm long and may have a diameter of about 7.8 mm.
Referring to
At 220, the configuror configures a power supply section (or second section) to provide electrical power. The configuring of the power supply section may include one or more of installing a power supply in the power supply section, charging a power supply in the power supply section, coupling control circuitry to the power supply section, etc.
At 230, the configuror couples the cartridge and power supply section at complimentary interfaces, such that the power supply in the power supply section is electrically coupled to heaters included at separate ends of the cartridge and may be operated to cause the heaters to heat separate pre-vapor formulations drawn to the separate ends of the cartridge.
In some example embodiments, the cartridge may be replaced with a different cartridge, and the different cartridge may include a different set of pre-vapor formulations.
Referring to
At 320, the configuror positions multiple reservoirs within the enclosure of the cartridge, between separate ends of the enclosure. The reservoirs may be bound by separate housings. The reservoirs may be provided via partitioning a portion of the enclosure within the housing.
At 330, the configuror couples separate vaporizer assemblies to separate, respective sets of one or more reservoirs proximate to separate ends of the cartridge housing interior, such that the vaporizer assemblies are configured to draw separate pre-vaping formulations from separate reservoirs to separate ends of the enclosure and vaporize the separate pre-vapor formulations at the separate ends. Each vaporizer assembly may include a dispensing interface coupled a set of reservoirs in the enclosure of the cartridge. Coupling the dispensing interface to the set of reservoirs may include coupling the dispensing interface to portions of the cartridge and extending separate roots of the dispensing interface into separate reservoirs via the portions of the cartridge. In some example embodiments, the dispensing interface is coupled to a gasket, where the gasket seals one end of the reservoirs, so that the separate roots of the dispensing interface extend into the separate reservoirs through an interior of the gasket. Each vaporizer assembly may include a heater coupled to a dispensing interface. Each heater may be coupled to a power supply section interface of the cartridge via one or more sets of electrical leads, so that the heaters may receive electrical power from a power supply coupled to the power supply section interface.
While a number of example embodiments have been disclosed herein, it should be understood that other variations may be possible. Such variations are not to be regarded as a departure from the spirit and scope of the present disclosure, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
This application is a continuation application of U.S. application Ser. No. 15/059,746 filed on Mar. 3, 2016, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1771366 | Wyss | Jul 1930 | A |
1968509 | Tiffany | Jul 1934 | A |
2057353 | Whittmore, Jr. | Oct 1936 | A |
2104266 | McCormick | Jan 1938 | A |
2406275 | Wejnarth | Aug 1946 | A |
2442004 | Hayward-Butt | May 1948 | A |
2558127 | Downs | Jun 1951 | A |
2642313 | Montenier | Jun 1953 | A |
2728981 | Hooper | Jan 1956 | A |
2830597 | Kummli | Apr 1958 | A |
2907686 | Siegel | Oct 1959 | A |
2971039 | Western | Feb 1961 | A |
2972557 | Toulman, Jr. | Feb 1961 | A |
2974669 | Ellis | Mar 1961 | A |
3062218 | Temkovits | Nov 1962 | A |
3200819 | Gilbert | Aug 1965 | A |
3255760 | Seike et al. | Jun 1966 | A |
3258015 | Ellis et al. | Jun 1966 | A |
3356094 | Ellis et al. | Dec 1967 | A |
3363633 | Weber | Jan 1968 | A |
3402723 | Hu | Sep 1968 | A |
3425414 | La Roche | Feb 1969 | A |
3482580 | Hollabaugh | Dec 1969 | A |
3633881 | Yurdin | Jan 1972 | A |
3812854 | Michaels et al. | May 1974 | A |
3878041 | Leitnaker et al. | Apr 1975 | A |
3949743 | Shanbrom | Apr 1976 | A |
4068672 | Guerra | Jan 1978 | A |
4077784 | Vayrynen | Mar 1978 | A |
4083372 | Boden | Apr 1978 | A |
4131119 | Blasutti | Dec 1978 | A |
4141369 | Burruss | Feb 1979 | A |
4164230 | Pearlman | Aug 1979 | A |
4193411 | Faris et al. | Mar 1980 | A |
4219032 | Tabatznik et al. | Aug 1980 | A |
4246913 | Ogden et al. | Jan 1981 | A |
4257389 | Texidor et al. | Mar 1981 | A |
4259970 | Green, Jr. | Apr 1981 | A |
4413641 | Dwyer, Jr. et al. | Nov 1983 | A |
4419302 | Nishino et al. | Dec 1983 | A |
4462397 | Suzuki | Jul 1984 | A |
4629604 | Spector | Dec 1986 | A |
4735217 | Gerth et al. | Apr 1988 | A |
4765347 | Sensabaugh, Jr. et al. | Aug 1988 | A |
4804002 | Herron | Feb 1989 | A |
4846199 | Rose | Jul 1989 | A |
4922901 | Brooks et al. | May 1990 | A |
4945929 | Egilmex | Aug 1990 | A |
4945931 | Gori | Aug 1990 | A |
4947874 | Brooks et al. | Aug 1990 | A |
4947875 | Brooks et al. | Aug 1990 | A |
4961727 | Beard | Oct 1990 | A |
4981522 | Nichols et al. | Jan 1991 | A |
4991606 | Serrano et al. | Feb 1991 | A |
4993436 | Bloom, Jr. | Feb 1991 | A |
5016656 | McMurtrie | May 1991 | A |
5040552 | Schleich et al. | Aug 1991 | A |
5042510 | Curtiss et al. | Aug 1991 | A |
5060671 | Counts et al. | Oct 1991 | A |
5085804 | Washburn | Feb 1992 | A |
5093894 | Deevi et al. | Mar 1992 | A |
5095921 | Losee et al. | Mar 1992 | A |
5139594 | Rabin | Aug 1992 | A |
5144962 | Counts et al. | Sep 1992 | A |
5156170 | Clearman et al. | Oct 1992 | A |
5159940 | Hayward et al. | Nov 1992 | A |
5179966 | Losee et al. | Jan 1993 | A |
5224498 | Deevi et al. | Jul 1993 | A |
5228460 | Sprinkel et al. | Jul 1993 | A |
5235157 | Blackburn | Aug 1993 | A |
5249586 | Morgan et al. | Oct 1993 | A |
5259062 | Pelonis | Nov 1993 | A |
5269327 | Counts et al. | Dec 1993 | A |
5322075 | Deevi et al. | Jun 1994 | A |
5353813 | Deevi et al. | Oct 1994 | A |
5369723 | Counts et al. | Nov 1994 | A |
5388594 | Counts et al. | Feb 1995 | A |
5396911 | Casey, III et al. | Mar 1995 | A |
5404871 | Goodman et al. | Apr 1995 | A |
5408574 | Deevi et al. | Apr 1995 | A |
5498855 | Deevi et al. | Mar 1996 | A |
5505214 | Collins et al. | Apr 1996 | A |
5542410 | Goodman et al. | Aug 1996 | A |
5591368 | Fleischhauer et al. | Jan 1997 | A |
5613504 | Collins et al. | Mar 1997 | A |
5665262 | Hajaligol et al. | Sep 1997 | A |
5666977 | Higgins et al. | Sep 1997 | A |
5666978 | Counts et al. | Sep 1997 | A |
5692095 | Young | Nov 1997 | A |
5743251 | Howell et al. | Apr 1998 | A |
5797390 | McSoley | Aug 1998 | A |
5865185 | Collins et al. | Feb 1999 | A |
5878752 | Adams et al. | Mar 1999 | A |
5894841 | Voges | Apr 1999 | A |
5935975 | Rose et al. | Aug 1999 | A |
6105877 | Coffee | Aug 2000 | A |
6155268 | Takeuchi | Dec 2000 | A |
6196218 | Voges | Mar 2001 | B1 |
6234167 | Cox et al. | May 2001 | B1 |
6386674 | Corrigan, III et al. | May 2002 | B1 |
6443146 | Voges | Sep 2002 | B1 |
6460781 | Garcia et al. | Oct 2002 | B1 |
6501052 | Cox et al. | Dec 2002 | B2 |
6516796 | Cox et al. | Feb 2003 | B1 |
6532965 | Abhulimen et al. | Mar 2003 | B1 |
6543443 | Klimowicz et al. | Apr 2003 | B1 |
6568390 | Nichols et al. | May 2003 | B2 |
6598607 | Adiga et al. | Jul 2003 | B2 |
6663019 | Garcia et al. | Dec 2003 | B2 |
6715487 | Nichols et al. | Apr 2004 | B2 |
6715697 | Duqueroie | Apr 2004 | B2 |
6772756 | Shayan | Aug 2004 | B2 |
6799576 | Farr | Oct 2004 | B2 |
6810883 | Felter et al. | Nov 2004 | B2 |
6830383 | Huang | Dec 2004 | B2 |
6854470 | Pu | Feb 2005 | B1 |
6886557 | Childers et al. | May 2005 | B2 |
7117867 | Cox et al. | Oct 2006 | B2 |
7131599 | Katase | Nov 2006 | B2 |
7167641 | Tam et al. | Jan 2007 | B2 |
7173222 | Cox et al. | Feb 2007 | B2 |
7195403 | Oki et al. | Mar 2007 | B2 |
7281670 | Lakatos et al. | Oct 2007 | B2 |
7445484 | Wu | Nov 2008 | B2 |
7458374 | Hale et al. | Dec 2008 | B2 |
D590988 | Hon | Apr 2009 | S |
D590989 | Hon | Apr 2009 | S |
D590990 | Hon | Apr 2009 | S |
D590991 | Hon | Apr 2009 | S |
7513781 | Galauner et al. | Apr 2009 | B2 |
7540286 | Cross et al. | Jun 2009 | B2 |
7614402 | Gomes | Nov 2009 | B2 |
7726320 | Robinson et al. | Jun 2010 | B2 |
7734159 | Beland et al. | Jun 2010 | B2 |
7780041 | Albisetti | Aug 2010 | B2 |
7832410 | Hon | Nov 2010 | B2 |
7845359 | Montaser | Dec 2010 | B2 |
7913688 | Cross et al. | Mar 2011 | B2 |
7920777 | Rabin et al. | Apr 2011 | B2 |
7997280 | Rosenthal | Aug 2011 | B2 |
8079371 | Robinson et al. | Dec 2011 | B2 |
D655036 | Zhou | Feb 2012 | S |
8127772 | Montaser | Mar 2012 | B2 |
8156944 | Han | Apr 2012 | B2 |
8205622 | Pan | Jun 2012 | B2 |
8258192 | Wu et al. | Sep 2012 | B2 |
8314591 | Terry et al. | Nov 2012 | B2 |
8320751 | Porchia et al. | Nov 2012 | B2 |
8349251 | Woo et al. | Jan 2013 | B2 |
8365742 | Hon | Feb 2013 | B2 |
8367959 | Spertell | Feb 2013 | B2 |
8371310 | Brenneise | Feb 2013 | B2 |
8375957 | Hon | Feb 2013 | B2 |
8393331 | Hon | Mar 2013 | B2 |
8402976 | Fernando et al. | Mar 2013 | B2 |
8449766 | Feliers et al. | May 2013 | B2 |
RE44312 | Vieira | Jun 2013 | E |
D684311 | Liu | Jun 2013 | S |
8459270 | Coven et al. | Jun 2013 | B2 |
8483553 | Tollens et al. | Jul 2013 | B2 |
8498524 | Ruiz Ballesteros et al. | Jul 2013 | B2 |
8499766 | Newton | Aug 2013 | B1 |
8511318 | Hon | Aug 2013 | B2 |
8528569 | Newton | Sep 2013 | B1 |
8550068 | Terry et al. | Oct 2013 | B2 |
8550069 | Alelov | Oct 2013 | B2 |
8584670 | Hyde et al. | Nov 2013 | B2 |
8689804 | Fernando et al. | Apr 2014 | B2 |
8689805 | Hon | Apr 2014 | B2 |
8833364 | Buchberger | Sep 2014 | B2 |
8869804 | Mishra et al. | Oct 2014 | B2 |
8915254 | Monsees et al. | Dec 2014 | B2 |
8944052 | Osorio | Feb 2015 | B2 |
9017091 | Zhu et al. | Apr 2015 | B2 |
9271528 | Liu | Mar 2016 | B2 |
9271529 | Alima | Mar 2016 | B2 |
9498002 | Soreide | Nov 2016 | B1 |
9603386 | Xiang | Mar 2017 | B2 |
9675114 | Timmermans | Jun 2017 | B2 |
9675117 | Li et al. | Jun 2017 | B2 |
9763477 | Zhu | Sep 2017 | B2 |
9808032 | Yamada et al. | Nov 2017 | B2 |
9877508 | Kane | Jan 2018 | B2 |
9888714 | Cameron et al. | Feb 2018 | B2 |
9974743 | Rose et al. | May 2018 | B2 |
10015986 | Cadieux | Jul 2018 | B2 |
10306927 | Rostami | Jun 2019 | B2 |
20020071871 | Snyder et al. | Jun 2002 | A1 |
20020078948 | Hindle et al. | Jun 2002 | A1 |
20020079309 | Cox | Jun 2002 | A1 |
20020086852 | Cantor et al. | Jul 2002 | A1 |
20020146242 | Vieira | Oct 2002 | A1 |
20020170566 | Farr | Nov 2002 | A1 |
20020179102 | Farr | Dec 2002 | A1 |
20030056790 | Nichols et al. | Mar 2003 | A1 |
20030075188 | Adiga et al. | Apr 2003 | A1 |
20030150451 | Shayan | Aug 2003 | A1 |
20040050396 | Squeo | Mar 2004 | A1 |
20040247301 | Yip et al. | Dec 2004 | A1 |
20050016550 | Katase | Jan 2005 | A1 |
20050150489 | Dunfield et al. | Jul 2005 | A1 |
20050235991 | Nichols et al. | Oct 2005 | A1 |
20050263618 | Spallek et al. | Dec 2005 | A1 |
20060054165 | Hughes et al. | Mar 2006 | A1 |
20060191546 | Takano et al. | Aug 2006 | A1 |
20060196518 | Hon | Sep 2006 | A1 |
20060213503 | Borgschulte et al. | Sep 2006 | A1 |
20070068523 | Fishman | Mar 2007 | A1 |
20070102013 | Adams et al. | May 2007 | A1 |
20070215168 | Banerjee et al. | Sep 2007 | A1 |
20070237499 | DeWitt et al. | Oct 2007 | A1 |
20070267031 | Hon | Nov 2007 | A1 |
20070267032 | Shan | Nov 2007 | A1 |
20080022999 | Belcastro et al. | Jan 2008 | A1 |
20080029084 | Costantino et al. | Feb 2008 | A1 |
20080138398 | Gonda | Jun 2008 | A1 |
20080138399 | Gonda | Jun 2008 | A1 |
20080230052 | Montaser | Sep 2008 | A1 |
20080241255 | Rose et al. | Oct 2008 | A1 |
20080247892 | Kawasumi | Oct 2008 | A1 |
20080276947 | Martzel | Nov 2008 | A1 |
20080299048 | Hale et al. | Dec 2008 | A1 |
20090056729 | Zawadzki et al. | Mar 2009 | A1 |
20090095287 | Emarlou | Apr 2009 | A1 |
20090095311 | Han | Apr 2009 | A1 |
20090095312 | Herbrich et al. | Apr 2009 | A1 |
20090126745 | Hon | May 2009 | A1 |
20090130216 | Cartt et al. | May 2009 | A1 |
20090151717 | Bowen et al. | Jun 2009 | A1 |
20090162294 | Werner | Jun 2009 | A1 |
20090188490 | Han | Jul 2009 | A1 |
20090230117 | Fernando et al. | Sep 2009 | A1 |
20090255534 | Paterno | Oct 2009 | A1 |
20090272379 | Thorens et al. | Nov 2009 | A1 |
20090283103 | Nielsen et al. | Nov 2009 | A1 |
20100021900 | Gong et al. | Jan 2010 | A1 |
20100031968 | Sheikh et al. | Feb 2010 | A1 |
20100083959 | Siller | Apr 2010 | A1 |
20100126505 | Rinker | May 2010 | A1 |
20100163063 | Fernando et al. | Jul 2010 | A1 |
20100200006 | Robinson et al. | Aug 2010 | A1 |
20100200008 | Taieb | Aug 2010 | A1 |
20100206317 | Albino et al. | Aug 2010 | A1 |
20100229881 | Hearn | Sep 2010 | A1 |
20100242975 | Hearn | Sep 2010 | A1 |
20100242976 | Katayama et al. | Sep 2010 | A1 |
20100266643 | Willett et al. | Oct 2010 | A1 |
20100307518 | Wang | Dec 2010 | A1 |
20110005535 | Xiu | Jan 2011 | A1 |
20110011396 | Fang | Jan 2011 | A1 |
20110036346 | Cohen et al. | Feb 2011 | A1 |
20110036363 | Urtsev et al. | Feb 2011 | A1 |
20110041858 | Montaser | Feb 2011 | A1 |
20110094523 | Thorens et al. | Apr 2011 | A1 |
20110120482 | Brenneise | May 2011 | A1 |
20110155153 | Thorens et al. | Jun 2011 | A1 |
20110168172 | Patton et al. | Jul 2011 | A1 |
20110209717 | Han | Sep 2011 | A1 |
20110226236 | Buchberger | Sep 2011 | A1 |
20110232654 | Mass | Sep 2011 | A1 |
20110245493 | Rabinowitz et al. | Oct 2011 | A1 |
20110265806 | Alarcon et al. | Nov 2011 | A1 |
20110277756 | Terry et al. | Nov 2011 | A1 |
20110277757 | Terry et al. | Nov 2011 | A1 |
20110277760 | Terry et al. | Nov 2011 | A1 |
20110277761 | Terry et al. | Nov 2011 | A1 |
20110277764 | Terry et al. | Nov 2011 | A1 |
20110277780 | Terry et al. | Nov 2011 | A1 |
20110290244 | Schennum | Dec 2011 | A1 |
20110303231 | Li et al. | Dec 2011 | A1 |
20110304282 | Li et al. | Dec 2011 | A1 |
20110315152 | Hearn et al. | Dec 2011 | A1 |
20120006342 | Rose et al. | Jan 2012 | A1 |
20120048266 | Alelov | Mar 2012 | A1 |
20120048466 | Eckert et al. | Mar 2012 | A1 |
20120111347 | Hon | May 2012 | A1 |
20120114809 | Edwards et al. | May 2012 | A1 |
20120118301 | Montaser | May 2012 | A1 |
20120145169 | Wu | Jun 2012 | A1 |
20120167906 | Gysland | Jul 2012 | A1 |
20120174914 | Pirshafiey et al. | Jul 2012 | A1 |
20120186594 | Liu | Jul 2012 | A1 |
20120199146 | Marangos | Aug 2012 | A1 |
20120199663 | Qiu | Aug 2012 | A1 |
20120207427 | Ito | Aug 2012 | A1 |
20120211015 | Li et al. | Aug 2012 | A1 |
20120227752 | Alelov | Sep 2012 | A1 |
20120230659 | Goodman et al. | Sep 2012 | A1 |
20120255567 | Rose et al. | Oct 2012 | A1 |
20120260927 | Liu | Oct 2012 | A1 |
20120285475 | Liu | Nov 2012 | A1 |
20120291791 | Pradeep | Nov 2012 | A1 |
20120312313 | Frija | Dec 2012 | A1 |
20120318882 | Abehasera | Dec 2012 | A1 |
20130014772 | Liu | Jan 2013 | A1 |
20130019887 | Liu | Jan 2013 | A1 |
20130025609 | Liu | Jan 2013 | A1 |
20130037041 | Worm et al. | Feb 2013 | A1 |
20130042865 | Monsees et al. | Feb 2013 | A1 |
20130056013 | Terry et al. | Mar 2013 | A1 |
20130074854 | Lipowicz | Mar 2013 | A1 |
20130152956 | von Borstel et al. | Jun 2013 | A1 |
20130192615 | Tucker et al. | Aug 2013 | A1 |
20130192616 | Tucker et al. | Aug 2013 | A1 |
20130192619 | Tucker et al. | Aug 2013 | A1 |
20130192620 | Tucker et al. | Aug 2013 | A1 |
20130192621 | Li et al. | Aug 2013 | A1 |
20130192622 | Tucker et al. | Aug 2013 | A1 |
20130192623 | Tucker et al. | Aug 2013 | A1 |
20130213418 | Tucker et al. | Aug 2013 | A1 |
20130213419 | Tucker et al. | Aug 2013 | A1 |
20130220315 | Conley et al. | Aug 2013 | A1 |
20130228191 | Newton | Sep 2013 | A1 |
20130284192 | Peleg et al. | Oct 2013 | A1 |
20130298905 | Levin et al. | Nov 2013 | A1 |
20130312778 | Shibuichi | Nov 2013 | A1 |
20130319407 | Liu | Dec 2013 | A1 |
20130319440 | Capuano | Dec 2013 | A1 |
20130340775 | Juster et al. | Dec 2013 | A1 |
20140000638 | Sebastian et al. | Jan 2014 | A1 |
20140014125 | Fernando et al. | Jan 2014 | A1 |
20140034071 | Levitz et al. | Feb 2014 | A1 |
20140060527 | Liu | Mar 2014 | A1 |
20140060556 | Liu | Mar 2014 | A1 |
20140081234 | Eggert et al. | Mar 2014 | A1 |
20140096782 | Ampolini et al. | Apr 2014 | A1 |
20140123989 | LaMothe | May 2014 | A1 |
20140153195 | You et al. | Jun 2014 | A1 |
20140163048 | Barker et al. | Jun 2014 | A1 |
20140166029 | Weigensberg et al. | Jun 2014 | A1 |
20140174441 | Seeney et al. | Jun 2014 | A1 |
20140190496 | Wensley et al. | Jul 2014 | A1 |
20140202474 | Peleg et al. | Jul 2014 | A1 |
20140209105 | Sears et al. | Jul 2014 | A1 |
20140224245 | Alelov | Aug 2014 | A1 |
20140246035 | Minskoff et al. | Sep 2014 | A1 |
20140261486 | Potter et al. | Sep 2014 | A1 |
20140261488 | Tucker | Sep 2014 | A1 |
20140261492 | Kane et al. | Sep 2014 | A1 |
20140261788 | Lewis et al. | Sep 2014 | A1 |
20140267488 | Ready et al. | Sep 2014 | A1 |
20140366898 | Monsees et al. | Dec 2014 | A1 |
20150020823 | Lipowicz et al. | Jan 2015 | A1 |
20150027454 | Li et al. | Jan 2015 | A1 |
20150027468 | Li et al. | Jan 2015 | A1 |
20150027469 | Tucker et al. | Jan 2015 | A1 |
20150027470 | Kane et al. | Jan 2015 | A1 |
20150040929 | Hon | Feb 2015 | A1 |
20150047662 | Hopps | Feb 2015 | A1 |
20150068541 | Sears et al. | Mar 2015 | A1 |
20150068544 | Moldoveanu et al. | Mar 2015 | A1 |
20150117841 | Brammer et al. | Apr 2015 | A1 |
20150164141 | Newton | Jun 2015 | A1 |
20150196059 | Liu | Jul 2015 | A1 |
20150257447 | Sullivan | Sep 2015 | A1 |
20150258289 | Henry, Jr. et al. | Sep 2015 | A1 |
20150313275 | Anderson et al. | Nov 2015 | A1 |
20150313281 | Bonici et al. | Nov 2015 | A1 |
20150320116 | Bleloch et al. | Nov 2015 | A1 |
20150335070 | Sears et al. | Nov 2015 | A1 |
20150351456 | Johnson et al. | Dec 2015 | A1 |
20160021930 | Minskoff et al. | Jan 2016 | A1 |
20160109115 | Lipowicz | Apr 2016 | A1 |
20160120224 | Mishra et al. | May 2016 | A1 |
20160135506 | Sanchez et al. | May 2016 | A1 |
20160174611 | Monsees et al. | Jun 2016 | A1 |
20160183598 | Tucker et al. | Jun 2016 | A1 |
20160192708 | DeMeritt et al. | Jul 2016 | A1 |
20160235123 | Krietzman | Aug 2016 | A1 |
20160324216 | Li | Nov 2016 | A1 |
20160331026 | Cameron | Nov 2016 | A1 |
20160334119 | Cameron | Nov 2016 | A1 |
20170027232 | Scheck et al. | Feb 2017 | A1 |
20170042251 | Yamada et al. | Feb 2017 | A1 |
20170086500 | Li et al. | Mar 2017 | A1 |
20170109877 | Peleg et al. | Apr 2017 | A1 |
20170112197 | Li et al. | Apr 2017 | A1 |
20170150755 | Batista | Jun 2017 | A1 |
20170150758 | Fernando et al. | Jun 2017 | A1 |
20170157341 | Pandya et al. | Jun 2017 | A1 |
20170290998 | Poston et al. | Oct 2017 | A1 |
20170354180 | Fornarelli | Dec 2017 | A1 |
20180000158 | Ewing | Jan 2018 | A1 |
20180007966 | Li et al. | Jan 2018 | A1 |
20180027878 | Dendy | Feb 2018 | A1 |
20180092400 | Sahin | Apr 2018 | A1 |
20180177233 | Tucker | Jun 2018 | A1 |
20180235277 | Lin et al. | Aug 2018 | A1 |
20190200674 | Tucker | Jul 2019 | A1 |
20190200675 | Bache | Jul 2019 | A1 |
20190387796 | Cohen | Dec 2019 | A1 |
20200000146 | Anderson | Jan 2020 | A1 |
20220200854 | Kane | Jun 2022 | A1 |
20220256694 | Kambe | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
421623 | Jun 1937 | BE |
2947135 | Nov 2015 | CA |
421786 | Sep 1966 | CH |
87104459 | Feb 1988 | CN |
1323231 | Nov 2001 | CN |
2719043 | Aug 2005 | CN |
2777995 | May 2006 | CN |
101043827 | Sep 2007 | CN |
101084801 | Dec 2007 | CN |
101115408 | Jan 2008 | CN |
101116542 | Feb 2008 | CN |
201018927 | Feb 2008 | CN |
201029436 | Mar 2008 | CN |
201054977 | May 2008 | CN |
201067079 | Jun 2008 | CN |
201076006 | Jun 2008 | CN |
201085044 | Jul 2008 | CN |
101518361 | Sep 2009 | CN |
201379072 | Jan 2010 | CN |
201709398 | Jan 2011 | CN |
201789924 | Apr 2011 | CN |
201797997 | Apr 2011 | CN |
102106611 | Jun 2011 | CN |
201860753 | Jun 2011 | CN |
102166044 | Aug 2011 | CN |
202014571 | Oct 2011 | CN |
202014571 | Oct 2011 | CN |
202014572 | Oct 2011 | CN |
202026804 | Nov 2011 | CN |
102333462 | Jan 2012 | CN |
202233005 | May 2012 | CN |
202233007 | May 2012 | CN |
102655773 | Sep 2012 | CN |
102905569 | Jan 2013 | CN |
202738816 | Feb 2013 | CN |
103054196 | Apr 2013 | CN |
202890463 | Apr 2013 | CN |
103271448 | Sep 2013 | CN |
203353683 | Dec 2013 | CN |
203353685 | Dec 2013 | CN |
203482901 | Mar 2014 | CN |
103844359 | Jun 2014 | CN |
103859609 | Jun 2014 | CN |
203789157 | Aug 2014 | CN |
104114049 | Oct 2014 | CN |
203897285 | Oct 2014 | CN |
104284606 | Jan 2015 | CN |
204070536 | Jan 2015 | CN |
104540406 | Apr 2015 | CN |
204259827 | Apr 2015 | CN |
204351068 | May 2015 | CN |
104812260 | Jul 2015 | CN |
104839893 | Aug 2015 | CN |
104872822 | Sep 2015 | CN |
104968225 | Oct 2015 | CN |
104994757 | Oct 2015 | CN |
105077590 | Nov 2015 | CN |
105163610 | Dec 2015 | CN |
105163611 | Dec 2015 | CN |
204812033 | Dec 2015 | CN |
204812043 | Dec 2015 | CN |
105286088 | Feb 2016 | CN |
105307520 | Feb 2016 | CN |
105324045 | Feb 2016 | CN |
105982355 | Oct 2016 | CN |
2653133 | May 1978 | DE |
3640917 | Aug 1988 | DE |
3735704 | May 1989 | DE |
19854009 | May 2000 | DE |
019736 | May 2014 | EA |
0893071 | Jul 1908 | EP |
0277519 | Aug 1988 | EP |
0295122 | Dec 1988 | EP |
0358002 | Mar 1990 | EP |
0358114 | Mar 1990 | EP |
0430566 | Jun 1991 | EP |
0845220 | Jun 1998 | EP |
0857431 | Aug 1998 | EP |
1989946 | Nov 2008 | EP |
1989946 | Nov 2008 | EP |
2022350 | Feb 2009 | EP |
2113178 | Nov 2009 | EP |
2454956 | May 2012 | EP |
2460424 | Jun 2012 | EP |
2481308 | Aug 2012 | EP |
2671461 | Dec 2013 | EP |
2989912 | Mar 2016 | EP |
680815 | Oct 1952 | GB |
2148079 | May 1985 | GB |
2513631 | Nov 2014 | GB |
2524779 | Oct 2015 | GB |
61068061 | Apr 1986 | JP |
H11-192702 | Jul 1999 | JP |
2006320286 | Nov 2006 | JP |
2010-246946 | Nov 2010 | JP |
2012-513750 | Jun 2012 | JP |
2014-528717 | Oct 2014 | JP |
2014-528718 | Oct 2014 | JP |
2015-506182 | Mar 2015 | JP |
2015-507695 | Mar 2015 | JP |
2015-513970 | May 2015 | JP |
2018-019695 | Feb 2018 | JP |
100636287 | Oct 2006 | KR |
10-2016-0008510 | Jan 2016 | KR |
8201585 | Nov 1982 | NL |
132954 | Oct 2013 | RU |
2509516 | Mar 2014 | RU |
2013124411 | Feb 2015 | RU |
2013137741 | Feb 2015 | RU |
2014104166 | Sep 2015 | RU |
WO-8602528 | May 1986 | WO |
WO-9003224 | Apr 1990 | WO |
WO-9502970 | Feb 1995 | WO |
WO-1997042993 | Nov 1997 | WO |
WO-0028843 | May 2000 | WO |
WO-03037412 | May 2003 | WO |
WO-2004080216 | Sep 2004 | WO |
WO-2004095955 | Nov 2004 | WO |
WO-2005053444 | Jun 2005 | WO |
WO-2005099494 | Oct 2005 | WO |
WO-2007066374 | Jun 2007 | WO |
WO-2007078273 | Jul 2007 | WO |
WO-2007078273 | Jul 2007 | WO |
WO-2007098337 | Aug 2007 | WO |
WO-2007131449 | Nov 2007 | WO |
WO-2007131450 | Nov 2007 | WO |
WO-2007141668 | Dec 2007 | WO |
WO-2008055423 | May 2008 | WO |
WO-2010091593 | Aug 2010 | WO |
WO-2010091593 | Aug 2010 | WO |
WO-2010107613 | Sep 2010 | WO |
WO-2010145468 | Dec 2010 | WO |
WO-2011124033 | Oct 2011 | WO |
WO-2011125058 | Oct 2011 | WO |
WO-2011146372 | Nov 2011 | WO |
WO-2012129787 | Oct 2012 | WO |
WO-2012129812 | Oct 2012 | WO |
WO-2012142293 | Oct 2012 | WO |
WO-2012174677 | Dec 2012 | WO |
WO-2013022936 | Feb 2013 | WO |
WO-2013027249 | Feb 2013 | WO |
WO-2013116558 | Aug 2013 | WO |
WO-2013116558 | Aug 2013 | WO |
WO-2013152873 | Oct 2013 | WO |
WO-2014004648 | Jan 2014 | WO |
WO-2014032275 | Mar 2014 | WO |
WO-2014110119 | Jul 2014 | WO |
WO-2014110750 | Jul 2014 | WO |
WO-2014151040 | Sep 2014 | WO |
WO-2014187770 | Nov 2014 | WO |
WO-2015040180 | Mar 2015 | WO |
WO-2015046385 | Apr 2015 | WO |
WO-2015079197 | Jun 2015 | WO |
WO-2015112750 | Jul 2015 | WO |
WO-2015138560 | Sep 2015 | WO |
WO-2015150699 | Oct 2015 | WO |
WO-2015179388 | Nov 2015 | WO |
WO-2016005601 | Jan 2016 | WO |
WO-2016005602 | Jan 2016 | WO |
WO-2016015246 | Feb 2016 | WO |
WO-2016183573 | Nov 2016 | WO |
WO-2017149152 | Sep 2017 | WO |
Entry |
---|
Chinese Office Action dated Aug. 26, 2021 for corresponding Chinese Application No. 201780011672.4, and English-language translation thereof. |
Japanese Office Action dated Apr. 12, 2021 for corresponding Japanese Application No. P2018-548009, and English-language translation thereof. |
Japanese Office Action dated Apr. 1, 2021 for corresponding Japanese Application No. P2018-546494, and English-language translation thereof. |
Israeli Office Action dated May 3, 2021 for corresponding Israeli Application No. 260761, and English-language translation thereof. |
Chinese Office Action for corresponding Application No. 201780012415.2, dated Jan. 11, 2022, and English translation thereof. |
U.S. Office Action dated Feb. 1, 2022, for corresponding U.S. Appl. No. 16/449,897. |
Chinese Office Action for corresponding Application No. 201780016476.6, dated Jan. 7, 2022, and English translation thereof. |
European Notice of Allowance for corresponding Application No. 17710246.4, dated Jan. 20, 2022. |
Russian Search Report dated Mar. 10, 2020 for corresponding Russian Application No. 2018135744/12(058874). |
Brazilian Office Action for corresponding Application No. 1120180172391, dated Apr. 29, 2022, with English Translation. |
Russian Notice of Allowance and Search Report dated May 22, 2020 for corresponding Russian Application No. 2018134598. |
Extended European Search Report dated May 28, 2020 for corresponding European Application No. 20159607.9. |
U.S. Notice of Allowance dated Jun. 26, 2020 for corresponding U.S. Appl. No. 15/067,990. |
Russian Notice of Allowance and Search Report dated May 13, 2020 for corresponding Russian Application No. 2018134143. |
Russian Office Action dated Jun. 5, 2020 for corresponding Russian Application No. 2018135744. |
Russian Office Action and Search Report dated May 27, 2020 for corresponding Russian Application No. 2018133689. |
U.S. Office Action dated Nov. 22, 2021 for corresponding U.S. Appl. No. 16/558,999. |
U.S. Office Action dated Nov. 24, 2021 for corresponding U.S. Appl. No. 16/445,775. |
Korean Office Action dated Nov. 10, 2021 for corresponding Korean Application No. 10-2018-7025729, and English-language translation thereof. |
Japanese Office Action dated Nov. 1, 2021 for corresponding Japanese Application No. 2018-548009, and English-language translation thereof. |
Korean Notice of Allowance dated Nov. 4, 2021 for corresponding Korean Application No. 10-2018-7027377, and English-language translation thereof. |
Japanese Notice of Allowance dated Nov. 29, 2021 for corresponding Japanese Application No. 2018-548009, and English-language translation thereof. |
Korean Office Action dated Nov. 10, 2021 for corresponding Korean Application No. 2018-7025593, and English-language translation thereof. |
Chinese Office Action dated Oct. 14, 2020 for corresponding Chinese Application No. 201780010768.9, and English-language translation thereof. |
Russian Office Action dated Oct. 9, 2020 for corresponding Russian Application No. 2018135744, and English-language translation thereof. |
European Brief Communication—Letter from the Opponent for corresponding Application No. 17710242.3, dated Feb. 8, 2022. |
Korean Notice of Allowance for corresponding Application No. 10-2018-7023463, dated Feb. 23, 2022, with English translation included. |
Korean Notice of Allowance for corresponding Application No. 10-2018-7023334, dated Mar. 25, 2022, with English translation included. |
Korean Notice of Allowance for corresponding Application No. 10-2018-7023797, dated Feb. 23, 2022, with English translation included. |
U.S. Notice of Allowance dated Aug. 14, 2019 for corresponding U.S. Appl. No. 15/059,791. |
Decision to Grant a Patent dated Oct. 22, 2019 for corresponding Kazakhstan Application No. 2018/0692.1. |
European Office Action dated Nov. 4, 2019 for corresponding European Application No. 17710247.2. |
Russian Notice of Allowance and Search Report dated Apr. 27, 2020 for corresponding Russian Application No. 2018134604. |
European Third Party Observation dated Mar. 6, 2020 for corresponding European Application No. 17710242.3. |
Chinese Office Action dated Jun. 30, 2021 for corresponding Chinese Application No. 201780010772.5, and English-language translation thereof. |
U.S. Office Action dated Jan. 10, 2020 for corresponding U.S. Appl. No. 15/067,990. |
Communication of a notice of opposition dated Feb. 18, 2021 for corresponding European Application No. 17710242.3. |
Goniewicz, Maciej L., et al., “Nicotine Levels in Electronic Cigarettes”, Jan. 2013, available online: https://academic.oup.com/ntr/article/15/1/158/1105400. |
“USB Power Delivery Specification 1.0”, Jul. 16, 2012, available online on Dec. 22, 2015 at http://www.usb.org/developers/powerdelivery/PD_1.0_Introduction.pdf; proof and document available at https://web.archive.org/web/20151222214237/http://www.usb.org/developers/powerdelivery/PD_1.0_Introduction.pdf; retrieved at Feb. 1, 2021. |
Wikipedia: USB, Revision of Dec. 23, 2015, available online: https://wikipedia.org/w/index.php?title=USB&oldid=696458466, retrieved on Feb. 1, 2021. |
Brief Communication—Letter from the Opponent, dated Feb. 19, 2021 for corresponding European Application No. 17710242.3. |
Chinese Office Action dated Jan. 6, 2021 for corresponding Chinese Application No. 201780011672.4, and English-language translation thereof. |
Zhu Donglai Yunnan University Press, “electronic cigarette”, published Aug. 31, 2015, pp. 544-546. |
Korean Office Action for corresponding Application No. 10-2018-7027377, dated May 27, 2022, with English Translation included. |
Korean Notice of Allowance for corresponding Application No. 10-2018-7023893, dated May 25, 2022, with English translation included. |
Korean Office Action for corresponding Application No. 10-2018-7025593, dated May 24, 2022, with English Translation. |
Russian Notice of Allowance and Search Report dated May 13, 2020 for corresponding Russian Application No. 2018135684. |
Third Party Observation dated Nov. 22, 2019 for corresponding Japanese Application No. 2018-546509. |
U.S. Notice of Allowance for corresponding U.S. Appl. No. 16/445,775, dated Mar. 10, 2022. |
Chinese Office Action dated Jun. 3, 2021 for corresponding Chinese Application No. 201780013171.X, and English-language translation thereof. |
Korean Office Action dated Nov. 1, 2021 for corresponding Korean Application No. 10-2018-7023893 and English-language translation thereof. |
European Summons to attend Oral Proceedings for corresponding European Patent No. 3426074, dated Dec. 16, 2021. |
Japanese Decision to Grant for corresponding Application No. 2018-548067, dated Dec. 15, 2021 and English-language translation thereof. |
Chinese Office Action for corresponding Application No. 201780010772.5, dated Dec. 2, 2021 and English-language translation thereof. |
Japanese Decision to Grant for corresponding Application No. 2018-546509, dated Dec. 22, 2021 and English-Language translation thereof. |
Japanese Decision to Grant for corresponding Application No. 2018-546494, dated Jan. 4, 2022, and English-Language translation thereof. |
Korean Office Action dated Aug. 12, 2021 for corresponding Korean Application No. 10-2018-7023334, and English-language translation thereof. |
Russian Notice of Allowance dated Mar. 17, 2020 for corresponding Russian Application No. 2018134051/12(055982). |
Russian Search Report dated Mar. 17, 2020 for corresponding Russian Application No. 2018134051/12(055982). |
Russian Notice of Allowance dated Nov. 25, 2020 for corresponding Russian Application No. 2018133689, and English-language translation thereof. |
European Communication of a Notice of Opposition dated Dec. 4, 2020 for corresponding European Application No. 17708784.8. |
U.S. Notice of Allowance dated Jan. 6, 2021 for corresponding U.S. Appl. No. 16/227,354. |
Chinese Office Action dated May 14, 2021 for corresponding Chinese Application No. 201780016476.6, and English-language translation thereof. |
Korean Office Action dated Aug. 17, 2021 for corresponding Korean Application No. 10-2018-7023797, and English-language translation thereof. |
Japanese Office Action dated Aug. 23, 2021 for corresponding Japanese Application No. 2018-548067, and English-language translation thereof. |
Chinese Office Action dated Oct. 10, 2020 for corresponding Chinese Application No. 201780012415.2, and English-language translation thereof. |
Chinese Office Action dated Jul. 6, 2021 for corresponding Chinese Application No. 201780010768.9, and English-language translation thereof. |
Japanese Decision to Grant dated Mar. 11, 2021 for corresponding Japanese Application No. 2018-547284, and English-language translation thereof. |
Japanese Office Action dated Feb. 22, 2021 for corresponding Japanese Application No. 2018-546509, and English-language translation thereof. |
Japanese Decision to Grant dated Mar. 18, 2021 for corresponding Japanese Application No. 2018-548129, and English-language translation thereof. |
Russian Decision to Grant dated Mar. 15, 2021 for corresponding Russian Application No. 2018135744, and English-language translation thereof. |
Chinese Notice of Allowance dated Mar. 15, 2021 for corresponding Chinese Application No. 201780011432.4, and English-language translation thereof. |
Japanese Office Action dated Mar. 11, 2021 for corresponding Japanese Application No. 2018-548067, and English-language translation thereof. |
European Letter from the Opponent for corresponding Application No. 17710242.3, dated May 19, 2022. |
European Letter from the Opponent for corresponding Application No. 17710242.3, dated Jun. 29, 2022. |
Cambridge Dictionary—“Definition of alternate—to happen or exist one after the other repeatedly” (<https://dictionary.cambridge.org/dictionary/english/alternate>), retrieved on Jul. 15, 2021. |
Dictionary.com—“Definition of alternate—to interchange repeatedly and regularly with one another in time or place” (<https://www.dictionary.com/browse/alternate>), retrieved on Jul. 14, 2021. |
Macmillan Dictionary —“Definition of alternate—happening or coming one after another, in a regular pattern” (<https://www.macmillandictionary.com/dictionary/british/alternate 2>), retrieved Jul. 15, 2021. |
Merriam-Webster—“Definition of alternate” (<https://www.merriam-webster.com/dictionary/alternate>), retrieved May 12, 2022. |
Dictionary.com—“Definition of alternate” (<https://www.dictionary.com/browse/alternate>), retrieved May 12, 2022. |
“Definition of common”, in: Merriam-Webster, (<https://www.merriamwebster.com/dictionary/common>), retrieved on Jun. 24, 2022. |
Feature analyses of the independent claims of Auxiliary Requests 1-4, dated May 12, 2022. |
Korean Notice of Allowance for corresponding Application No. 10-2018-7025729, dated May 27, 2022. |
Japanese Notice of Allowance dated Oct. 4, 2021 for corresponding Japanese Application No. 2018-541284, and English-language translation thereof. |
International Search Report and Written Opinion for PCT/US2013/027424 dated Apr. 25, 2013. |
Lee et al., Technique for aerosol generation with controllable micrometer size distribution, Chemosphere 73 (2008), pp. 760-767. |
International Preliminary Report on Patentability for PCT/US2013/027424 dated Sep. 4, 2014. |
International Search Report and Written Opinion for PCT/US2013/022330 dated Jul. 15, 2014. |
International Search Report dated Jul. 15, 2014. |
Moroccan Examination Report Application No. 38386 dated Mar. 18, 2016. |
Moroccan Notification of a Preliminary Search Report with Opinion on Patentability on Application No. 38386 dated Dec. 23, 2015. |
Chinese Office Action dated Apr. 1, 2017 issued in corresponding Chinese Patent Application No. 201480016196.1 (with translation). |
IntInternational Search Report and Written Opinion dated May 9, 2017 issued in corresponding PCT Application No. PCT/EP2017/055102. |
International Search Report and Written Opinion dated Jun. 8, 2017 issued in corresponding International Application No. PCT/EP2017/055472. |
Nternational Search Report and Written Opinion dated May 24, 2017 issued in corresponding International Application No. PCT/EP2017/055734. |
International Search Report and Written Opinion for PCT/EP2017/055725 dated Jun. 13, 2017. |
International Search Report and Written Opinion for PCT/EP2017/055733 dated Jun. 21, 2017. |
Invitation to Pay Additional Fees for PCT/EP2017/055098 dated May 10, 2017. |
International Search Report and Written Opinion for PCT/EP2017/055098 dated Jul. 14, 2017. |
International Search Report and Written Opinion for PCT/EP2017/055100 dated Jun. 19, 2017. |
Office Action for corresponding Russian Application No. 2015144179 dated Jul. 11, 2017 and English translation thereof. |
Office Action for corresponding U.S. Appl. No. 15/067,990 dated Mar. 19, 2018. |
Office Action for corresponding U.S. Appl. No. 15/059,791 dated Mar. 21, 2018. |
Office Action dated Mar. 21, 2018 issued in corresponging U.S. Appl. No. 15/059,790. |
U.S. Office Action issued in co-pending U.S. Appl. No. 15/063,900 dated Apr. 24, 2018. |
Office Action for corresponding U.S. Appl. No. 15/067,810 dated Jun. 29, 2018. |
Non-Final Office Action dated Aug. 3, 2018 in U.S. Appl. No. 15/067,867. |
Non-Final Office Action dated Sep. 28, 2018 in U.S. Appl. No. 15/059,790. |
Communication Pursuant to Rule 114(2) dated Oct. 1, 2018 in European Application No. 17710247.2. |
U.S. Office Action dated Nov. 9, 2018 issued in co-pending U.S. Appl. No. 15/059,791. |
U.S. Office Action dated Nov. 16, 2018 issued in co-pending U.S. Appl. No. 15/067,990. |
Lee, Y, Jeng, F and Chen, C. “Technique for aerosol generation with controllable micrometer size distribution”, Chemosphere 73 (2008) 760-767. |
Office Action for corresponding U.S. Appl. No. 14/199,365 dated Jun. 20, 2016. |
Office Action for corresponding Chinese Application No. 201480016196.1 dated Apr. 1, 2017 and English translation thereof. |
International Search Report for corresponding International Application No. PCT/EP2017/055102 dated May 9, 2017. |
International Search Report and Written Opinion for corresponding International Application No. PCT/EP2017/055472 dated Jun. 8, 2017. |
International Search Report and Written Opinion for corresponding International application No. PCT/EP2017/055725 dated Jun. 13, 2017. |
International Search Report for corresponding International Application No. PCT/EP2017/055733 dated Jun. 21, 2017. |
International Search Report for corresponding Internation Application No. PCT/EP2017/055100 and dated Jun. 19, 2017. |
International Search Report for corresponding International Application No. PCT/EP2017/055098 dated Jul. 14, 2017. |
Partial International Search Report for corresponding International Application No. PCT/EP2017/055098 dated May 10, 2017. |
Official Action for corresponding Russian Application No. 2015144179 dated Jul. 11, 2017 and English translation thereof. |
U.S. Office Action for corresponding U.S. Appl. No. 15/059,790 dated Mar. 21, 2018. |
U.S. Office Action for corresponding U.S. Appl. No. 15/059,791 dated Mar. 21, 2018. |
Non-Final Office Action dated Apr. 24, 2018 in U.S. Appl. No. 15/063,900. |
Non-Final Office Action dated Jun. 29, 2018 in U.S. Appl. No. 15/067,810. |
Non-Final Office Action for corresponding U.S. Appl. No. 15/059,790 dated Sep. 28, 2018. |
Chinese Office Action dated Apr. 1, 2017 issued in corresponding Chinese Patent Application No. 201480016196.1 (English translation provided). |
U.S. Office Action dated Jun. 20, 2016 issued in co-pending U.S. Appl. No. 14/199,365. |
Lee, et al. “Technique for aerosol generation with controllable micrometer size distribution,” Chemosphere, vol. 73, pp. 760-767 (2008). |
Moroccan Notification of Preliminary Search Report with Opinion on Patentability on Application No. 38386 dated Dec. 23, 2015. |
International Search Report dated Jul. 15, 2014 issued in International Application No. PCT/US2014/0022330. |
International Search Report and Written Opinion dated Jun. 8, 2017 issued in International Application No. PCT/EP2017/055472. |
International Search Report and Written Opinion dated Jun. 13, 2017 issued in International Application No. PCT/EP2017/055725. |
International Search Report and Written Opinion dated Jun. 21, 2017 issued in International Application No. PCT/EP2017/055733. |
International Search Report and Written Opinion dated Jun. 19, 2017 issued in International Application No. PCT/EP2017/055100. |
International Search Report and Written Opinion dated May 10, 2017 issued in International Application No. PCT/EP2017/055098. |
International Search Report and Written Opinion dated Jul. 14, 2017 issued in International Application No. PCT/EP2017/055098. |
Russian Office Action dated Jul. 11, 2017 issued in corresponding Russian Application No. 2015144179. |
U.S. Office Action dated Mar. 21, 2018 issued in copending U.S. Appl. No. 15/059,790. |
U.S. Office Action dated Mar. 19, 2018 issued in copending U.S. Appl. No. 15/067,990. |
U.S. Office Action dated Apr. 24, 2018 issued in co-pending U.S. Appl. No. 15/063,900. |
U.S. Office Action dated Jun. 29, 2018 issued in copending U.S. Appl. No. 15/067,810. |
U.S. Office Action dated Aug. 3, 2018 issued in co-pending U.S. Appl. No. 15/067,867. |
U.S. Office Action dated Sep. 28, 2018 issued in co-pending U.S. Appl. No. 15/059,790. |
U.S. Office Action dated Dec. 27, 2018 issued in co-pending U.S. Appl. No. 15/059,746. |
U.S. Office Action dated Mar. 21, 2019 issued in co-pending U.S. Appl. No. 15/059,790. |
U.S. Office Action dated Apr. 5, 2019 for corresponding U.S. Appl. No. 15/067,990. |
Notice of Allowance dated Apr. 23, 2019 for corresponding U.S. Appl. No. 15/059,791. |
Kazakhstan Notice of Allowance dated Apr. 11, 2019 for corresponding Kazakhstan Application No. 2018/00693.1. |
U.S. Notice of Allowance dated May 2, 2019 for corresponding U.S. Appl. No. 15/067,867. |
U.S. Notice of Allowance dated May 3, 2019 for corresponding U.S. Appl. No. 15/059,746. |
U.S. Notice of Allowance dated May 7, 2019 for corresponding U.S. Appl. No. 15/067,810. |
U.S. Notice of Allowance dated Apr. 23, 2019 for corresponding U.S. Appl. No. 15/059,791. |
U.S. Notice of Allowance dated May 16, 2019 for corresponding U.S. Appl. No. 15/063,900. |
Japanese Office Action dated Apr. 1, 2021 for corresponding Japanese Application No. 2018-541284, and English-language translation thereof. |
Chinese Office Action dated Jun. 3, 2021 for corresponding Chinese Application No. 201780012415.2, and English-language translation thereof. |
U.S. Office Action dated Sep. 16, 2020 for corresponding U.S. Appl. No. 16/227,354. |
Chinese Office Action and search report dated Sep. 16, 2020 for corresponding Chinese Application No. 201780016476.6 and English translation thereof. |
Chinese Office Action and search report dated Sep. 15, 2020 for corresponding Chinese Application No. 201780010772.5 and English translation thereof. |
Chinese Office Action and search report dated Sep. 17, 2020 for corresponding Chinese Application No. 201780011432.4 and English translation thereof. |
Chinese Office Action and search report dated Sep. 25, 2020 for corresponding Chinese Application No. 201780013171.X and English translation thereof. |
U.S. Office Action dated Dec. 6, 2022, for U.S. Appl. No. 17/226,586. |
Korean Notice of Allowance for corresponding Application No. 10-2018-7027377, dated Nov. 24, 2022, and English translation thereof. |
European Opposition Division Decision for corresponding Application No. 17710242.3, dated Dec. 8, 2022. |
Korean Notice of Allowance for corresponding Application No. 10-2018-7025593 dated Nov. 24, 2022, and English translation thereof. |
U.S. Office Action dated Feb. 16, 2023, for U.S. Appl. No. 17/226,586. |
Japanese Decision to Grant for corresponding Application No. 2022-014331, dated Mar. 6, 2023, and English-Language translation thereof. |
Canadian Office Action for corresponding Application No. 3,009,955, dated Apr. 3, 2023. |
Filipino Office Action for corresponding Application No. 1/2018/501784, dated Mar. 5, 2023. |
U.S. Office Action dated Mar. 27, 2023 for U.S. Appl. No. 17/019,915. |
U.S. Office Action dated Apr. 24, 2023, for U.S. Appl. No. 17/226,586. |
Malaysian Office Action for Application No. PI2018702870, dated May 24, 2023, with English Translation. |
U.S. Notice of Allowance for U.S. Appl. No. 17/226,586, dated Jun. 29, 2023. |
Chinese Office Action for Application No. 201780013171.X, dated Jun. 19, 2023, with English Translation included. |
Canadian Office Action for Application No. 3009118, dated Jun. 28, 2023. |
Russian Office Action and Search Report dated Aug. 23, 2023 for corresponding Russian Application No. 2020115739 and English translation thereof. |
Office Action dated Sep. 21, 2023 issued in Mexican patent application No. MX/A/18/010382. |
Office Action dated Oct. 16, 2023 issued in related U.S. Appl. No. 17/019,915. |
Notice of Allowance dated Dec. 12, 2023 issued in U.S. Appl. No. 16/449,897. |
Notice of Allowance dated Dec. 12, 2023 issued in U.S. Appl. No. 16/558,999. |
Notice of Allowance dated Dec. 12, 2023, issued in U.S. Appl. No. 16/227,354. |
Notice of Allowance dated Jan. 3, 2024 issued in U.S. Appl. No. 16/445,775. |
Notice of Allowance Jan. 11, 2024, issued in U.S. Appl. No. 17/226,586. |
Office Action dated Dec. 12, 2023 issued in Chinese patent application No. 201780016476.6. |
Decision to Grant dated Jan. 17, 2024 issued in Russian patent application No. 2020115739. |
Letter from the Opponent dated Dec. 21, 2023 issued in corresponding European patent No. 3426074. |
Notice of Allowance dated Jan. 29, 2024 issued in U.S. Appl. No. 16/227,354. |
Notice of Allowance dated Feb. 9, 2024 issued in U.S. Appl. No. 16/558,999. |
Notice of allowance dated Jan. 29, 2024 issued in U.S. Appl. No. 16/449,897. |
Office Action dated Feb. 2, 2024 issued in corresponding U.S. Appl. No. 17/019,915. |
Office Action dated Feb. 9, 2024 issued in U.S. Appl. No. 17/019,915. |
Notice of Allowance dated Feb. 9, 2024 issued in U.S. Appl. No. 16/445,775. |
Office Action dated Jan. 19, 2024 issued in corresponding Chinese Patent Application No. 201780013171.X. |
Office Action dated Apr. 7, 2024 issued in Chinese patent application No. 201780012415.2. |
Notice of Allowance dated May 24, 2024 issued in Philippines Patent Application No. 1-2018-501784. |
Office Action dated Apr. 23, 2024 issued in Chinese Patent Application No. 201780016476.6. |
Number | Date | Country | |
---|---|---|---|
20200008494 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15059746 | Mar 2016 | US |
Child | 16577319 | US |